Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The precision measurement of the W boson mass and its impact on physics

Abstract

As a mediator of the weak nuclear force, the W boson influences many properties of fundamental particles and their interactions. Understanding the W boson as accurately as possible, including knowing its mass, has been a priority in particle physics for decades. In the past few years, in a succession of increasing-precision measurements by multiple experiments, a significant tension between the measured and predicted mass has been documented by the CDF Collaboration. Furthermore, smaller differences between different measurements exist. Because the W boson mass provides a window on new physics, a comparison between different measurement techniques can inform the path to further investigations. This Perspective article overviews the role of the W boson mass in the Standard Model of Particle Physics and its extensions, compares and contrasts its measurement techniques and discusses prospects and future directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of W (or Z) boson production owing to quark (q)–antiquark (\(\bar{{\boldsymbol{q}}}\)) annihilation in \({\boldsymbol{p}}\bar{{\boldsymbol{p}}}\) collisions at the Tevatron.
Fig. 2: W boson mass measurements and the Standard Model expectation.
Fig. 3: Illustration of the two most precise measurements of the weak mixing angle θeff (shown conventionally as \({\sin }^{2}{{\boldsymbol{\theta }}}_{{\rm{eff}}}\) on the vertical axis) from the large electron–positron (LEP) experiments and the SLD experiment, respectively94, and their average16.

Similar content being viewed by others

References

  1. Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. D. & Hudson, R. P. Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1415 (1957).

    Article  ADS  CAS  Google Scholar 

  2. Anderson, P. W. Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  3. Englert, F. & Brout, R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  4. Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Higgs, P. W. Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964).

    Article  ADS  Google Scholar 

  6. Guralnik, G. S., Hagen, C. R. & Kibble, T. W. B. Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585 (1964).

    Article  ADS  CAS  Google Scholar 

  7. Aad, G. et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012).

    Article  ADS  CAS  Google Scholar 

  8. Chatrchyan, S. et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012).

    Article  ADS  CAS  Google Scholar 

  9. Glashow, S. Partial-symmetries of weak interactions. Nucl. Phys. 22, 579 (1961).

    Article  Google Scholar 

  10. Salam, A. & Ward, J. C. Electromagnetic and weak interactions. Phys. Lett. 13, 168 (1964).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Weinberg, S. A model of leptons. Phys. Rev. Lett. 19, 1264 (1967).

    Article  ADS  Google Scholar 

  12. Salam, G. P., Wang, L. T. & Zanderighi, G. The Higgs boson turns ten. Nature 607, 41–47 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. The ATLAS Collaboration. A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery. Nature 607, 52–59 (2022).

    Article  ADS  CAS  Google Scholar 

  14. The CMS Collaboration. A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature 607, 60–68 (2022).

    Article  ADS  CAS  Google Scholar 

  15. Aaltonen, T. et al. High-precision measurement of the W boson mass with the CDF II detector. Science 376, 170–176 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Workman, R. L. et al. Review of particle physics. Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

    Article  Google Scholar 

  17. Awramik, M., Czakon, M., Freitas, A. & Weiglein, G. Precise prediction for the W-boson mass in the standard model. Phys. Rev. D 69, 053006 (2004).

    Article  ADS  Google Scholar 

  18. Erler, J. & Schott, M. Electroweak precision tests of the Standard Model after the discovery of the Higgs boson. Prog. Part. Nucl. Phys. 106, 68 (2019).

    Article  ADS  CAS  Google Scholar 

  19. Arnison, G. et al. Experimental observation of isolated large transverse energy electrons with associated missing energy at \(\sqrt{s}=540\) GeV. Phys. Lett. B 122, 103 (1983).

  20. Banner, M. et al. Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN \(\bar{p}p\) collider. Phys. Lett. B 122, 476 (1983).

    Article  ADS  Google Scholar 

  21. Arnison, G. et al. Experimental observation of lepton pairs of invariant mass around 95 GeV/c2 at the CERN SPS collider. Phys. Lett. B 126, 398 (1983).

