Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum computing for finance

Abstract

Quantum computers are expected to surpass the computational capabilities of classical computers and have a transformative impact on numerous industry sectors. We present a comprehensive summary of the state of the art of quantum computing for financial applications, with particular emphasis on stochastic modelling, optimization and machine learning. This Review is aimed at physicists, so it outlines the classical techniques used by the financial industry and discusses the potential advantages and limitations of quantum techniques. Finally, we look at the challenges that physicists could help tackle.

Key points

  • Quantum algorithms for stochastic modelling, optimization and machine learning are applicable to various financial problems.

  • Quantum Monte Carlo integration and gradient estimation can provide quadratic speedup over classical methods, but more work is required to reduce the amount of quantum resources for early fault-tolerant feasibility and achieving an actual speedup.

  • Financial optimization problems can be continuous (convex or non-convex), discrete or mixed, and thus quantum algorithms for these problems can be applied.

  • The advantages and challenges of quantum machine learning for classical problems are also apparent in finance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shreve, S. E. Stochastic Calculus for Finance I (Springer New York, 2004).

  2. Alexeev, Y. et al. Quantum computer systems for scientific discovery. PRX Quantum 2, 017001 (2021).

  3. Glasserman, P. Monte Carlo Methods in Financial Engineering, Vol. 53 (Springer, 2004).

  4. Egger, D. J. et al. Quantum computing for finance: state-of-the-art and future prospects. IEEE Trans. Quantum Eng. 1, 3101724 (2020).

    Google Scholar 

  5. Orus, R., Mugel, S. & Lizaso, E. Quantum computing for finance: overview and prospects. Rev. Phys. 4, 100028 (2019).

    Google Scholar 

  6. Bouland, A., van Dam, W., Joorati, H., Kerenidis, I. & Prakash, A. Prospects and challenges of quantum finance. Preprint at https://doi.org/arXiv:2011.06492 (2020).

  7. Pistoia, M. et al. Quantum machine learning for finance. In IEEE/ACM International Conference on Computer Aided Design (ICCAD) (IEEE/ACM, 2021).

  8. Gómez, A. et al. A survey on quantum computational finance for derivatives pricing and VaR. in Archives of Computational Methods in Engineering 1–27 (Springer, 2022).

  9. Griffin, P. & Sampat, R. Quantum computing for supply chain finance. In 2021 IEEE International Conference on Services Computing (SCC) 456–459 (IEEE, 2021).

  10. Ganapathy, A. Quantum computing in high frequency trading and fraud detection. Eng. Int. 9, 61–72 (2021).

    Google Scholar 

  11. Wang, M., Pan, Y., Yang, X., Li, G. & Xu, Z. Tensor networks meet neural networks: a survey. Preprint at https://doi.org/arXiv:2302.09019 (2023).

  12. Sengupta, R., Adhikary, S., Oseledets, I. & Biamonte, J. Tensor networks in machine learning. Preprint at https://doi.org/arXiv:2207.02851 (2022).

  13. Patel, R. G. et al. Quantum-inspired tensor neural networks for option pricing. Preprint at https://doi.org/arXiv:2212.14076 (2022).

  14. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  15. Kitaev, A. Y., Shen, A. H. & Vyalyi, M. N. Classical and Quantum Computation (American Mathematical Society, 2002).

  16. Hull, J. C. Options Futures and Other Derivatives 11th edn (Pearson, 2021).

  17. Wilmott, P. Paul Wilmott on Quantitative Finance 2nd edn (John Wiley & Sons, 2013).

  18. Föllmer, H. & Schied, A. Stochastic Finance: An Introduction in Discrete Time (Walter de Gruyter, 2011).

  19. Black, F. & Scholes, M. The pricing of options and corporate liabilities. In World Scientific Reference on Contingent Claims Analysis in Corporate Finance: Vol. 1: Foundations of CCA and Equity Valuation 3–21 (World Scientific, 2019).

  20. Tse, W. M. Closed-form Solutions for Fixed-strike Arithmetic Asian Options (SSRN, 2018); https://dx.doi.org/10.2139/ssrn.3176932.

  21. Kac, M. On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949).

    MathSciNet  MATH  Google Scholar 

  22. Feynman, R. P. The principle of least action in quantum mechanics. In Feynman’s Thesis — A New Approach to Quantum Theory 169 (World Scientific, 2005).

  23. Heinrich, S. Quantum summation with an application to integration. J. Complex 18, 1–50 (2002).

    MathSciNet  MATH  Google Scholar 

  24. Brassard, G., Dupuis, F., Gambs, S. & Tapp, A. An optimal quantum algorithm to approximate the mean and its application for approximating the median of a set of points over an arbitrary distance. Preprint at https://doi.org/arXiv:1106.4267 (2011).

  25. Montanaro, A. Quantum speedup of Monte Carlo methods. Proc. R. Soc. A Math. Phys. Eng. Sci. 471, 20150301 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  26. Cornelissen, A. & Jerbi, S. Quantum algorithms for multivariate Monte Carlo estimation. Preprint at https://doi.org/arXiv:2107.03410 (2021).

  27. Kothari, R. & O’Donnell, R. Mean estimation when you have the source code; or, quantum Monte Carlo methods. Preprint at https://doi.org/arXiv:2208.07544 (2022).

  28. Babbush, R. et al. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2 010103 (2021).

  29. Huang, H.-Y., Bharti, K. & Rebentrost, P. Near-term quantum algorithms for linear systems of equations with regression loss functions. New J. Phys. 23, 113021 (2021).

    ADS  MathSciNet  Google Scholar 

  30. Suzuki, Y. et al. Amplitude estimation without phase estimation. Quantum Inf. Process. 19, 1–17 (2020).

  31. Grinko, D., Gacon, J., Zoufal, C. & Woerner, S. Iterative quantum amplitude estimation. npj Quantum Inf. 7, 52 (2021).

  32. Giurgica-Tiron, T., Kerenidis, I., Labib, F., Prakash, A. & Zeng, W. Low depth algorithms for quantum amplitude estimation. Quantum 6, 745 (2022).

    Google Scholar 

  33. Grover, L. & Rudolph, T. Creating superpositions that correspond to efficiently integrable probability distributions. Preprint at https://doi.org/quant-ph/0208112 (2002).

  34. Marin-Sanchez, G., Gonzalez-Conde, J. & Sanz, M. Quantum algorithms for approximate function loading. Preprint at https://doi.org/2111.07933 (2021).

  35. Herbert, S. No quantum speedup with Grover–Rudolph state preparation for quantum Monte Carlo integration. Phys. Rev. E 103, 063302 (2021).

  36. Grover, L. K. Synthesis of quantum superpositions by quantum computation. Phys. Rev. Lett. 85, 1334–1337 (2000).

    ADS  Google Scholar 

  37. Sanders, Y. R., Low, G. H., Scherer, A. & Berry, D. W. Black-box quantum state preparation without arithmetic. Phys. Rev. Lett. 122, 020502 (2019).

    ADS  Google Scholar 

  38. Wang, S. et al. Fast black-box quantum state preparation based on linear combination of unitaries. Quantum Inf. Process. 20, 270 (2021).

    ADS  MathSciNet  MATH  Google Scholar 

  39. Wang, S. et al. Inverse-coefficient black-box quantum state preparation. New J. Phys. 24, 103004 (2022).

    ADS  MathSciNet  Google Scholar 

  40. Bausch, J. Fast black-box quantum state preparation. Quantum 6, 773 (2022).

    Google Scholar 

  41. McArdle, S., Gilyén, A. & Berta, M. Quantum state preparation without coherent arithmetic. Preprint at https://doi.org/arXiv:2210.14892 (2022).

  42. Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).

    Google Scholar 

  43. Zoufal, C., Lucchi, A. & Woerner, S. Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Inf. 5, 103 (2019).

  44. Nakaji, K. et al. Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators. Phys. Rev. Res. 4, 023136 (2022).

    Google Scholar 

  45. Rattew, A. G., Sun, Y., Minssen, P. & Pistoia, M. The efficient preparation of normal distributions in quantum registers. Quantum 5, 609 (2021).

    Google Scholar 

  46. Rattew, A. G. & Koczor, B. Preparing arbitrary continuous functions in quantum registers with logarithmic complexity. Preprint at https://doi.org/arXiv:2205.00519 (2022).

  47. Zhang, X.-M., Yung, M.-H. & Yuan, X. Low-depth quantum state preparation. Phys. Rev. Res. 3, 043200 (2021).

    Google Scholar 

  48. Möttönen, M., Vartiainen, J. J., Bergholm, V. & Salomaa, M. M. Transformation of quantum states using uniformly controlled rotations. Quantum Info. Comput. 5, 467–473 (2005).

    MathSciNet  MATH  Google Scholar 

  49. Araujo, I. F., Park, D. K., Petruccione, F. & da Silva, A. J. A divide-and-conquer algorithm for quantum state preparation. Sci. Rep. 11, 6329 (2021).

    Google Scholar 

  50. Chakrabarti, S. et al. A threshold for quantum advantage in derivative pricing. Quantum 5, 463 (2021).

    Google Scholar 

  51. Dupire, B. Pricing with a smile. Risk 7, 18–20 (1994).

  52. Duffie, D. & Glynn, P. Efficient Monte Carlo simulation of security prices. Ann. Appl. Probab. 5, 897–905 (1995).

  53. Giles, M. B. Multilevel Monte Carlo path simulation. Oper. Res. 56, 607–617 (2008).

    MathSciNet  MATH  Google Scholar 

  54. An, D. et al. Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance. Quantum 5, 481 (2021).

    Google Scholar 

  55. Ramos-Calderer, S. et al. Quantum unary approach to option pricing. Phys. Rev. A 103, 032414 (2021).

    ADS  MathSciNet  Google Scholar 

  56. Stamatopoulos, N. et al. Option pricing using quantum computers. Quantum 4, 291 (2020).

    Google Scholar 

  57. Longstaff, F. A. & Schwartz, E. S. Valuing American options by simulation: a simple least-squares approach. Rev. Financ. Stud. 14, 113–147 (2001).

    MATH  Google Scholar 

  58. Doriguello, J. A. F., Luongo, A., Bao, J., Rebentrost, P. & Santha, M. Quantum algorithm for stochastic optimal stopping problems with applications in finance. In 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022), Vol. 232 of Leibniz International Proceedings in Informatics (LIPIs) (eds Le Gall, F. & Morimae, T.) 2:1–2:24 (Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2022); https://drops.dagstuhl.de/opus/volltexte/2022/16509.

  59. Gilyén, A., Su, Y., Low, G. H. & Wiebe, N. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (ACM, 2019).

  60. Stamatopoulos, N., Mazzola, G., Woerner, S. & Zeng, W. J. Towards quantum advantage in financial market risk using quantum gradient algorithms. Quantum 6, 770 (2022).

    Google Scholar 

  61. Capriotti, L. Fast Greeks by Algorithmic Differentiation (SSRN, 2010); https://dx.doi.org/10.2139/ssrn.1619626.

  62. Giles, M. & Glasserman, P. Smoking adjoints: fast Monte Carlo greeks. Risk 19, 88–92 (2006).

    Google Scholar 

  63. Huge, B. & Savine, A. Differential machine learning. Preprint at https://doi.org/arXiv:2005.02347 (2020).

  64. Wierichs, D., Izaac, J., Wang, C. & Lin, C. Y.-Y. General parameter-shift rules for quantum gradients. Quantum 6, 677 (2022).

    Google Scholar 

  65. Woerner, S. & Egger, D. J. Quantum risk analysis. npj Quantum Inf. 5, 15 (2019).

  66. Egger, D. J., Gutierrez, R. G., Mestre, J. & Woerner, S. Credit risk analysis using quantum computers. IEEE Trans. Comput. 70, 2136–2145 (2021).

    MathSciNet  MATH  Google Scholar 

  67. Grossmann, C., Roos, H.-G. & Stynes, M. Numerical Treatment of Partial Differential Equations Vol. 154 (Springer, 2007).

  68. Miyamoto, K. & Kubo, K. Pricing multi-asset derivatives by finite-difference method on a quantum computer. IEEE Trans. Quantum Eng. 3, 3100225 (2022).

    Google Scholar 

  69. Broadie, M., Glasserman, P. & Kou, S. A continuity correction for discrete barrier options. Math. Financ. 7, 325–349 (1997).

    MathSciNet  MATH  Google Scholar 

  70. Linden, N., Montanaro, A. & Shao, C. Quantum vs. classical algorithms for solving the heat equation. In Communications in Mathematical Physics 1–41 (Springer, 2022).

  71. Gonzalez-Conde, J., Rodríguez-Rozas, A., Solano, E. & Sanz, M. Simulating option price dynamics with exponential quantum speedup. Preprint at https://doi.org/arXiv:2101.04023 (2021).

  72. Jin, S. & Liu, N. Quantum algorithms for computing observables of nonlinear partial differential equations. Preprint at https://doi.org/arXiv:2202.07834 (2022).

  73. Jin, S., Liu, N. & Yu, Y. Quantum simulation of partial differential equations via schrodingerisation. Preprint at https://doi.org/arXiv:2212.13969 (2022).

  74. Jin, S., Liu, N. & Yu, Y. Quantum simulation of partial differential equations via schrodingerisation: technical details. Preprint at https://doi.org/arXiv:2212.14703 (2022).

  75. Fontanela, F., Jacquier, A. & Oumgari, M. A quantum algorithm for linear PDEs arising in finance. SIAM J. Financ. Math. 12, SC98–SC114 (2021).

    MathSciNet  MATH  Google Scholar 

  76. Alghassi, H. et al. A variational quantum algorithm for the Feynman–Kac formula. Quantum 6, 730 (2022).

    Google Scholar 

  77. Kubo, K., Nakagawa, Y. O., Endo, S. & Nagayama, S. Variational quantum simulations of stochastic differential equations. Phys. Rev. A 103, 052425 (2021).

  78. Boyle, P. P. Option valuation using a three jump process. Int. Opt. J. 3, 7–12 (1986).

  79. Kyriienko, O., Paine, A. E. & Elfving, V. E. Solving nonlinear differential equations with differentiable quantum circuits. Phys. Rev. A 103, 052416 (2021).

    ADS  MathSciNet  Google Scholar 

  80. Schuld, M. & Petruccione, F. In Quantum Models as Kernel Methods 217–245 (Springer International Publishing, 2021); https://doi.org/10.1007/978-3-030-83098-4_6

  81. Jerbi, S. et al. Quantum machine learning beyond kernel methods. Preprint at https://doi.org/arXiv:2110.13162 (2021).

  82. Nesterov, Y. Introductory lectures on convex programming volume I: basic course. Lect. Notes 3, 5 (1998).

    Google Scholar 

  83. Nemirovski, A. Lectures on modern convex optimization. In Society for Industrial and Applied Mathematics (SIAM (Citeseer), 2001).

  84. Panik, M. J. Fundamentals of Convex Analysis (Springer, 1993).

  85. Cornuéjols, G., Peña, J. & Tütüncü, R. Optimization Methods in Finance 2nd edn (Cambridge Univ. Press, 2018).

  86. Markowitz, H. Portfolio selection. J. Finance 7, 77–91 (1952).

    Google Scholar 

  87. Chakraborty, S., Gilyén, A. & Jeffery, S. The power of block-encoded matrix powers: improved regression techniques via faster hamiltonian simulation. In International Colloquium on Automata, Languages and Programming (ICALP, 2019).

  88. Arora, S. & Kale, S. A combinatorial, primal-dual approach to semidefinite programs. J. ACM 63, 12 (2016).

  89. van Apeldoorn, J., Gilyén, A., Gribling, S. & de Wolf, R. Quantum SDP-solvers: better upper and lower bounds. Quantum 4, 230 (2020).

    Google Scholar 

  90. van Apeldoorn, J. & Gilyén, A. Improvements in quantum SDP-solving with applications. In ICALP (Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019).

  91. Arora, S., Hazan, E. & Kale, S. The multiplicative weights update method: a meta-algorithm and applications. Theory Comput. 8, 121–164 (2012).

    MathSciNet  MATH  Google Scholar 

  92. Hazan, E. & Kale, S. An online portfolio selection algorithm with regret logarithmic in price variation. Math. Financ. 25, 288–310 (2015).

    MathSciNet  MATH  Google Scholar 

  93. Hazan, E. et al. Introduction to online convex optimization. Found. Trends Optim. 2, 157–325 (2016).

    ADS  Google Scholar 

  94. Lim, D. & Rebentrost, P. A quantum online portfolio optimization algorithm. Preprint at https://doi.org/arXiv:2208.14749 (2022).

  95. Grigoriadis, M. D. & Khachiyan, L. G. A sublinear-time randomized approximation algorithm for matrix games. Oper. Res. Lett. 18, 53–58 (1995).

    MathSciNet  MATH  Google Scholar 

  96. van Apeldoorn, J. & Gilyén, A. Quantum algorithms for zero-sum games. Preprint at https://doi.org/arXiv:1904.03180 (2019).

  97. Bouland, A., Getachew, Y., Jin, Y., Sidford, A. & Tian, K. Quantum speedups for zero-sum games via improved dynamic Gibbs sampling. Preprint at https://doi.org/arXiv:2301.03763 (2023).

  98. Rebentrost, P., Luongo, A., Bosch, S. & Lloyd, S. Quantum computational finance: martingale asset pricing for incomplete markets. Preprint at https://doi.org/arXiv:2209.08867 (2022).

  99. Li, T., Wang, C., Chakrabarti, S. & Wu, X. Sublinear classical and quantum algorithms for general matrix games. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 8465–8473 (AAAI, 2021).

  100. Shalev-Shwartz, S. et al. Online learning and online convex optimization. Found. Trends Machine Learn. 4, 107–194 (2012).

    MATH  Google Scholar 

  101. Li, T., Chakrabarti, S. & Wu, X. Sublinear quantum algorithms for training linear and kernel-based classifiers. In International Conference on Machine Learning 3815–3824 (PMLR, 2019).

  102. Lee, Y. T., Sidford, A. & Wong, S. C.-W. A faster cutting plane method and its implications for combinatorial and convex optimization. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science 1049–1065 (IEEE, 2015).

  103. Cohen, M. B., Lee, Y. T. & Song, Z. Solving linear programs in the current matrix multiplication time. J. ACM https://doi.org/10.1145/3424305 (2021).

  104. Monteiro, R. & Tsuchiya, T. Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions. Math. Program. 88, 61–83 (2000).

    MathSciNet  MATH  Google Scholar 

  105. Kerenidis, I. & Prakash, A. A quantum interior point method for LPs and SDPs. ACM Trans. Quantum Comput. 1, 5 (2020).

  106. Kerenidis, I., Prakash, A. & Szilágyi, D. Quantum algorithms for second-order cone programming and support vector machines. Quantum 5, 427 (2021).

    Google Scholar 

  107. Augustino, B., Nannicini, G., Terlaky, T. & Zuluaga, L. F. Quantum interior point methods for semidefinite optimization. Preprint at https://doi.org/arXiv:2112.06025 (2021).

  108. Dalzell, A. M. et al. End-to-end resource analysis for quantum interior point methods and portfolio optimization. Preprint at https://doi.org/arXiv:2211.12489 (2022).

  109. Nannicini, G. Fast quantum subroutines for the simplex method. in Integer Programming and Combinatorial Optimization (eds Singh, M. & Williamson, D. P.) 311–325 (Springer International Publishing, 2021).

  110. Rebentrost, P. & Lloyd, S. Quantum computational finance: quantum algorithm for portfolio optimization. Preprint at https://doi.org/arXiv:1811.03975 (2018).

  111. Yalovetzky, R., Minssen, P., Herman, D. & Pistoia, M. NISQ-HHL: portfolio optimization for near-term quantum hardware. Preprint at https://doi.org/arXiv:2110.15958 (2021).

  112. Moehle, N., Kochenderfer, M. J., Boyd, S. & Ang, A. Tax-aware portfolio construction via convex optimization. J. Optim. Theory Appl. 189, 364–383 (2021).

    MathSciNet  MATH  Google Scholar 

  113. Bertsimas, D. & Cory-Wright, R. A scalable algorithm for sparse portfolio selection. INFORMS J. Comput. 34, 1305–1840 (2022).

  114. Liu, Y., Su, W. J. & Li, T. On quantum speedups for nonconvex optimization via quantum tunneling walks. Preprint at https://doi.org/arXiv:2209.14501 (2022).

  115. Leng, J., Hickman, E., Li, J. & Wu, X. Quantum hamiltonian descent. Preprint at https://doi.org/arXiv:2303.01471 (2023).

  116. Wolsey, L. A. & Nemhauser, G. L. Integer and Combinatorial Optimization, Vol. 55 (John Wiley & Sons, 1999).

  117. Morrison, D. R., Jacobson, S. H., Sauppe, J. J. & Sewell, E. C. Branch-and-bound algorithms: a survey of recent advances in searching, branching, and pruning. Discrete Optim. 19, 79–102 (2016).

    MathSciNet  MATH  Google Scholar 

  118. Apers, S., Gily’en, A. & Jeffery, S. A unified framework of quantum walk search. In Symposium on Theoretical Aspects of Computer Science (Dagstuhl Publishing, 2021).

  119. Apers, S. & Sarlette, A. Quantum fast-forwarding: Markov chains and graph property testing. Preprint at https://doi.org/arXiv:1804.02321 (2018).

  120. Montanaro, A. Quantum speedup of branch-and-bound algorithms. Phys. Rev. Res. 2, 013056 (2020).

    Google Scholar 

  121. Ambainis, A. & Kokainis, M. Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, 989–1002 (Association for Computing Machinery, 2017); https://doi.org/10.1145/3055399.3055444.

  122. Chakrabarti, S., Minssen, P., Yalovetzky, R. & Pistoia, M. Universal quantum speedup for branch-and-bound, branch-and-cut, and tree-search algorithms. Preprint at https://doi.org/arXiv:2210.03210 (2022).

  123. Romeo, F. & Sangiovanni-Vincentelli, A. A theoretical framework for simulated annealing. Algorithmica 6, 302–345 (1991).

    MathSciNet  MATH  Google Scholar 

  124. Levin, D. A. & Peres, Y. Markov Chains and Mixing Times, Vol. 107 (American Mathematical Society, 2017).

  125. Somma, R. D., Boixo, S., Barnum, H. & Knill, E. Quantum simulations of classical annealing processes. Phys. Rev. Lett. 101, 130504 (2008).

  126. Wocjan, P. & Abeyesinghe, A. Speedup via quantum sampling. Phys. Rev. A 78, 042336 (2008).

    ADS  Google Scholar 

  127. Harrow, A. W. & Wei, A. Y. Adaptive quantum simulated annealing for Bayesian inference and estimating partition functions. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms 193–212 (Society for Industrial and Applied Mathematics, 2020); https://doi.org/10.1137/1.9781611975994.12.

  128. Montanaro, A. & Pallister, S. Quantum algorithms and the finite element method. Phys. Rev. A 93, 032324 (2016).

    ADS  Google Scholar 

  129. Henderson, D., Jacobson, S. H. & Johnson, A. W. The Theory and Practice of Simulated Annealing 287–319 (Springer US, 2003); https://doi.org/10.1007/0-306-48056-5_10.

  130. Li, Y., Protopopescu, V. A., Arnold, N., Zhang, X. & Gorin, A. Hybrid parallel tempering and simulated annealing method. Appl. Math. Comput. 212, 216–228 (2009).

    MathSciNet  MATH  Google Scholar 

  131. Lemieux, J., Heim, B., Poulin, D., Svore, K. & Troyer, M. Efficient quantum Walk circuits for Metropolis–Hastings algorithm. Quantum 4, 287 (2020).

    Google Scholar 

  132. Dürr, C. & Høyer, P. A quantum algorithm for finding the minimum. Preprint at https://doi.org/arXiv/quant-ph/9607014 (1996).

  133. Bulger, D., Baritompa, W. P. & Wood, G. R. Implementing pure adaptive search with Grover’s quantum algorithm. J. Optim. Theory Appl. 116, 517–529 (2003).

    MathSciNet  MATH  Google Scholar 

  134. Gilliam, A., Woerner, S. & Gonciulea, C. Grover adaptive search for constrained polynomial binary optimization. Quantum 5, 428 (2021).

    Google Scholar 

  135. Grover, L. K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96 212—219 (Association for Computing Machinery, 1996).

  136. Ambainis, A. Quantum walk algorithm for element distinctness. SIAM J. Comput. 37, 210–239 (2007).

    MathSciNet  MATH  Google Scholar 

  137. Sanders, Y. R. et al. Compilation of fault-tolerant quantum heuristics for combinatorial optimization. PRX Quantum 1, 020312 (2020).

  138. Hastings, M. B. A short path quantum algorithm for exact optimization. Quantum 2, 78 (2018).

    Google Scholar 

  139. Dalzell, A. M., Pancotti, N., Campbell, E. T. & Brandão, F. G. S. L. Mind the gap: achieving a super-Grover quantum speedup by jumping to the end. Preprint at https://doi.org/arXiv:2212.01513 (2022).

  140. Sanders, Y. R. et al. Compilation of fault-tolerant quantum heuristics for combinatorial optimization. PRX Quantum 1, 020312 (2020).

    Google Scholar 

  141. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998).

    Google Scholar 

  142. Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution. Preprint at https://doi.org/quant-ph/0001106 (2000).

  143. Hegade, N. N. et al. Shortcuts to adiabaticity in digitized adiabatic quantum computing. Phys. Rev. Appl. 15, 024038 (2021).

  144. Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://doi.org/arXiv:1411.4028 (2014).

  145. Hadfield, S. et al. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12, 34 (2019).

    MathSciNet  MATH  Google Scholar 

  146. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

  147. Liu, X. et al. Layer VQE: a variational approach for combinatorial optimization on noisy quantum computers. IEEE Trans. Quantum Eng. 3, 3100920 (2022).

    Google Scholar 

  148. Yuan, X., Endo, S., Zhao, Q., Li, Y. & Benjamin, S. C. Theory of variational quantum simulation. Quantum 3, 191 (2019).

    Google Scholar 

  149. McArdle, S. et al. Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Inf. 5, 75 (2019).

  150. Benedetti, M., Fiorentini, M. & Lubasch, M. Hardware-efficient variational quantum algorithms for time evolution. Phys. Rev. Res. 3, 033083 (2021).

    Google Scholar 

  151. Bermejo, P. & Orús, R. Variational quantum continuous optimization: a cornerstone of quantum mathematical analysis. Preprint at https://doi.org/arXiv:2210.03136 (2022).

  152. Fernández-Lorenzo, S., Porras, D. & García-Ripoll, J. J. Hybrid quantum–classical optimization with cardinality constraints and applications to finance. Quantum Sci. Technol. 6, 034010 (2021).

    ADS  Google Scholar 

  153. Niroula, P. et al. Constrained quantum optimization for extractive summarization on a trapped-ion quantum computer. Sci. Rep. 12, 17171 (2022).

    ADS  Google Scholar 

  154. Herman, D. et al. Portfolio optimization via quantum Zeno dynamics on a quantum processor. Preprint at https://doi.org/arXiv:2209.15024 (2022).

  155. Tangpanitanon, J. et al. Hybrid quantum-classical algorithms for loan collection optimization with loan loss provisions. Preprint at https://doi.org/arXiv:2110.15870 (2021).

  156. Drieb-Schön, M., Ender, K., Javanmard, Y. & Lechner, W. Parity quantum optimization: encoding constraints. Quantum 7, 951 (2023).

    Google Scholar 

  157. Bittel, L. & Kliesch, M. Training variational quantum algorithms is NP-hard. Phys. Rev. Lett. 127, 120502 (2021).

    ADS  MathSciNet  Google Scholar 

  158. McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, 4812 (2018).

    ADS  Google Scholar 

  159. Larocca, M. et al. Diagnosing barren plateaus with tools from quantum optimal control. Quantum 6, 824 (2022).

    Google Scholar 

  160. You, X., Chakrabarti, S. & Wu, X. A convergence theory for over-parameterized variational quantum eigensolvers. In 26th Conference on Quantum Information Processing (TQC, 2023).

  161. Denchev, V. S. et al. What is the computational value of finite-range tunneling? Phys. Rev. X 6, 031015 (2016).

  162. Mugel, S. et al. Hybrid quantum investment optimization with minimal holding period. Sci. Rep. 11, 19587 (2021).

    ADS  Google Scholar 

  163. Mugel, S. et al. Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks. Phys. Rev. Res. 4, 013006 (2022).

    Google Scholar 

  164. Palmer, S. et al. Financial index tracking via quantum computing with cardinality constraints. Preprint at https://doi.org/arXiv:2208.11380 (2022).

  165. Orús, R., Mugel, S. & Lizaso, E. Forecasting financial crashes with quantum computing. Phys. Rev. A 99, 060301 (2019).

  166. Akshay, V., Rabinovich, D., Campos, E. & Biamonte, J. Parameter concentrations in quantum approximate optimization. Phys. Rev. A 104, L010401 (2021).

  167. Basso, J., Farhi, E., Marwaha, K., Villalonga, B. & Zhou, L. The Quantum Approximate Optimization Algorithm at High Depth for Maxcut on Large-girth Regular Graphs and the SherringtonKirkpatrick Model (Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2022); https://drops.dagstuhl.de/opus/volltexte/2022/16514/.

  168. Sureshbabu, S. H. et al. Parameter setting in quantum approximate optimization of weighted problems. Preprint at https://doi.org/arXiv:2305.15201 (2023).

  169. Lykov, D. et al. Performance evaluation and acceleration of the QTensor quantum circuit simulator on GPUs. In 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS) (IEEE, 2021); https://doi.org/10.1109/qcs54837.2021.00007.

  170. Lykov, D. & Alexeev, Y. Importance of diagonal gates in tensor network simulations. Preprint at https://doi.org/arXiv:2106.15740 (2021).

  171. Lykov, D., Schutski, R., Galda, A., Vinokur, V. & Alexeev, Y. Tensor network quantum simulator with step-dependent parallelization. Preprint at https://doi.org/arXiv:2012.02430 (2020).

  172. Lykov, D. et al. Performance evaluation and acceleration of the Q Tensor quantum circuit simulator on GPUs. 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS) (IEEE/ACM, 2021); https://doi.org/10.1109/qcs54837.2021.00007.

  173. He, Z. et al. Alignment between initial state and mixer improves QAOA performance for constrained portfolio optimization. Preprint at https://doi.org/arXiv:2305.03857 (2023).

  174. Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Introduction to Algorithms (MIT Press, 2009).

  175. Ambainis, A. et al. Quantum speedups for exponential-time dynamic programming algorithms. In Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) 1783–1793 (ACM-SIAM, 2019); https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.107.

  176. Mohri, M., Rostamizadeh, A. & Talwalkar, A. Foundations of Machine Learning (MIT Press, 2018).

  177. Hastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction Vol. 2 (Springer, 2009).

  178. Herman, D. et al. A survey of quantum computing for finance. Preprint at https://doi.org/arXiv:2201.02773 (2022).

  179. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008).

  180. Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293 (2015).

    Google Scholar 

  181. Tang, E. Dequantizing algorithms to understand quantum advantage in machine learning. Nat. Rev. Phys. 4, 692–693 (2022).

    Google Scholar 

  182. Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).

    ADS  Google Scholar 

  183. Slattery, L. et al. Numerical evidence against advantage with quantum fidelity kernels on classical data. Preprint at https://doi.org/arXiv:2211.16551 (2022).

  184. Gu, S., Kelly, B. & Xiu, D. Empirical asset pricing via machine learning. Rev. Financ. Stud. 33, 2223–2273 (2020).

    Google Scholar 

  185. Ghysels, E., Santa-Clara, P. & Valkanov, R. Predicting volatility: getting the most out of return data sampled at different frequencies. J. Econom. 131, 59–95 (2006).

    MathSciNet  MATH  Google Scholar 

  186. Wiebe, N., Braun, D. & Lloyd, S. Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 050505 (2012).

    ADS  Google Scholar 

  187. Wang, G. Quantum algorithm for linear regression. Phys. Rev. A 96, 012335 (2017).

    ADS  MathSciNet  Google Scholar 

  188. Kerenidis, I. & Prakash, A. Quantum gradient descent for linear systems and least squares. Phys. Rev. A 101 (2020).

  189. Date, P. & Potok, T. Adiabatic quantum linear regression. Sci. Rep. 11, 21905 (2021).

    ADS  Google Scholar 

  190. Han, J., Zhang, X.-P. & Wang, F. Gaussian process regression stochastic volatility model for financial time series. IEEE J. Sel. Top. Signal Process. 10, 1015–1028 (2016).

    ADS  Google Scholar 

  191. Zhao, Z., Fitzsimons, J. K. & Fitzsimons, J. F. Quantum-assisted Gaussian process regression. Phys. Rev. A 99, 052331 (2019).

    ADS  Google Scholar 

  192. Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K. Quantum circuit learning. Phys. Rev. A 98, 032309 (2018).

    ADS  Google Scholar 

  193. Abdou, H. A., Tsafack, M. D. D., Ntim, C. G. & Baker, R. D. Predicting creditworthiness in retail banking with limited scoring data. Knowl. Based Syst. 103, 89–103 (2016).

    Google Scholar 

  194. Awoyemi, J. O., Adetunmbi, A. O. & Oluwadare, S. A. Credit card fraud detection using machine learning techniques: a comparative analysis. In 2017 International Conference on Computing Networking and Informatics (ICCNI) 1–9 (ICCNI, 2017).

  195. Li, T., Chakrabarti, S. & Wu, X. Sublinear Quantum Algorithms for Training Linear and Kernel-Based Classifiers (ICML, 2019).

  196. Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014).

  197. Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).

    ADS  Google Scholar 

  198. Wiebe, N., Kapoor, A. & Svore, K. Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. Quantum Inf. Comput. 15, 316–356 (2015).

  199. Ruan, Y., Xue, X., Liu, H., Tan, J. & Li, X. Quantum algorithm for K-nearest neighbors classification based on the metric of Hamming distance. Int. J. Theor. Phys. 56, 3496–3507 (2017).

    MathSciNet  MATH  Google Scholar 

  200. Basheer, A., Afham, A. & Goyal, S. K. Quantum k-nearest neighbors algorithm. Preprint at https://doi.org/arXiv:2003.09187 (2020).

  201. Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors. Preprint at https://doi.org/arXiv:1802.06002 (2018).

  202. Killoran, N. et al. Continuous-variable quantum neural networks. Phys. Rev. Res. 1, 033063 (2019).

    Google Scholar 

  203. Henderson, M., Shakya, S., Pradhan, S. & Cook, T. Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Mach. Intell. 2, 2 (2020).

    Google Scholar 

  204. Allcock, J., Hsieh, C.-Y., Kerenidis, I. & Zhang, S. Quantum algorithms for feedforward neural networks. ACM Trans. Quantum Comput. 1, 6 (2020).

    MathSciNet  Google Scholar 

  205. Kerenidis, I., Landman, J. & Mathur, N. Classical and quantum algorithms for orthogonal neural networks. Preprint at https://doi.org/arXiv:2106.07198 (2021).

  206. Schapire, R. E. & Freund, Y. Boosting: foundations and algorithms. Kybernetes 42, 164–166 (2013).

    MATH  Google Scholar 

  207. Schapire, R. E. The strength of weak learnability. Machine Learn. 5, 197–227 (1990).

    Google Scholar 

  208. Arunachalam, S. & Maity, R. Quantum boosting. In Proceedings of the 37th International Conference on Machine Learning, Vol. 119 of Proceedings of Machine Learning Research (eds Daumé, H. III & Singh, A.) 377–387 (PMLR, 2020); https://proceedings.mlr.press/v119/arunachalam20a.html.

  209. Izdebski, A. & de Wolf, R. Improved quantum boosting. Preprint at https://doi.org/arXiv:2009.08360 (2020).

  210. Servedio, R. A. Smooth boosting and learning with malicious noise. J. Machine Learn. Res. 4, 633–648 (2003).

    MathSciNet  MATH  Google Scholar 

  211. Neven, H., Denchev, V. S., Rose, G. & Macready, W. G. Qboost: large scale classifier training with adiabatic quantum optimization. In Asian Conference on Machine Learning 333–348 (PMLR, 2012).

  212. Leclerc, L. et al. Financial risk management on a neutral atom quantum processor. Preprint at https://doi.org/arXiv:2212.03223 (2022).

  213. Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    MathSciNet  MATH  Google Scholar 

  214. Chen, T. & Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2016); https://doi.org/10.1145/2939672.2939785.

  215. Davis, J., Devos, L., Reyners, S. & Schoutens, W. Gradient boosting for quantitative finance. J. Comput. Finance 24, 1–40 (2020).

  216. Carmona, P., Climent, F. & Momparler, A. Predicting failure in the U.S. banking sector: an extreme gradient boosting approach. Int. Rev. Econ. Finance 61, 304–323 (2019).

    Google Scholar 

  217. Chang, Y.-C., Chang, K.-H. & Wu, G.-J. Application of extreme gradient boosting trees in the construction of credit risk assessment models for financial institutions. Appl. Soft Comput. 73, 914–920 (2018).

    Google Scholar 

  218. Gavrishchaka, V. V. Boosting-based frameworks in financial modeling: application to symbolic volatility forecasting. In Econometric Analysis of Financial and Economic Time Series (Emerald Group Publishing Limited, 2006).

  219. León, D. et al. Clustering algorithms for risk-adjusted portfolio construction. Proc. Computer Sci. 108, 1334–1343 (2017).

    Google Scholar 

  220. Tola, V., Lillo, F., Gallegati, M. & Mantegna, R. N. Cluster analysis for portfolio optimization. J. Econ. Dyn. Control 32, 235–258 (2008).

    MathSciNet  MATH  Google Scholar 

  221. Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. Preprint at https://doi.org/arXiv:1307.0411 (2013).

  222. Kerenidis, I., Landman, J., Luongo, A. & Prakash, A. q-Means: a quantum algorithm for unsupervised machine learning. Preprint at https://doi.org/arXiv:1812.03584 (2018).

  223. Khan, S. U., Awan, A. J. & Vall-Llosera, G. K-means clustering on noisy intermediate scale quantum computers. Preprint at https://doi.org/arXiv:1909.12183 (2019).

  224. Kerenidis, I., Luongo, A. & Prakash, A. Quantum expectation-maximization for Gaussian mixture models. In Proceedings of the 37th International Conference on Machine Learning, vol. 119 of Proceedings of Machine Learning Research (eds Daumé, H. III & Singh, A.) 5187–5197 (PMLR, 2020); https://proceedings.mlr.press/v119/kerenidis20a.html.

  225. Miyahara, H., Aihara, K. & Lechner, W. Quantum expectation-maximization algorithm. Phys. Rev. A 101, 012326 (2020).

    ADS  Google Scholar 

  226. Ng, A. Y., Jordan, M. I. & Weiss, Y. On spectral clustering: analysis and an algorithm. In Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic 849–856 (ACM, 2001).

  227. Daskin, A. Quantum spectral clustering through a biased phase estimation algorithm. TWMS J. Appl. Eng. Math. 10, 24–33 (2017).

    Google Scholar 

  228. Kerenidis, I. & Landman, J. Quantum spectral clustering. Phys. Rev. A 103, 042415 (2021).

    ADS  MathSciNet  Google Scholar 

  229. Apers, S. & de Wolf, R. Quantum speedup for graph sparsification, cut approximation and Laplacian solving. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS) 637–648 (IEEE, 2020).

  230. Aïmeur, E., Brassard, G. & Gambs, S. Quantum clustering algorithms. In Proceedings of the 24th International Conference on Machine Learning (ACM, 2007); https://icml.cc/imls/conferences/2007/proceedings/papers/518.pdf.

  231. Aïmeur, E., Brassard, G. & Gambs, S. Quantum speed-up for unsupervised learning. Mach. Learn. 20, 261–287 (2013).

    MathSciNet  MATH  Google Scholar 

  232. Kumar, V., Bass, G., Tomlin, C. & Dulny, J. Quantum annealing for combinatorial clustering. Quantum Inf. Process. 17, 39 (2018).

  233. Bermejo, P. & Orús, R. Variational quantum and quantum-inspired clustering. Preprint at https://arxiv.org/abs/2206.09893 (2022).

  234. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

  235. Benedetti, M. et al. A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Inf. 5, 45 (2019).

  236. Coyle, B. et al. Quantum versus classical generative modelling in finance. Quantum Sci. Technol. 6, 024013 (2021).

    ADS  Google Scholar 

  237. Koller, D. & Friedman, N. Probabilistic Graphical Models: Principles and Techniques (The MIT Press, 2009).

  238. Zhu, E. Y. et al. Generative quantum learning of joint probability distribution functions. Preprint at https://doi.org/arXiv:2109.06315 (2021).

  239. Kyriienko, O., Paine, A. E. & Elfving, V. E. Protocols for trainable and differentiable quantum generative modelling. Preprint at https://doi.org/arXiv:2202.08253 (2022).

  240. Low, G. H., Yoder, T. J. & Chuang, I. L. Quantum inference on Bayesian networks. Phys. Rev. A 89, 062315 (2014).

  241. Tucci, R. R. Quantum Bayesian nets. Int. J. Mod. Phys. B 09, 295–337 (1995).

    ADS  MathSciNet  MATH  Google Scholar 

  242. Borujeni, S. E., Nannapaneni, S., Nguyen, N. H., Behrman, E. C. & Steck, J. E. Quantum circuit representation of Bayesian networks. Exp. Syst. Appl. 176, 114768 (2021).

  243. Klepac, G. The Schrödinger equation as inspiration for a client portfolio simulation hybrid system based on dynamic Bayesian networks and the REFII model. In Quantum Inspired Computational Intelligence Ch. 12, 391–416 (Morgan Kaufmann, 2017).

  244. Moreira, C. & Wichert, A. Quantum-like Bayesian networks for modeling decision making. Front. Psychol. 7, 11 (2016).

    Google Scholar 

  245. Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002).

    MATH  Google Scholar 

  246. Salakhutdinov, R. & Hinton, G. Deep Boltzmann machines. In Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, Vol. 5, 448–455 (PMLR, 2009).

  247. Benedetti, M., Realpe-Gómez, J., Biswas, R. & Perdomo-Ortiz, A. Estimation of effective temperatures in quantum annealers for sampling applications: a case study with possible applications in deep learning. Phys. Rev. A 94, 022308 (2016).

    ADS  Google Scholar 

  248. Dixit, V., Selvarajan, R., Alam, M. A., Humble, T. S. & Kais, S. Training restricted Boltzmann machines with a d-wave quantum annealer. Front. Phys. 9, 589626 (2021).

    Google Scholar 

  249. Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B. & Melko, R. Quantum Boltzmann machine. Phys. Rev. X 8, 021050 (2018).

    Google Scholar 

  250. Zoufal, C., Lucchi, A. & Woerner, S. Variational quantum Boltzmann machines. Quantum Mach. Intell. 3, 7 (2021).

  251. Lloyd, S. & Weedbrook, C. Quantum generative adversarial learning. Phys. Rev. Lett. 121, 040502 (2018).

    ADS  MathSciNet  Google Scholar 

  252. Guyon, I., Gunn, S., Nikravesh, M. & Zadeh, L. A. Feature Extraction: Foundations and Applications Vol. 207 (Springer, 2008).

  253. Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014).

    Google Scholar 

  254. Yu, C., Gao, F. & Lin, Sea Quantum data compression by principal component analysis. Quantum Inf. Process. 18, 249 (2019).

    ADS  MathSciNet  MATH  Google Scholar 

  255. Lin, J., Bao, W.-S., Zhang, S., Li, T. & Wang, X. An improved quantum principal component analysis algorithm based on the quantum singular threshold method. Phys. Lett. A 383, 2862–2868 (2019).

    ADS  MathSciNet  MATH  Google Scholar 

  256. Martin, A. et al. Toward pricing financial derivatives with an IBM quantum computer. Phys. Rev. Res. 3, 013167 (2021).

    ADS  Google Scholar 

  257. Carlsson, G. Topological methods for data modelling. Nat. Rev. Phys. 2, 697–708 (2020).

    Google Scholar 

  258. Lloyd, S., Garnerone, S. & Zanardi, P. Quantum algorithms for topological and geometric analysis of data. Nat. Commun. 7, 10138 (2016).

    ADS  Google Scholar 

  259. McArdle, S., Gilyén, A. & Berta, M. A streamlined quantum algorithm for topological data analysis with exponentially fewer qubits. Preprint at https://doi.org/arXiv:2209.12887 (2022).

  260. Grossi, M. et al. Mixed quantum–classical method for fraud detection with quantum feature selection. IEEE Trans. Quantum Eng. 3, 3102812 (2022).

    Google Scholar 

  261. Dacrema, M. F. et al. Towards feature selection for ranking and classification exploiting quantum annealers. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM, 2022).

  262. Zoufal, C. et al. Variational quantum algorithm for unconstrained black box binary optimization: application to feature selection. Quantum 7, 909 (2023).

    Google Scholar 

  263. Mücke, S., Heese, R., Müller, S., Wolter, M. & Piatkowski, N. Feature selection on quantum computers. Quantum Mach. Intell. 5, 11 (2023).

    Google Scholar 

  264. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).

  265. Halperin, I. QLBS: Q-learner in the Black–Scholes(-Merton) worlds. J. Deriv. 28, 99–122 (2020).

    Google Scholar 

  266. Buehler, H., Gonon, L., Teichmann, J. & Wood, B. Deep hedging. Quant. Finance 19, 1271–1291 (2019).

    MathSciNet  MATH  Google Scholar 

  267. Benhamou, E., Saltiel, D., Ohana, J. J., Atif, J. & Laraki, R. Deep reinforcement learning (DRL) for portfolio allocation. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 527–531 (Springer, 2020).

  268. Deng, Y., Bao, F., Kong, Y., Ren, Z. & Dai, Q. Deep direct reinforcement learning for financial signal representation and trading. IEEE Trans. Neural Netw. Learn. Syst. 28, 653–664 (2016).

    Google Scholar 

  269. Zhang, Z., Zohren, S. & Roberts, S. Deep reinforcement learning for trading. J. Financ. Data Sci. 2, 25–40 (2020).

    Google Scholar 

  270. Spooner, T., Fearnley, J., Savani, R. & Koukorinis, A. Market making via reinforcement learning. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems 434–442 (International Foundation for Autonomous Agents and Multiagent Systems, 2018).

  271. Abe, N. et al. Optimizing debt collections using constrained reinforcement learning. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 75–84 (ACM SIGKDD, 2010).

  272. Kolm, P. N. & Ritter, G. Modern perspectives on reinforcement learning in finance (September 6, 2019). J. Mach. Learn. Finance https://dx.doi.org/10.2139/ssrn.3449401 (2020).

  273. Dong, D., Chen, C., Li, H. & Tarn, T.-J. Quantum reinforcement learning. IEEE Trans. Systems Man Cybern. Part B (Cybern.) 38, 1207–1220 (2008).

    Google Scholar 

  274. Cornelissen, A. Quantum Gradient Estimation and Its Application to Quantum Reinforcement Learning. Master’s thesis, Delft University of Technology (2018).

  275. Paparo, G. D., Dunjko, V., Makmal, A., Martin-Delgado, M. A. & Briegel, H. J. Quantum speedup for active learning agents. Phys. Rev. X 4, 031002 (2014).

  276. Chen, S. Y.-C. et al. Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020).

    Google Scholar 

  277. Chen, S. Y.-C., Huang, C.-M., Hsing, C.-W., Goan, H.-S. & Kao, Y.-J. Variational quantum reinforcement learning via evolutionary optimization. Mach. Learn. Sci. Tech. 3, 015025 (2021).

  278. Lockwood, O. & Si, M. Reinforcement learning with quantum variational circuits. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment Vol. 16, 245–251 (AAAI Press, 2020); https://doi.org/10.1609/aiide.v16i1.7437

  279. Jerbi, S., Trenkwalder, L. M., Poulsen Nautrup, H., Briegel, H. J. & Dunjko, V. Quantum enhancements for deep reinforcement learning in large spaces. PRX Quantum 2, 010328 (2021).

    Google Scholar 

  280. Jerbi, S., Gyurik, C., Marshall, S., Briegel, H. & Dunjko, V. Parametrized quantum policies for reinforcement learning. Adv. Neural Inf. Process. Syst. 34, 28362–28375 (2021).

    Google Scholar 

  281. Crawford, D., Levit, A., Ghadermarzy, N., Oberoi, J. S. & Ronagh, P. Reinforcement learning using quantum Boltzmann machines. Quantum Inf. Comput. 18, 51–74 (2018).

    MathSciNet  Google Scholar 

  282. Cherrat, E. A. et al. Quantum deep hedging. Preprint at https://doi.org/arXiv:2303.16585 (2023).

  283. Tang, E. A quantum-inspired classical algorithm for recommendation systems. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (Association for Computing Machinery, 2019).

  284. Chia, N.-H. et al. Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (2020).

  285. Arrazola, J. M., Delgado, A., Bardhan, B. R. & Lloyd, S. Quantum-inspired algorithms in practice. Quantum 4, 307 (2020).

    Google Scholar 

  286. Isenhower, L., Saffman, M. & Mølmer, K. Multibit CkNOT quantum gates via Rydberg blockade. Quantum Inf. Process. 10, 755–770 (2011).

    MathSciNet  Google Scholar 

  287. Goel, N. & Freericks, J. K. Native multiqubit Toffoli gates on ion trap quantum computers. Quantum Sci. Technol. 6, 044010 (2021).

    ADS  Google Scholar 

  288. Roy, T. et al. Programmable superconducting processor with native three-qubit gates. Phys. Rev. Appl. 14, 014072 (2020).

    ADS  Google Scholar 

  289. Haener, T., Soeken, M., Roetteler, M. & Svore, K. M. Quantum circuits for floating-point arithmetic. In Reversible Computation: 10th International Conference, RC 2018 162–174 (Springer, 2018).

  290. Jaques, S. & Rattew, A. G. QRAM: a survey and critique. Preprint at https://doi.org/arXiv:2305.10310 (2023).

Download references

Acknowledgements

The authors appreciate support from the Chicago Quantum Exchange. Y.A. acknowledges support from the Office of Science, US Department of Energy, under contract DE-AC02-06CH11357 at Argonne National Laboratory. D.H., Y.S. and M.P. appreciate the insightful discussions they had with their colleagues from the Global Technology Applied Research centre at JPMC.

Author information

Authors and Affiliations

Authors

Contributions

D.H., C.G., X.L. and Y.S. contributed equally to all aspects of the article. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Dylan Herman.

Ethics declarations

Competing interests

The author declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Disclaimer This paper was prepared for informational purposes with contributions from the Global Technology Applied Research Center of JPMorgan Chase & Co. This paper is not a product of the Research Department of JPMorgan Chase & Co. or its affiliates. Neither JPMorgan Chase & Co. nor any of its affiliates makes any explicit or implied representation or warranty and none of them accepts any liability in connection with this paper, including, without limitation, with respect to the completeness, accuracy or reliability of the information contained herein and the potential legal, compliance, tax or accounting effects thereof. This document is not intended as investment research or investment advice, or as a recommendation, offer or solicitation for the purchase or sale of any security, financial instrument, financial product or service, or to be used in any way for evaluating the merits of participating in any transaction.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autocallable

A financial product that pays the holder a high return if the value of the underlying asset passes an upside barrier.

Black–Scholes model

A mathematical model for the dynamics of a financial market containing derivative investment instruments.

Bump-and-reprice

A method to estimate the sensitivity of the price of a financial derivative with respect to an underlying parameter by evaluating the price at different values of the parameter and taking the difference.

Financial derivative

A financial contract that derives its value from the performance of an underlying entity.

Hamilton–Jacobi–Bellman equation

An equation that gives a necessary and sufficient condition for optimality of a control with respect to a loss function.

Martingale measure

A probability measure such that the conditional expectation of a random variable in a sequence given the value of a random variable prior in the sequence is equal to the value of this prior random variable on which the expectation is conditioned.

Option

A financial contract that gives the holder the right, but not the obligation, to buy or sell an underlying asset at an agreed-upon price and time frame.

Target accrual redemption forward

A financial product that allows the holder to achieve a target rate (interest rate, exchange rate and so on) or rate range on a pre-defined schedule (for example, monthly) up to a limit on the maximum payout and under certain conditions on the extreme values of the rate observed in the market (spot rate). It achieves this goal by paying the holder a positive amount if the spot rate is higher than a target value and negative if lower, until the maximum amount of accrual has been reached or the spot rate hits certain upper and/or lower barriers.

Vapnik–Chervonenkis (VC) dimension

A measure of the capacity of a set of functions that can be learnt by a statistical binary classification algorithm, defined as the cardinality of the largest set of data points that the algorithm can always learn a perfect classifier for an arbitrary labelling.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herman, D., Googin, C., Liu, X. et al. Quantum computing for finance. Nat Rev Phys 5, 450–465 (2023). https://doi.org/10.1038/s42254-023-00603-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00603-1

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics