Abstract
Thermoelectric (TE) materials and devices are crucial for renewable thermal-to-electrical energy conversion applications. The optimization of TE performance can be achieved by manipulating four fundamental degrees of freedom: charge, lattice, spin and orbital. Historically, most strategies to improve TE performance focus on phonon and electron charge transport properties. However, in the past 15 years, the field of spin caloritronics, which explores the interplay among heat, charge and spin, has emerged. The inclusion of spins has introduced conceptually innovative mechanisms and versatile functionalities for solid-state thermal-to-electrical energy conversion. Here, we review the recent theoretical and experimental progress in the field of spin caloritronics. We discuss the strategic role of spin-related mechanisms in improving charge-based TE performance and the recent developments in the novel magneto-TE and thermospin effects as well as their potential applications. This Review offers a perspective for understanding the role of spin in TE, designing new high-efficiency TE materials and developing new TE technology beyond the conventional framework.
Key points
-
The intercoupled transport of charge, heat and spins has resulted in an emerging field known as spin caloritronics, which combines the spintronics and thermoelectrics (TEs). The additional spin degrees of freedom offer conceptually innovative mechanisms and functionalities for solid-state thermal-to-electrical energy conversion.
-
Various spin-related effects offer new mechanisms for optimizing the charge-based TE performance beyond the well-known S–σ anticorrelation limit, such as Rashba spin-split effect, Kondo effect, spin entropy, spin fluctuation, magnon-drag effect and magnetic nanocomposite effect.
-
Spin-dependent magneto-TE effects, such as longitudinal magneto-Seebeck–Peltier effect and transverse Nernst–Ettingshausen effect, provide a new TE conversion technology that can be controlled by spin/magnetism.
-
The discovery of various heat–spin–charge interconversion effects has led to the development of versatile TE converters with unique driven principles, geometric symmetries and novel functionalities that are not found in conventional TEs. The thermospin effects include the spin Seebeck–Peltier effect and spin-dependent Seebeck–Peltier effect.
-
Spin caloritronics provides new TE functionalities and application prospects, such as transverse TE generation, thermal energy harvesting and cooling, heat flux sensing and spin sources for spintronics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).
DiSalvo, F. J. Thermoelectric cooling and power generation. Science 285, 703–706 (1999).
Zhu, T. et al. Compromise and synergy in high‐efficiency thermoelectric materials. Adv. Mater. 29, 1605884 (2017).
Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).
Heremans, J. P., Wiendlocha, B. & Chamoire, A. M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012).
Pei, Y. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).
Chen, Z. et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv. Mater. 29, 1606768 (2017).
Heremans, J. P. et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008).
Pei, Y., Wang, H. & Snyder, G. J. Band engineering of thermoelectric materials. Adv. Mater. 24, 6125–6135 (2012).
Chen, Z.-G., Han, G., Yang, L., Cheng, L. & Zou, J. Nanostructured thermoelectric materials: current research and future challenge. Prog. Nat. Sci. Mater. Int. 22, 535–549 (2012).
Tan, G., Zhao, L.-D. & Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016).
Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).
Chen, Z., Zhang, X. & Pei, Y. Manipulation of phonon transport in thermoelectrics. Adv. Mater. 30, e1705617 (2018).
Toberer, E. S., Baranowski, L. L. & Dames, C. Advances in thermal conductivity. Annu. Rev. Mater. Res. 42, 179–209 (2012).
Kim, W. Strategies for engineering phonon transport in thermoelectrics. J. Mater. Chem. C. 3, 10336–10348 (2015).
Biswas, K. et al. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160–166 (2011).
Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).
Polash, M. M. H., Moseley, D., Zhang, J., Hermann, R. P. & Vashaee, D. Understanding and design of spin-driven thermoelectrics. Cell Rep. Phys. Sci. 2, 100614 (2021).
Zheng, Y. et al. Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe. Sci. Adv. 5, eaat9461 (2019).
Polash, M. M. H. & Vashaee, D. Spin fluctuations yield zT enhancement in ferromagnets. iScience 24, 103356 (2021).
Wang, Y., Rogado, N. S., Cava, R. J. & Ong, N. P. Spin entropy as the likely source of enhanced thermopower in NaxCO2O4. Nature 423, 425–428 (2003).
Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).
Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010).
Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).
Uchida, K. et al. Long-range spin Seebeck effect and acoustic spin pumping. Nat. Mater. 10, 737–741 (2011).
Miao, B. F., Huang, S. Y., Qu, D. & Chien, C. L. Inverse spin Hall effect in a ferromagnetic metal. Phys. Rev. Lett. 111, 066602 (2013).
Wang, L. et al. Giant room temperature interface spin Hall and inverse spin Hall effects. Phys. Rev. Lett. 116, 196602 (2016).
Bauer, G. E. W., MacDonald, A. H. & Maekawa, S. ‘Spin caloritronics’. Solid State Commun. 150, 459–460 (2010).
Bahramy, M. S. & Ogawa, N. Bulk Rashba semiconductors and related quantum phenomena. Adv. Mater. 29, 1605911 (2017).
Hong, M. et al. Rashba effect maximizes thermoelectric performance of GeTe derivatives. Joule 4, 2030–2043 (2020).
Wu, L. et al. Enhanced thermoelectric performance in the Rashba semiconductor BiTeI through band gap engineering. J. Phys. Condens. Matter 28, 085801 (2016).
Yuan, J. et al. One-dimensional thermoelectrics induced by Rashba spin–orbit coupling in two-dimensional BiSb monolayer. Nano Energy 52, 163–170 (2018).
He, J. & Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997 (2017).
Wu, L. et al. Two-dimensional thermoelectrics with Rashba spin-split bands in bulk BiTeI. Phys. Rev. B 90, 195210 (2014).
Tian, Q., Zhang, W., Qin, Z. & Qin, G. Novel optimization perspectives for thermoelectric properties based on Rashba spin splitting: a mini review. Nanoscale 13, 18032–18043 (2021).
Li, X. et al. Defect-mediated Rashba engineering for optimizing electrical transport in thermoelectric BiTeI. npj Comput. Mater. 6, 107 (2020).
Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).
Kondo, J. Giant thermo-electric power of dilute magnetic alloys. Prog. Theor. Phys. 34, 372–382 (1965).
Bentien, A., Johnsen, S., Madsen, G. K. H., Iversen, B. B. & Steglich, F. Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2. Europhys. Lett. 80, 17008 (2007).
Iga, F. et al. Thermoelectric properties of the Kondo semiconductor: Yb1−x LuxB12. J. Magn. Magn. Mater. 226–230, 137–138 (2001).
Rowe, D. M., Kuznetsov, V. L., Kuznetsova, L. A. & Min, G. Electrical and thermal transport properties of intermediate-valence YbAl3. J. Phys. D Appl. Phys. 35, 2183–2186 (2002).
Huo, D., Kuwai, T., Mizushima, T., Isikawa, Y. & Sakurai, J. Thermoelectric power of CePd1−xNixAl single crystals. Phys. B 312–313, 232–234 (2002).
Wei, K. et al. Enhanced thermoelectric performance of heavy-fermion compounds YbTM 2Zn20 (TM = Co, Rh, Ir) at low temperatures. Sci. Adv. 5, eaaw6183 (2019).
Dilley, N. R. et al. Thermoelectric and optical properties of the filled skutterudite YbFe4Sb12. Phys. Rev. B 61, 4608–4614 (2000).
Gambino, R. J., Grobman, W. D. & Toxen, A. M. Anomalously large thermoelectric cooling figure of merit in the Kondo systems CePd3 and Celn3. Appl. Phys. Lett. 22, 506–507 (1973).
Sun, Y., Liu, Y., Li, R., Li, Y. & Bai, S. Strategies to improve the thermoelectric figure of merit in thermoelectric functional materials. Front. Chem. 10, 865281 (2022).
Wu, J. et al. Large enhancement of thermoelectric performance in MoS(2)/h-BN heterostructure due to vacancy-induced band hybridization. Proc. Natl Acad. Sci. USA 117, 13929–13936 (2020).
Matusiak, M., Tunnicliffe, E. M., Cooper, J. R., Matsushita, Y. & Fisher, I. R. Evidence for a charge Kondo effect in Pb1−xTlxTe from measurements of thermoelectric power. Phys. Rev. B 80, 220403 (2009).
Pei, Y., LaLonde, A., Iwanaga, S. & Snyder, G. J. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ. Sci. 4, 2085–2089 (2011).
Grigorian, L. et al. Giant thermopower in carbon nanotubes: a one-dimensional Kondo system. Phys. Rev. B 60, R11309–R11312 (1999).
Chaikin, P. M. & Beni, G. Thermopower in the correlated hopping regime. Phys. Rev. B 13, 647–651 (1976).
Koshibae, W., Tsutsui, K. & Maekawa, S. Thermopower in cobalt oxides. Phys. Rev. B 62, 6869–6872 (2000).
Tang, G. et al. Lu-induced spin entropy enhancement in Ca3Co4O9+ δ system. Solid State Commun. 150, 1706–1709 (2010).
Tang, G., Yang, W., Jiang, Y., Wu, Z. & Wang, Z. Large increase in the spin entropy of thermoelectric Ca3Co4O9+ δ induced by Ni and Ce co-doping. J. Mater. Sci. 50, 1746–1751 (2015).
Koshibae, W. & Maekawa, S. Effects of spin and orbital degeneracy on the thermopower of strongly correlated systems. Phys. Rev. Lett. 87, 236603 (2001).
Gutiérrez Moreno, J. J., Cao, J., Fronzi, M. & Assadi, M. H. N. A review of recent progress in thermoelectric materials through computational methods. Mater. Renew. Sustain. Energy 9, 16 (2020).
Tang, G., Xu, F., Zhang, D. & Wang, Z. Improving the spin entropy by suppressing Co4+ concentration in thermoelectric Ca3Co4O9+ δ. Ceram. Int. 39, 1341–1344 (2013).
Duan, S. et al. Anomalous thermopower and high ZT in GeMnTe2 driven by spin’s thermodynamic entropy. Research 2021, 1949070 (2021).
Gratz, E. & Markosyan, A. Physical properties of RCo2 Laves phases. J. Phys. Condens. Matter 13, R385 (2001).
Takabatake, T. et al. Roles of spin fluctuations and rattling in magnetic and thermoelectric properties of AT4Sb12 (A= Ca, Sr, Ba, La; T= Fe, Ru, Os). Phys. B 383, 93–102 (2006).
Tsujii, N., Nishide, A., Hayakawa, J. & Mori, T. Observation of enhanced thermopower due to spin fluctuation in weak itinerant ferromagnet. Sci. Adv. 5, eaat5935 (2019).
Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism, Vol. 56 (Springer Science & Business Media, 2012).
Lonzarich, G. & Taillefer, L. Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals. J. Phys. C Solid State Phys. 18, 4339 (1985).
Takahashi, Y. Spin Fluctuation Theory of Itinerant Electron Magnetism, Vol. 9 (Springer, 2013).
Brinkman, W. & Engelsberg, S. Spin-fluctuation contributions to the specific heat. Phys. Rev. 169, 417 (1968).
Sun, P. et al. Generic Seebeck effect from spin entropy. Innovation 2, 100101 (2021).
Wen, Q. et al. Enhanced thermoelectric performance of BiCuSeO by increasing Seebeck coefficient through magnetic ion incorporation. J. Mater. Chem. A 5, 13392–13399 (2017).
Vandaele, K. et al. Thermal spin transport and energy conversion. Mater. Today Phys. 1, 39–49 (2017).
Watzman, S. J. et al. Magnon-drag thermopower and Nernst coefficient in Fe, Co, and Ni. Phys. Rev. B 94, 144407 (2016).
Zheng, Y., Weiss, E. J., Antolin, N., Windl, W. & Heremans, J. P. Magnon drag effect in Fe-Co alloys. J. Appl. Phys. 126, 125107 (2019).
Zhao, W. et al. Superparamagnetic enhancement of thermoelectric performance. Nature 549, 247–251 (2017).
Zhao, W. et al. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nat. Nanotechnol. 12, 55–60 (2017).
Li, C. et al. Magnetism-induced huge enhancement of the room-temperature thermoelectric and cooling performance of p-type BiSbTe alloys. Energy Environ. Sci. 13, 535–544 (2020).
Ma, S. et al. High-pressure synthesis and excellent thermoelectric performance of Ni/BiTeSe magnetic nanocomposites. J. Mater. Chem. A 8, 4816–4826 (2020).
Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2015).
Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645–649 (2015).
Fujishiro, Y. et al. Large magneto-thermopower in MnGe with topological spin texture. Nat. Commun. 9, 408 (2018).
Han, F. et al. Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal. Nat. Commun. 11, 6167 (2020).
Skinner, B. & Fu, L. Large, nonsaturating thermopower in a quantizing magnetic field. Sci. Adv. 4, eaat2621 (2018).
Liang, T. et al. Evidence for massive bulk Dirac fermions in Pb(1)-xSnxSe from Nernst and thermopower experiments. Nat. Commun. 4, 2696 (2013).
Fu, C. et al. Largely suppressed magneto-thermal conductivity and enhanced magneto-thermoelectric properties in PtSn4. Research 2020, 4643507 (2020).
Wang, H. et al. Magnetic field‐enhanced thermoelectric performance in Dirac semimetal Cd3As2 crystals with different carrier concentrations. Adv. Funct. Mater. 29, 1902437 (2019).
Wang, H. et al. Magnetic-field enhanced high-thermoelectric performance in topological Dirac semimetal Cd(3)As(2) crystal. Sci. Bull. 63, 411–418 (2018).
Miura, A., Iguchi, R., Seki, T., Takanashi, K. & Uchida, K. I. Spin-mediated charge-to-heat current conversion phenomena in ferromagnetic binary alloys. Phys. Rev. Mater. 4, 034409 (2020).
Wegrowe, J. E. et al. Anisotropic magnetothermopower: contribution of interband relaxation. Phys. Rev. B 73, 134422 (2006).
Uchida, K. I. Transport phenomena in spin caloritronics. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 97, 69–88 (2021).
Pu, Y., Johnston-Halperin, E., Awschalom, D. D. & Shi, J. Anisotropic thermopower and planar Nernst effect in Ga1–xMnxAs ferromagnetic semiconductors. Phys. Rev. Lett. 97, 036601 (2006).
Böhnert, T., Vega, V., Michel, A.-K., Prida, V. M. & Nielsch, K. Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires. Appl. Phys. Lett. 103, 092407 (2013).
Uchida, K.-i, Daimon, S., Iguchi, R. & Saitoh, E. Observation of anisotropic magneto-Peltier effect in nickel. Nature 558, 95–99 (2018).
Watzman, S. J. et al. Dirac dispersion generates unusually large Nernst effect in Weyl semimetals. Phys. Rev. B 97, 161404(R) (2018).
Fu, C. et al. Large Nernst power factor over a broad temperature range in polycrystalline Weyl semimetal NbP. Energy Environ. Sci. 11, 2813–2820 (2018).
Xiang, J. et al. Large transverse thermoelectric figure of merit in a topological Dirac semimetal. Sci. China Phys. Mech. Astron. 63, 237011 (2019).
Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).
Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).
Reichlova, H. et al. Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa. Appl. Phys. Lett. 113, 212405 (2018).
Guin, S. N. et al. Zero-field Nernst effect in a ferromagnetic Kagome-lattice Weyl-semimetal Co3Sn2S2. Adv. Mater. 31, e1806622 (2019).
Ding, L. et al. Intrinsic anomalous Nernst effect amplified by disorder in a half-metallic semimetal. Phys. Rev. X 9, 041061 (2019).
Yang, H. et al. Giant anomalous Nernst effect in the magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. Mater. 4, 024202 (2020).
Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).
Chen, T. et al. Large anomalous Nernst effect and nodal plane in an iron-based kagome ferromagnet. Sci. Adv. 8, eabk1480 (2022).
Pan, Y. et al. Giant anomalous Nernst signal in the antiferromagnet YbMnBi2. Nat. Mater. 21, 203–209 (2022).
Jaworski, C. M., Myers, R. C., Johnston-Halperin, E. & Heremans, J. P. Giant spin Seebeck effect in a non-magnetic material. Nature 487, 210–213 (2012).
Flipse, J. et al. Observation of the spin Peltier effect for magnetic insulators. Phys. Rev. Lett. 113, 027601 (2014).
Slachter, A., Bakker, F. L., Adam, J. P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nat. Phys. 6, 879–882 (2010).
Flipse, J., Bakker, F. L., Slachter, A., Dejene, F. K. & van Wees, B. J. Direct observation of the spin-dependent Peltier effect. Nat. Nanotechnol. 7, 166–168 (2012).
Boehnke, A. et al. Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes. Nat. Commun. 8, 1626 (2017).
Walter, M. et al. Seebeck effect in magnetic tunnel junctions. Nat. Mater. 10, 742–746 (2011).
Meyer, S. et al. Observation of the spin Nernst effect. Nat. Mater. 16, 977–981 (2017).
Uchida, K. et al. Longitudinal spin Seebeck effect: from fundamentals to applications. J. Phys.: Condens. Matter 26, 343202 (2014).
Uchida, K.-I et al. Thermoelectric generation based on spin Seebeck effects. Proc. IEEE 104, 1946–1973 (2016).
Uchida, K. et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).
Daimon, S., Iguchi, R., Hioki, T., Saitoh, E. & Uchida, K. I. Thermal imaging of spin Peltier effect. Nat. Commun. 7, 13754 (2016).
Uchida, K. et al. Enhancement of the spin Peltier effect in multilayers. Phys. Rev. B 95, 184437 (2017).
Kikkawa, T. & Saitoh, E. Spin Seebeck effect: sensitive probe for elementary excitation, spin correlation, transport, magnetic order, and domains in solids. Annu. Rev. Condens. Matter Phys. 14, 129–151 (2023).
Ito, N. et al. Spin Seebeck effect in the layered ferromagnetic insulators CrSiTe3 and CrGeTe3. Phys. Rev. B 100, 060402 (2019).
Mallick, K., Wagh, A. A., Ionescu, A., Barnes, C. H. & Kumar, P. A. Role of spin mixing conductance in determining thermal spin pumping near the ferromagnetic phase transition in EuO1−x and La2NiMnO6. Phys. Rev. B 100, 224403 (2019).
Wang, H. et al. The bimodal distribution spin Seebeck effect enhancement in epitaxial Ni0.65Zn0.35Al0.8Fe1.2O4 thin film. Appl. Phys. Lett. 112, 142406 (2018).
Ramos, R. et al. Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets. Nat. Commun. 10, 5162 (2019).
Ortiz, V. H. et al. Ultrafast measurements of the interfacial spin Seebeck effect in Au and rare-earth iron-garnet bilayers. Phys. Rev. Mater. 5, 074401 (2021).
Lin, W. et al. Evidence for spin swapping in an antiferromagnet. Nat. Phys. 18, 800–805 (2022).
Xu, J. et al. Observation of vector spin Seebeck effect in a noncollinear antiferromagnet. Phys. Rev. Lett. 129, 117202 (2022).
Hirobe, D. et al. One-dimensional spinon spin currents. Nat. Phys. 13, 30–34 (2017).
Chen, Y. et al. Triplon current generation in solids. Nat. Commun. 12, 5199 (2021).
Hirobe, D. et al. Magnon pairs and spin-nematic correlation in the spin Seebeck effect. Phys. Rev. Lett. 123, 117202 (2019).
Kikkawa, T. et al. Observation of nuclear-spin Seebeck effect. Nat. Commun. 12, 4356 (2021).
Boona, S. R., Watzman, S. J. & Heremans, J. P. Research update: utilizing magnetization dynamics in solid-state thermal energy conversion. APL Mater. 4, 104502 (2016).
Boona, S. R., Jin, H. & Watzman, S. Transverse thermal energy conversion using spin and topological structures. J. Appl. Phys. 130, 171101 (2021).
Xing, W. et al. Spin Seebeck effect in quantum magnet Pb2V3O9. Appl. Phys. Lett. 120, 042402 (2022).
Xing, W. et al. Magnon transport in quasi-two-dimensional van der Waals antiferromagnets. Phys. Rev. X 9, 011026 (2019).
Oh, I. et al. A scalable molecule-based magnetic thin film for spin-thermoelectric energy conversion. Nat. Commun. 12, 1057 (2021).
Kim, M. Y., Park, S. J., Kim, G.-Y., Choi, S.-Y. & Jin, H. Designing efficient spin Seebeck-based thermoelectric devices via simultaneous optimization of bulk and interface properties. Energy Environ. Sci. 14, 3480–3491 (2021).
Lee, S. K. et al. Enhanced spin Seebeck effect in monolayer tungsten diselenide due to strong spin current injection at interface. Adv. Funct. Mater. 30, 2003192 (2020).
Bosu, S. et al. Spin Seebeck effect in thin films of the Heusler compound Co2MnSi. Phys. Rev. B 83, 224401 (2011).
Jiang, Z. L. et al. Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states. Nat. Commun. 7, 11458 (2016).
Lee, W.-Y. et al. Enhanced spin Seebeck thermopower in Pt/Holey MoS2/Y3Fe5O12 hybrid structure. Nano Lett. 21, 189–196 (2020).
Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).
Ramos, R. et al. Unconventional scaling and significant enhancement of the spin Seebeck effect in multilayers. Phys. Rev. B 92, 220407(R) (2015).
Nozue, T. et al. Fabrication of yttrium–iron–garnet/Pt multilayers for the longitudinal spin Seebeck effect. Appl. Phys. Lett. 113, 262402 (2018).
Lee, K.-D. et al. Thermoelectric signal enhancement by reconciling the spin seebeck and anomalous Nernst effects in ferromagnet/non-magnet multilayers. Sci. Rep. 5, 10249 (2015).
Kirihara, A. et al. Spin-current-driven thermoelectric coating. Nat. Mater. 11, 686–689 (2012).
Kirihara, A. et al. Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films. Sci. Rep. 6, 23114 (2016).
Uchida, K.-I, Kirihara, A., Ishida, M., Takahashi, R. & Saitoh, E. Local spin-Seebeck effect enabling two-dimensional position sensing. Jpn. J. Appl. Phys. 50, 120211 (2011).
Boona, S. R., Myers, R. C. & Heremans, J. P. Spin caloritronics. Energy Environ. Sci. 7, 885–910 (2014).
Weiler, M. et al. Local charge and spin currents in magnetothermal landscapes. Phys. Rev. Lett. 108, 106602 (2012).
Ramos, R. et al. Observation of the spin Seebeck effect in epitaxial Fe3O4 thin films. Appl. Phys. Lett. 102, 072413 (2013).
Corte-León, H. et al. Magnetic scanning gate microscopy of CoFeB lateral spin valve. AIP Adv. 7 (2017).
Boona, S. R., Vandaele, K., Boona, I. N., McComb, D. W. & Heremans, J. P. Observation of spin Seebeck contribution to the transverse thermopower in Ni-Pt and MnBi-Au bulk nanocomposites. Nat. Commun. 7, 13714 (2016).
Wooten, B. L., Vandaele, K., Boona, S. R. & Heremans, J. P. Combining spin-Seebeck and Nernst effects in aligned MnBi/Bi composites. Nanomaterials 10, 2083 (2020).
He, B. et al. Large magnon-induced anomalous Nernst conductivity in single-crystal MnBi. Joule 5, 3057–3067 (2021).
Scholz, K., Jandl, P., Birkholz, U. & Dashevskii, Z. Infinite stage Ettingshausen cooling in Bi‐Sb alloys. J. Appl. Phys. 75, 5406–5408 (1994).
Hirai, T. et al. Strain-induced cooling–heating switching of anisotropic magneto-Peltier effect. Appl. Phys. Lett. 118, 022403 (2021).
Nakayama, H. et al. Electric-field-induced on–off switching of anomalous Ettingshausen effect in ultrathin Co films. Appl. Phys. Exp. 12, 123003 (2019).
Wang, J., Takahashi, Y. K. & Uchida, K. I. Magneto-optical painting of heat current. Nat. Commun. 11, 2 (2020).
Uchida, K.-I & Iguchi, R. Spintronic thermal management. J. Phys. Soc. Jpn. 90, 122001 (2021).
Wang, X. et al. Spin-gapless semiconductors for future spintronics and electronics. Phys. Rep. 888, 1–57 (2020).
Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011).
Acknowledgements
This work was supported by the Australian Research Council (ARC) through ARC Discovery projects (DP230102221, X.L.W. and DP210101436, C.Z.), ARC Professorial Future Fellowship Project (FT130100778, X.L.W.), ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET, CE170100039), Basic Science Centre Project of NSFC (No. 51788104) and a Linkage Infrastructure Equipment and Facilities (LIEF) Grant (LE120100069, X.L.W.).
Author information
Authors and Affiliations
Contributions
G.G. and X.W. designed the project and developed the outline of this work. All authors contributed to the discussion of content and the preparation of the manuscript in collaboration.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Ken-Ichi Uchida, Li-Dong Zhao and Xianhui Chen for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yang, G., Sang, L., Zhang, C. et al. The role of spin in thermoelectricity. Nat Rev Phys 5, 466–482 (2023). https://doi.org/10.1038/s42254-023-00604-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-023-00604-0