    Article  ADS  Google Scholar 

  22. Bagnaia, P. et al. Evidence for Z0 → e+e at the CERN \(\bar{p}p\) collider. Phys. Lett. B 129, 130 (1983).

    Article  ADS  Google Scholar 

  23. Albajar, C. et al. Studies of intermediate vector boson production and decay in UA1 at the CERN proton–antiproton collider. Z. Phys. C 44, 15 (1989).

    Article  CAS  Google Scholar 

  24. Ansari, R. et al. Measurement of the Standard Model parameters from a study of W and Z bosons. Phys. Lett. B 186, 440 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Alitti, J. et al. An improved determination of the ratio of W and Z masses at the CERN \(\bar{p}p\) collider. Phys. Lett. B 276, 354 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Abe, F. et al. Measurement of the W-boson mass. Phys. Rev. Lett. 65, 2243 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Abe, F. et al. Measurement of the W-boson mass in 1.8-TeV \(\bar{p}p\) collisions. Phys. Rev. D 43, 2070 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Barate, R. et al. Measurement of the W mass and width in e+e collisions at 189 GeV. Eur. Phys. J. C 17, 241 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Abreu, P. et al. Measurement of the mass and width of the W boson in e+e collisions at \(\sqrt{s}=189\) GeV. Phys. Lett. B 511, 159 (2001).

    Article  ADS  CAS  Google Scholar 

  30. Acciarri, M. et al. Measurement of mass and width of the W boson at LEP. Phys. Lett. B 454, 386 (1999).

    Article  ADS  CAS  Google Scholar 

  31. Abbiendi, G. et al. Measurement of the mass and width of the W boson in e+e collisions at 189 GeV. Phys. Lett. B 507, 29 (2001).

    Article  ADS  CAS  Google Scholar 

  32. Schael, S. et al. Measurement of the W boson mass and width in e+e collisions at LEP. Eur. Phys. J. C 47, 309 (2006).

    Article  ADS  CAS  Google Scholar 

  33. Abdallah, J. et al. Measurement of the mass and width of the W boson in e+e collisions at \(\sqrt{s}=161-209\) GeV. Eur. Phys. J. C 55, 1 (2008).

    Article  ADS  CAS  Google Scholar 

  34. Achard, P. et al. Measurement of the mass and the width of the W boson at LEP. Eur. Phys. J. C 45, 569 (2006).

    Article  CAS  Google Scholar 

  35. Abbiendi, G. et al. Measurement of the mass and width of the W boson. Eur. Phys. J. C 45, 307 (2006).

    Article  ADS  CAS  Google Scholar 

  36. The ALEPH Collaboration, The DELPHI Collaboration, The L3 Collaboration, The OPAL Collaboration. The LEP Electroweak Working Group. Electroweak measurements in electron–positron collisions at W-boson-pair energies at LEP. Phys. Rept. 532, 118 (2013).

    Google Scholar 

  37. Abe, F. et al. Measurement of the W boson mass. Phys. Rev. Lett. 75, 11 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Abe, F. et al. Measurement of the W boson mass. Phys. Rev. D 52, 4784 (1995).

    Article  ADS  CAS  Google Scholar 

  39. Affolder, T. et al. Measurement of the W boson mass with the Collider Detector at Fermilab. Phys. Rev. D 64, 052001 (2001).

    Article  ADS  Google Scholar 

  40. Abachi, S. et al. Measurement of the W boson mass. Phys. Rev. Lett. 77, 3309 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Abbott, B. et al. Determination of the mass of the W boson using the DØ detector at the Fermilab Tevatron. Phys. Rev. D 58, 012002 (1998).

    Article  ADS  Google Scholar 

  42. Abbott, B. et al. A measurement of the W boson mass at the Fermilab \(p\bar{p}\) Collider. Phys. Rev. Lett. 80, 3008 (1998).

    Article  ADS  CAS  Google Scholar 

  43. Abbott, B. et al. Measurement of the W boson mass. Phys. Rev. D 58, 092003 (1998).

    Article  ADS  Google Scholar 

  44. Abbott, B. et al. Measurement of the W Boson Mass Using Electrons at Large Rapidities. Phys. Rev. Lett. 84, 222 (2000).

    Article  ADS  CAS  Google Scholar 

  45. Abbott, B. et al. Measurement of the W boson mass using large rapidity electrons. Phys. Rev. D 62, 092006 (2000).

    Article  ADS  Google Scholar 

  46. Abazov, V. M. et al. Improved W boson mass measurement with the DØ detector. Phys. Rev. D 66, 012001 (2002).

    Article  ADS  Google Scholar 

  47. Abazov, V. M. et al. Combination of CDF and D0 results on the W boson mass and width. Phys. Rev. D 70, 092008 (2004).

    Article  ADS  Google Scholar 

  48. Aaltonen, T. et al. First measurement of the W-boson mass in Run II of the Tevatron. Phys. Rev. Lett. 99, 151801 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Aaltonen, T. et al. First Run II measurement of the W boson mass at the Fermilab Tevatron. Phys. Rev. D 77, 112001 (2008).

    Article  ADS  Google Scholar 

  50. Aaltonen, T. et al. Precise measurement of the W-boson mass with the CDF II Detector. Phys. Rev. Lett. 108, 151803 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Aaltonen, T. et al. Precise measurement of the W-boson mass with the Collider Detector at Fermilab. Phys. Rev. D 89, 072003 (2014).

    Article  ADS  Google Scholar 

  52. Abazov, V. M. et al. Measurement of the W boson mass. Phys. Rev. Lett. 103, 141801 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Abazov, V. M. et al. Measurement of the W boson mass with the D0 detector. Phys. Rev. Lett. 108, 151804 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Abazov, V. M. et al. Measurement of the W boson mass with the D0 detector. Phys. Rev. D 89, 012005 (2014).

    Article  ADS  Google Scholar 

  55. Aaltonen, T. et al. Combination of CDF and D0 W-boson mass measurements. Phys. Rev. D 88, 052018 (2013).

    Article  ADS  Google Scholar 

  56. Aaboud, M. et al. Measurement of the W-boson mass in pp collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Eur. Phys. J. C 78, 110 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Aaboud, M. et al. Erratum to: measurement of the W-boson mass in pp collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Eur. Phys. J. C 78, 898 (2018).

    Article  ADS  Google Scholar 

  58. Aaij, R. et al. Measurement of the W boson mass. J. High Energ. Phys. 2022, 36 (2022).

    Article  Google Scholar 

  59. Georgi, H. Lie Algebras in Particle Physics: From Isospin to Unified Theories 1st edn (CRC Press, 2000).

  60. Greiner, W. & Müller, B. Quantum Mechanics: Symmetries 2nd edn (Springer Berlin, 1994).

  61. Marciano, W. J. & Sirlin, A. Radiative corrections to neutrino-induced neutral-current phenomena in the SU(2)L × U(1) theory. Phys. Rev. D 22, 2695 (1980).

    Article  ADS  CAS  Google Scholar 

  62. Marciano, W. J. & Sirlin, A. Erratum: testing the standard model by precise determinations of W± and Z masses. Phys. Rev. D 31, 213 (1985).

    ADS  Google Scholar 

  63. Ross, D. A. & Veltman, M. J. G. Neutral currents and the Higgs mechanism. Nucl. Phys. B 95, 135 (1975).

    Article  ADS  Google Scholar 

  64. ‘t Hooft, G. & Veltman, M. Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  65. Veltman, M. J. G. Limit on mass differences in the Weinberg model. Nucl. Phys. B 123, 89–99 (1977).

    Article  ADS  Google Scholar 

  66. Erler, J. & Langacker, P. Implications of high precision experiments and the CDF top quark candidates. Phys. Rev. D 52, 441 (1995).

    Article  ADS  CAS  Google Scholar 

  67. Abe, F. et al. Observation of top quark production in \(\bar{p}p\) collisions with the Collider Detector at Fermilab. Phys. Rev. Lett. 74, 2626 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Abachi, S. et al. Observation of the top quark. Phys. Rev. Lett. 74, 2632 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Veltman, M. J. G. The screening theorem and the Higgs system. Acta Phys. Polon. B 25, 1627–1636 (1994).

    CAS  Google Scholar 

  70. Gross, D. J. & Wilczek, F. Ultraviolet behavior of non-Abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973).

    Article  ADS  CAS  Google Scholar 

  71. Politzer, H. D. Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973).

    Article  ADS  CAS  Google Scholar 

  72. Balázs, C. & Yuan, C.-P. Soft gluon effects on lepton pairs at hadron colliders. Phys. Rev. D 56, 5558 (1997).

    Article  ADS  Google Scholar 

  73. Ladinsky, G. A. & Yuan, C.-P. Nonperturbative regime in QCD resummation for gauge boson production at hadron colliders. Phys. Rev. D 50, R4239 (1994).

    Article  ADS  CAS  Google Scholar 

  74. Landry, F., Brock, R., Nadolsky, P. M. & Yuan, C.-P. Fermilab Tevatron Run-1 Z boson data and the Collins–Soper–Sterman resummation formalism. Phys. Rev. D 67, 073016 (2003).

    Article  ADS  Google Scholar 

  75. Bozzi, G., Catani, S., Ferrera, G., de Florian, D. & Grazzini, M. Transverse-momentum resummation: a perturbative study of Z production at the Tevatron. Nucl. Phys. B 815, 174–197 (2009).

    Article  ADS  Google Scholar 

  76. Bozzi, G., Catani, S., Ferrera, G., de Florian, D. & Grazzini, M. Production of Drell–Yan lepton pairs in hadron collisions: transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy. Phys. Lett. B 696, 207–213 (2011).

    Article  ADS  CAS  Google Scholar 

  77. Affolder, T. et al. CDF Central Outer Tracker. Nucl. Instrum. Methods Phys. Res. A 526, 249 (2004).

    Article  ADS  CAS  Google Scholar 

  78. Kotwal, A. V., Gerberich, H. K. & Hays, C. Identification of cosmic rays using drift chamber hit timing. Nucl. Instrum. Methods Phys. Res. A 506, 110 (2003).

    Article  ADS  CAS  Google Scholar 

  79. Kotwal, A. V. & Hays, C. Drift chamber alignment using cosmic rays. Nucl. Instrum. Methods Phys. Res. A 762, 85 (2014).

    Article  ADS  CAS  Google Scholar 

  80. Kotwal, A. V. & Hays, C. Electromagnetic shower properties in a lead-scintillator sampling calorimeter. Nucl. Instrum. Methods Phys. Res. A 729, 25 (2013).

    Article  ADS  CAS  Google Scholar 

  81. Brun, R. et al. GEANT: Detector Description and Simulation Tool. Report No. W5013 (CERN Program Library, 1993).

  82. Agostinelli, S. et al. geant4 — a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).

    Article  ADS  CAS  Google Scholar 

  83. ATLAS Collaboration. Improved W boson Mass Measurement using 7 TeV Proton–Proton Collisions with the ATLAS Detector. Report No. ATLAS-CONF-2023-004 (CERN Document Server, 2023).

  84. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference 2nd edn (Springer, 2002).

  85. Dyson, F. A meeting with Enrico Fermi. Nature 427, 297 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Azzurri, P. The W mass and width measurement challenge at FCC-ee. Eur. Phys. J. Plus 136, 1203 (2021).

    Article  Google Scholar 

  87. The LEP Collaborations: ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, the LEP Electroweak Working Group, the SLD Heavy Flavour & Electroweak Working Group. A combination of preliminary electroweak measurements and constraints on the Standard Model. Preprint at https://doi.org/10.48550/arXiv.hep-ex/0112021 (2002).

  88. The LEP Collaborations: ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, the LEP Electroweak Working Group, the SLD Electroweak & Heavy Flavour Groups. A combination of preliminary electroweak measurements and constraints on the Standard Model. Preprint at https://doi.org/10.48550/arXiv.hep-ex/0312023 (2004).

  89. Aryshev, A. et al. The International Linear Collider: report to Snowmass 2021. Preprint at https://doi.org/10.48550/arXiv.2203.07622 (2022).

  90. Cheng, H. et al. The physics potential of the CEPC. Prepared for the US Snowmass community planning exercise (Snowmass 2021). Preprint at https://doi.org/10.48550/arXiv.hep-ex/0112021 (2022).

  91. de Blas, J. et al. The CLIC potential for new physics. Preprint at https://doi.org/10.48550/arXiv.hep-ex/0312023 (2019).

  92. Blondel, A. & Janot, P. FCC-ee overview: new opportunities create new challenges. Eur. Phys. J. Plus 137, 92 (2022).

    Article  Google Scholar 

  93. Sirlin, A. Radiative corrections in the SU(2)L × U(1) theory: a simple renormalization framework. Phys. Rev. D 22, 971 (1980).

    Article  ADS  CAS  Google Scholar 

  94. The ALEPH Collaboration, the DELPHI Collaboration, the L3 Collaboration, the OPAL Collaboration, the SLD Collaboration, the LEP Electroweak Working Group & The SLD Electroweak and Heavy Flavour Groups. Precision electroweak measurements on the Z resonance. Phys. Rept. 427, 257–454 (2006).

    Article  ADS  Google Scholar 

  95. Benesch, J. et al. The MOLLER experiment: an ultra-precise measurement of the weak mixing angle using Møller scattering. Preprint at https://doi.org/10.48550/arXiv.1411.4088 (2014).

  96. Arrington, J. et al. The Solenoidal Large Intensity Device (SoLID) for JLab 12 GeV. Preprint at https://doi.org/10.48550/arXiv.2209.13357 (2023).

  97. Becker, D. et al. The P2 experiment. Eur. Phys. J. A 54, 208 (2018).

    Article  ADS  CAS  Google Scholar 

  98. Amoroso, S. et al. Compatibility and combination of world W-boson mass measurements. Preprint at https://doi.org/10.48550/arXiv.1411.4088 (2023).

  99. Biekotter, T., Heinemeyer, S. & Weiglein, G. Excesses in the low-mass Higgs-boson search and the W-boson mass measurement. Eur. Phys. J. C 83, 450 (2023).

    Article  ADS  Google Scholar 

  100. Aguillard, D. P. et al. Measurement of the positive muon anomalous magnetic moment to 0.20 ppm. Phys. Rev. Lett. 131, 161802 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Abi, B. et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett. 126, 141801 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Albahri, T. et al. Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g − 2 Experiment. Phys. Rev. D 103, 072002 (2021).

    Article  ADS  CAS  Google Scholar 

  103. Bennett, G. W. et al. Final report of the E821 muon anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006).

    Article  ADS  Google Scholar 

  104. Castelvecchi, D. Dreams of new physics fade with latest muon magnetism result. Nature 620, 473–474 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Borsanyi, S. et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD. Nature 593, 51–55 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  106. Lehner, C. High-precision lattice QCD calculations of the muon anomalous magnetic moment. Nat. Rev. Phys. 4, 14–15 (2022).

    Article  Google Scholar 

  107. Ignatov, F. V. et al. Measurement of the e+e → π+π cross section from threshold to 1.2 GeV with the CMD-3 detector. Preprint at https://doi.org/10.48550/arXiv.2302.08834 (2023).

  108. Athron, P. et al. Hadronic uncertainties versus new physics for the W boson mass and muon g − 2 anomalies. Nat. Commun. 14, 659 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. ‘t Hooft, G. Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Sci. Ser. B 59, 135–157 (1980).

    Google Scholar 

Download references

Acknowledgements

The author thanks K. Agashe, S. Gupta and R. Plesser for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

The author contributed to all aspects of the article.

Corresponding author

Correspondence to Ashutosh V. Kotwal.

Ethics declarations

Competing interests

The author is also the corresponding author of ‘Aaltonen, T. et al. (CDF Collaboration), Science 376, 170–176 (2022)’, a member of the CDF Collaboration and the ATLAS Collaboration and a past member of the D0 Collaboration and the E665 Collaboration.

Peer review

Peer review information

Nature Reviews Physics thanks Claudia-Elisabeth Wulz, Jens Erler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotwal, A.V. The precision measurement of the W boson mass and its impact on physics. Nat Rev Phys 6, 180–193 (2024). https://doi.org/10.1038/s42254-023-00682-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00682-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing