Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Low-dimensional quantum gases in curved geometries

Abstract

Atomic gases confined in curved geometries are characterized by distinctive features that are absent in their flat counterparts, such as periodic boundaries, local curvature and nontrivial topologies. The recent experiments with shell-shaped quantum gases and the study of ring-shaped superfluids point out that the manifold of a quantum gas could soon become a controllable feature, thus enabling the fundamental study of curved many-body quantum systems. In this Perspective article, we review the main geometries realized in the experiments, analysing the theoretical and experimental status on their phase transitions and on the superfluid dynamics. As our outlook, we delineate the study of vortices, the few-body physics and the search for analogue models in various curved geometries as the most promising research areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Curved geometries.
Fig. 2: Experiments with atomic gases in curved geometries.
Fig. 3: Future prospects.

Similar content being viewed by others

References

  1. Turner, A. M., Vitelli, V. & Nelson, D. R. Vortices on curved surfaces. Rev. Mod. Phys. 82, 1301 (2010).

    Article  ADS  Google Scholar 

  2. Streubel, R. et al. Magnetism in curved geometries. J. Phys. D Appl. Phys. 49, 363001 (2016).

    Article  Google Scholar 

  3. Gentile, P. et al. Electronic materials with nanoscale curved geometries. Nat. Electron. 5, 551–563 (2022).

    Article  Google Scholar 

  4. Carollo, R. A. et al. Observation of ultracold atomic bubbles in orbital microgravity. Nature 606, 281–286 (2022).

    Article  ADS  Google Scholar 

  5. Jia, F. et al. Expansion dynamics of a shell-shaped Bose–Einstein condensate. Phys. Rev. Lett. 129, 243402 (2022).

    Article  ADS  Google Scholar 

  6. Amico, L. et al. Colloquium: atomtronic circuits: from many-body physics to quantum technologies. Rev. Mod. Phys. 94, 041001 (2022).

    Article  ADS  Google Scholar 

  7. Navon, N., Smith, R. P. & Hadzibabic, Z. Quantum gases in optical boxes. Nat. Phys. 17, 1334–1341 (2021).

    Article  Google Scholar 

  8. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999).

    Article  ADS  Google Scholar 

  9. Tononi, A. & Salasnich, L. Bose–Einstein condensation on the surface of a sphere. Phys. Rev. Lett. 123, 160403 (2019).

    Article  ADS  Google Scholar 

  10. Tononi, A., Pelster, A. & Salasnich, L. Topological superfluid transition in bubble-trapped condensates. Phys. Rev. Res. 4, 013122 (2022).

    Article  Google Scholar 

  11. Lannert, C., Wei, T.-C. & Vishveshwara, S. Dynamics of condensate shells: collective modes and expansion. Phys. Rev. A 75, 013611 (2007).

    Article  ADS  Google Scholar 

  12. Sun, K., Padavić, K., Yang, F., Vishveshwara, S. & Lannert, C. Static and dynamic properties of shell-shaped condensates. Phys. Rev. A 98, 013609 (2018).

    Article  ADS  Google Scholar 

  13. Padavić, K., Sun, K., Lannert, C. & Vishveshwara, S. Physics of hollow Bose–Einstein condensates. Europhys. Lett. 120, 20004 (2018).

    Article  ADS  Google Scholar 

  14. Guo, Y. et al. Expansion of a quantum gas in a shell trap. New J. Phys. 24, 093040 (2022).

    Article  ADS  Google Scholar 

  15. Rey, D. et al. Loading a quantum gas from an hybrid dimple trap to a shell trap. Preprint at https://arxiv.org/abs/2208.14684 (2022).

  16. Guenther, N.-E., Massignan, P. & Fetter, A. L. Quantized superfluid vortex dynamics on cylindrical surfaces and planar annuli. Phys. Rev. A 96, 063608 (2017).

    Article  ADS  Google Scholar 

  17. Caracanhas, M. A., Massignan, P. & Fetter, A. L. Superfluid vortex dynamics on an ellipsoid and other surfaces of revolution. Phys. Rev. A 105, 023307 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  18. Guenther, N.-E., Massignan, P. & Fetter, A. L. Superfluid vortex dynamics on a torus and other toroidal surfaces of revolution. Phys. Rev. A 101, 053606 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  19. Eckel, S., Kumar, A., Jacobson, T., Spielman, I. B. & Campbell, G. K. A rapidly expanding Bose–Einstein condensate: an expanding universe in the lab. Phys. Rev. X 8, 021021 (2018).

    Google Scholar 

  20. Guo, Y. et al. Supersonic rotation of a superfluid: a long-lived dynamical ring. Phys. Rev. Lett. 124, 025301 (2020).

    Article  ADS  Google Scholar 

  21. Pitaevskii, L. P. & Stringari, S. BoseEinstein Condensation and Superfluidity (Oxford Univ. Press, 2016).

  22. DeWitt, B. S. Dynamical theory in curved spaces. I. A review of the classical and quantum action principles. Rev. Mod. Phys. 29, 377 (1957).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Da Costa, R. C. T. Constraints in quantum mechanics. Phys. Rev. A 25, 2893 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  24. Jost, J. Riemannian Geometry and Geometric Analysis (Springer, 2010).

  25. Leboeuf, P. & Pavloff, N. Bose–Einstein beams: coherent propagation through a guide. Phys. Rev. A 64, 033602 (2001).

    Article  ADS  Google Scholar 

  26. Schwartz, S. et al. One-dimensional description of a Bose–Einstein condensate in a rotating closed-loop waveguide. New J. Phys. 8, 162 (2006).

    Article  ADS  Google Scholar 

  27. Sandin, P. et al. Dimensional reduction in Bose–Einstein condensed clouds of atoms confined in tight potentials of any geometry and any interaction strength. Phys. Rev. E 95, 012142 (2017).

    Article  ADS  Google Scholar 

  28. Salasnich, L. Bose–Einstein condensate in an elliptical waveguide. SciPost Phys. Core 5, 015 (2022).

    Article  Google Scholar 

  29. Boada, O., Celi, A., Latorre, J. I. & Lewenstein, M. Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012).

    Article  ADS  Google Scholar 

  30. Boada, O., Celi, A., Rodríguez-Laguna, J., Latorre, J. I. & Lewenstein, M. Quantum simulation of non-trivial topology. New J. Phys. 17, 045007 (2015).

    Article  ADS  MATH  Google Scholar 

  31. Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019).

    Article  Google Scholar 

  32. Zobay, O. & Garraway, B. M. Properties of coherent matter-wave bubbles. Acta Phys. Slovaca 2000, 3 (2000).

    Google Scholar 

  33. Zobay, O. & Garraway, B. M. Two-dimensional atom trapping in field-induced adiabatic potentials. Phys. Rev. Lett. 86, 1195 (2001).

    Article  ADS  Google Scholar 

  34. Zobay, O. & Garraway, B. M. Atom trapping and two-dimensional Bose–Einstein condensates in field-induced adiabatic potentials. Phys. Rev. A 69, 023605 (2004).

    Article  ADS  Google Scholar 

  35. Colombe, Y. et al. Ultracold atoms confined in rf-induced two-dimensional trapping potentials. Europhys. Lett. 67, 593 (2004).

    Article  ADS  Google Scholar 

  36. White, M., Gao, H., Pasienski, M. & DeMarco, B. Bose–Einstein condensates in rf-dressed adiabatic potentials. Phys. Rev. A 74, 023616 (2006).

    Article  ADS  Google Scholar 

  37. Merloti, K. et al. A two-dimensional quantum gas in a magnetic trap. New J. Phys. 15, 033007 (2013).

    Article  ADS  Google Scholar 

  38. Harte, T. L. et al. Ultracold atoms in multiple radio-frequency dressed adiabatic potentials. Phys. Rev. A 97, 013616 (2018).

    Article  ADS  Google Scholar 

  39. Lundblad, N. et al. Shell potentials for microgravity Bose–Einstein condensates. npj Microgravity 5, 30 (2019).

    Article  ADS  Google Scholar 

  40. Elliott, E. R., Krutzik, M. C., Williams, J. R., Thompson, J. R. & Aveline, D. C. NASA’s Cold Atom Lab (CAL): system development and ground test status. npj Microgravity 4, 16 (2018).

    Article  ADS  Google Scholar 

  41. Aveline, D. C. et al. Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature 582, 193–197 (2020).

    Article  ADS  Google Scholar 

  42. Luksch, K. et al. Probing multiple-frequency atom–photon interactions with ultracold atoms. New J. Phys. 21, 073067 (2019).

    Article  ADS  Google Scholar 

  43. Fernholz, T., Gerritsma, R., Krüger, P. & Spreeuw, R. J. C. Dynamically controlled toroidal and ring-shaped magnetic traps. Phys. Rev. A 75, 063406 (2007).

    Article  ADS  Google Scholar 

  44. Lesanovsky, I. & von Klitzing, W. Time-averaged adiabatic potentials: versatile matter-wave guides and atom traps. Phys. Rev. Lett. 99, 083001 (2007).

    Article  ADS  Google Scholar 

  45. Sherlock, B. E., Gildemeister, M., Owen, E., Nugent, E. & Foot, C. J. Time-averaged adiabatic ring potential for ultracold atoms. Phys. Rev. A 83, 043408 (2011); Phys. Rev. A83, 059904 (2011).

    Article  ADS  Google Scholar 

  46. Amico, L. et al. Roadmap on atomtronics: state of the art and perspective featured. AVS Quantum Sci. 3, 039201 (2021).

    Article  ADS  Google Scholar 

  47. Garraway, B. M. & Perrin, H. Recent developments in trapping and manipulation of atoms with adiabatic potentials. J. Phys. B At. Mol. Opt. Phys. 49, 172001 (2016).

    Article  ADS  Google Scholar 

  48. Gupta, S., Murch, K. W., Moore, K. L., Purdy, T. P. & Stamper-Kurn, D. M. Bose–Einstein condensation in a circular waveguide. Phys. Rev. Lett. 95, 143201 (2005).

    Article  ADS  Google Scholar 

  49. Ryu, C. et al. Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap. Phys. Rev. Lett. 99, 260401 (2007).

    Article  ADS  Google Scholar 

  50. Ramanathan, A. et al. Superflow in a toroidal Bose–Einstein condensate: an atom circuit with a tunable weak link. Phys. Rev. Lett. 106, 130401 (2011).

    Article  ADS  Google Scholar 

  51. Eckel, S., Jendrzejewski, F., Kumar, A., Lobb, C. J. & Campbell, G. K. Interferometric measurement of the current–phase relationship of a superfluid weak link. Phys. Rev. X 4, 031052 (2014).

    Google Scholar 

  52. Eckel, W. et al. Hysteresis in a quantized superfluid ‘atomtronic’ circuit. Nature 506, 200–203 (2014).

    Article  ADS  Google Scholar 

  53. Ryu, C. & Boshier, M. G. Integrated coherent matter wave circuits. New J. Phys. 17, 092002 (2015).

    Article  ADS  Google Scholar 

  54. Pandey, S. et al. Hypersonic Bose–Einstein condensates in accelerator rings. Nature 570, 205–209 (2019).

    Article  ADS  Google Scholar 

  55. de Goër de Herve, M. et al. A versatile ring trap for quantum gases. J. Phys. B At. Mol. Opt. Phys. 54, 125302 (2021).

    Article  ADS  Google Scholar 

  56. Cai, Y., Allman, D. G., Sabharwal, P. & Wright, K. C. Persistent currents in rings of ultracold fermionic atoms. Phys. Rev. Lett. 128, 150401 (2022).

    Article  ADS  Google Scholar 

  57. Moulder, S., Beattie, S., Smith, R. P., Tammuz, N. & Hadzibabic, Z. Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap. Phys. Rev. A 86, 013629 (2012).

    Article  ADS  Google Scholar 

  58. Dubessy, R., Liennard, T., Pedri, P. & Perrin, H. Critical rotation of an annular superfluid Bose–Einstein condensate. Phys. Rev. A 86, 011602(R) (2012).

    Article  ADS  Google Scholar 

  59. Sinuco-León, G. et al. Inductively guided circuits for ultracold dressed atoms. Nat. Commun. 5, 5289 (2014).

    Article  ADS  Google Scholar 

  60. Ho, T.-L. & Shenoy, V. B. Binary mixtures of Bose condensates of alkali atoms. Phys. Rev. Lett. 77, 3276 (1996).

    Article  ADS  Google Scholar 

  61. Pu, H. & Bigelow, N. P. Properties of two-species Bose condensates. Phys. Rev. Lett. 80, 1130 (1998).

    Article  ADS  Google Scholar 

  62. Wolf, A. et al. Shell-shaped Bose–Einstein condensates based on dual-species mixtures. Phys. Rev. A 106, 013309 (2022).

    Article  ADS  Google Scholar 

  63. D’Errico, C. et al. Observation of quantum droplets in a heteronuclear bosonic mixture. Phys. Rev. Res. 1, 033155 (2019).

    Article  Google Scholar 

  64. Ospelkaus-Schwarzer, S. Quantum Degenerate Fermi–Bose Mixtures of 40K and 87Rb in 3D Optical Lattices (Universität Hamburg, 2006).

  65. Safronova, M. S., Arora, B. & Clark, C. W. Frequency-dependent polarizabilities of alkali-metal atoms from ultraviolet through infrared spectral regions. Phys. Rev. A 73, 1 (2006).

    Article  Google Scholar 

  66. Onofrio, R. & Presilla, C. Reaching Fermi degeneracy in two-species optical dipole traps. Phys. Rev. Lett. 89, 100401 (2002).

    Article  ADS  Google Scholar 

  67. Frye, K. et al. The Bose–Einstein condensate and Cold Atom Laboratory. EPJ Quant. Technol. 8, 1 (2021).

    Article  Google Scholar 

  68. Thompson, R. J. et al. Exploring the quantum world with a third generation ultra-cold atom facility. Quantum Sci. Technol. 8, 014007 (2023).

    Article  ADS  Google Scholar 

  69. van Zoest, T. et al. Bose–Einstein condensation in microgravity. Science 328, 1540–1543 (2010).

    Article  ADS  Google Scholar 

  70. Condon, G. et al. All-optical Bose–Einstein condensates in microgravity. Phys. Rev. Lett. 123, 240402 (2019).

    Article  ADS  Google Scholar 

  71. Wille, E. et al. Exploring an ultracold Fermi–Fermi mixture: interspecies Feshbach resonances and scattering properties of 6Li and 40K. Phys. Rev. Lett. 100, 053201 (2008).

    Article  ADS  Google Scholar 

  72. Voigt, A.-C. et al. Ultracold heteronuclear Fermi–Fermi molecules. Phys. Rev. Lett. 102, 020405 (2009).

    Article  ADS  Google Scholar 

  73. Hara, H., Takasu, Y., Yamaoka, Y., Doyle, J. M. & Takahashi, Y. Quantum degenerate mixtures of alkali and alkaline-earth-like atoms. Phys. Rev. Lett. 106, 205304 (2011).

    Article  ADS  Google Scholar 

  74. Ferrier-Barbut, I. et al. A mixture of Bose and Fermi superfluids. Science 345, 1035–1038 (2014).

    Article  ADS  Google Scholar 

  75. Wang, F., Li, X., Xiong, D. & Wang, D. A double species 23Na and 87Rb Bose–Einstein condensate with tunable miscibility via an interspecies Feshbach resonance. J. Phys. B At. Mol. Opt. Phys. 49, 015302 (2016).

    Article  ADS  Google Scholar 

  76. Roy, R., Green, A., Bowler, R. & Gupta, S. Two-element mixture of Bose and Fermi superfluids. Phys. Rev. Lett. 118, 055301 (2017).

    Article  ADS  Google Scholar 

  77. Cabrera, C. R. et al. Quantum liquid droplets in a mixture of Bose–Einstein condensates. Science 359, 301 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  78. Burchianti, A. et al. Dual-species Bose–Einstein condensate of 41K and 87Rb in a hybrid trap. Phys. Rev. A 98, 063616 (2018).

    Article  ADS  Google Scholar 

  79. Semeghini, G. et al. Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett. 120, 235301 (2018).

    Article  ADS  Google Scholar 

  80. Neri, E. et al. Realization of a cold mixture of fermionic chromium and lithium atoms. Phys. Rev. A 101, 063602 (2020).

    Article  ADS  Google Scholar 

  81. Green, A. et al. Feshbach resonances in p-wave three-body recombination within Fermi–Fermi mixtures of open-shell 6Li and closed-shell 173Yb atoms. Phys. Rev. X 10, 031037 (2020).

    Google Scholar 

  82. Ravensbergen, C. et al. Production of a degenerate Fermi–Fermi mixture of dysprosium and potassium atoms. Phys. Rev. A 98, 063624 (2018).

    Article  ADS  Google Scholar 

  83. Lous, R. S. et al. Probing the interface of a phase-separated state in a repulsive Bose–Fermi mixture. Phys. Rev. Lett. 120, 243403 (2018).

    Article  ADS  Google Scholar 

  84. Bereta, S. J., Madeira, L., Bagnato, V. S. & Caracanhas, M. A. Bose–Einstein condensation in spherically symmetric traps. Am. J. Phys. 87, 924 (2019).

    Article  ADS  Google Scholar 

  85. Tononi, A., Cinti, F. & Salasnich, L. Quantum bubbles in microgravity. Phys. Rev. Lett. 125, 010402 (2020).

    Article  ADS  Google Scholar 

  86. Rhyno, B., Lundblad, N., Aveline, D. C., Lannert, C. & Vishveshwara, S. Thermodynamics in expanding shell-shaped Bose–Einstein condensates. Phys. Rev. A 104, 063310 (2021).

    Article  ADS  Google Scholar 

  87. He, Y., Guo, H. & Chien, C.-C. BCS–BEC crossover of atomic Fermi superfluid in a spherical bubble trap. Phys. Rev. A 105, 33324 (2022).

    Article  ADS  Google Scholar 

  88. Tononi, A. Scattering theory and equation of state of a spherical two-dimensional Bose gas. Phys. Rev. A 105, 023324 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  89. Diniz, P. C. et al. Ground state and collective excitations of a dipolar Bose–Einstein condensate in a bubble trap. Sci. Rep. 10, 4831 (2020).

    Article  ADS  Google Scholar 

  90. Móller, N. S., dos Santos, F. E. A., Bagnato, V. S. & Pelster, A. Bose–Einstein condensation on curved manifolds. New J. Phys. 22, 063059 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  91. Andriati, A., Brito, L., Tomio, L. & Gammal, A. Stability of a Bose-condensed mixture on a bubble trap. Phys. Rev. A 104, 033318 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  92. Kotsubo, V. & Williams, G. A. Kosterlitz–Thouless superfluid transition for helium in packed powders. Phys. Rev. Lett. 53, 691 (1984).

    Article  ADS  Google Scholar 

  93. Ovrut, B. A. & Thomas, S. Theory of vortices and monopoles on a sphere. Phys. Rev. D 43, 1314 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  94. Mitra, K., Williams, C. J. & Sa de Melo, C. A. R. Superfluid and Mott-insulating shells of bosons in harmonically confined optical lattices. Phys. Rev. A 77, 033607 (2008).

    Article  ADS  Google Scholar 

  95. Christodoulou, P. et al. Observation of first and second sound in a BKT superfluid. Nature 594, 191–194 (2021).

    Article  ADS  Google Scholar 

  96. Switkes, E., Russel, E. L. & Skinner, J. L. Kinetic energy and path curvature in bound state systems. J. Chem. Phys. 67, 3061 (1977).

    Article  ADS  Google Scholar 

  97. Kaplan, L., Maitra, N. T. & Heller, E. J. Quantizing constrained systems. Phys. Rev. A 56, 2592 (1997).

    Article  ADS  Google Scholar 

  98. da Costa, R. C. T. Quantum mechanics of a constrained particle. Phys. Rev. A 23, 1982 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  99. del Campo, A., Boshier, M. G. & Saxena, A. Bent waveguides for matter-waves: supersymmetric potentials and reflectionless geometries. Sci. Rep. 4, 5274 (2014).

    Article  ADS  Google Scholar 

  100. Cominotti, M., Rossini, D., Rizzi, M., Hekking, F. & Minguzzi, A. Optimal persistent currents for interacting bosons on a ring with a gauge field. Phys. Rev. Lett. 113, 025301 (2014).

    Article  ADS  Google Scholar 

  101. Polo, J., Ahufinger, V., Hekking, F. W. J. & Minguzzi, A. Damping of Josephson oscillations in strongly correlated one-dimensional atomic gases. Phys. Rev. Lett. 121, 090404 (2018).

    Article  ADS  Google Scholar 

  102. Polo, J., Dubessy, R., Pedri, P., Perrin, H. & Minguzzi, A. Oscillations and decay of superfluid currents in a one-dimensional Bose gas on a ring. Phys. Rev. Lett. 123, 195301 (2019).

    Article  ADS  Google Scholar 

  103. Helm, J. L., Billam, T. P., Rakonjac, A., Cornish, S. L. & Gardiner, S. A. Spin–orbit coupled interferometry with ring-trapped Bose–Einstein condensates. Phys. Rev. Lett. 120, 063201 (2018).

    Article  ADS  Google Scholar 

  104. Arazo, M., Mayol, R. & Guilleumas, M. Shell-shaped condensates with gravitational sag: contact and dipolar interactions. New J. Phys. 23, 113040 (2021).

    Article  ADS  Google Scholar 

  105. Biral, E. J. P., Móller, N. S., Pelster, A. & dos Santos, F. E. A. Bose–Einstein condensates and the thin-shell limit in anisotropic bubble traps. Preprint at https://arxiv.org/abs/2210.08074 (2022).

  106. Machta, J. & Guyer, R. Superfluid films on a cylindrical surface. J. Low Temp. Phys. 74, 231 (1989).

    Article  ADS  Google Scholar 

  107. Li, G. & Efimkin, D. K. Equatorial waves in rotating bubble-trapped superfluids. Phys. Rev. A 107, 023319 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  108. Łacki, M. et al. Quantum Hall physics with cold atoms in cylindrical optical lattices. Phys. Rev. A 93, 013604 (2016).

    Article  ADS  Google Scholar 

  109. Li, C.-H. et al. Bose–Einstein condensate on a synthetic topological Hall cylinder. PRX Quantum 3, 010316 (2022).

    Article  ADS  Google Scholar 

  110. Newton, P. The N-Vortex Problem (Springer-Verlag, 2001).

    Book  MATH  Google Scholar 

  111. Massignan, P. & Fetter, A. L. Superfluid vortex dynamics on planar sectors and cones. Phys. Rev. A 99, 063602 (2019).

    Article  ADS  Google Scholar 

  112. D’Ambroise, J., Carretero-González, R., Schmelcher, P. & Kevrekidis, P. G. Superfluid vortex multipoles and soliton stripes on a torus. Phys. Rev. A 105, 063325 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  113. Bereta, S. J., Caracanhas, M. A. & Fetter, A. L. Superfluid vortex dynamics on a spherical film. Phys. Rev. A 103, 053306 (2021).

    Article  ADS  Google Scholar 

  114. Padavić, K., Sun, K., Lannert, C. & Vishveshwara, S. Vortex–antivortex physics in shell-shaped Bose–Einstein condensates. Phys. Rev. A 102, 043305 (2020).

    Article  ADS  Google Scholar 

  115. Vitelli, V. & Turner, A. M. Anomalous coupling between topological defects and curvature. Phys. Rev. Lett. 93, 215301 (2004).

    Article  ADS  Google Scholar 

  116. Blakie, P. B., Bradley, A. S., Davis, M. J., Ballagh, R. J. & Gardiner, C. W. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys. 57, 363–455 (2008).

    Article  ADS  Google Scholar 

  117. Proukakis, N. P. & Jackson, B. Finite-temperature models of Bose–Einstein condensation. J. Phys. B At. Mol. Opt. Phys. 41, 203002 (2008).

    Article  ADS  Google Scholar 

  118. Ho, T.-L. & Huang, B. Spinor condensates on a cylindrical surface in synthetic gauge fields. Phys. Rev. Lett. 115, 155304 (2015).

    Article  ADS  Google Scholar 

  119. Helm, J. L., Cornish, S. L. & Gardiner, S. A. Sagnac interferometry using bright matter-wave solitons. Phys. Rev. Lett. 114, 134101 (2015).

    Article  ADS  Google Scholar 

  120. Zhang, J. & Ho, T.-L. Potential scattering on a spherical surface. J. Phys. B At. Mol. Opt. Phys. 51, 115301 (2018).

    Article  ADS  Google Scholar 

  121. Ouvry, S. & Polychronakos, A. P. Anyons on the sphere: analytic states and spectrum. Nucl. Phys. B 949, 114797 (2019).

    Article  MATH  MathSciNet  Google Scholar 

  122. Shi, Z.-Y. & Zhai, H. Emergent gauge field for a chiral bound state on curved surface. J. Phys. B At. Mol. Opt. Phys. 50, 184006 (2017).

    Article  ADS  Google Scholar 

  123. Bloch, I., Dalibard, J. & Nascimbéne, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article  Google Scholar 

  124. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153 (2014).

    Article  ADS  Google Scholar 

  125. Hu, J. et al. Quantum simulation of Unruh radiation. Nat. Phys. 15, 785–789 (2019).

    Article  Google Scholar 

  126. Muñoz de Nova, J. R. et al. Observation of thermal Hawking radiation and its temperature in an analogue black hole. Nature 569, 688–691 (2019).

    Article  ADS  Google Scholar 

  127. Viermann, C. et al. Quantum field simulator for dynamics in curved spacetime. Nature 611, 260–264 (2022).

    Article  ADS  Google Scholar 

  128. Barceló, C., Liberati, S. & Visser, M. Analogue gravity from Bose–Einstein condensates. Class. Quantum Grav. 18, 1137 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  129. Banik, S. et al. Accurate determination of Hubble attenuation and amplification in expanding and contracting cold-atom universes. Phys. Rev. Lett. 128, 090401 (2022).

    Article  ADS  Google Scholar 

  130. Gomez Llorente, J. M. & Plata, J. Expanding ring-shaped Bose–Einstein condensates as analogs of cosmological models: analytical characterization of the inflationary dynamics. Phys. Rev. A 100, 043613 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  131. Bhardwaj, A., Vaido, D. & Sheehy, D. E. Inflationary dynamics and particle production in a toroidal Bose–Einstein condensate. Phys. Rev. A 103, 023322 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  132. Eckel, S. & Jacobson, T. Phonon redshift and Hubble friction in an expanding BEC. SciPost Phys. 10, 064 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  133. Cooper, N. R. Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008).

    Article  ADS  Google Scholar 

  134. Fetter, A. L. Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647 (2009).

    Article  ADS  Google Scholar 

  135. Ho, T.-L. Bose–Einstein condensates with large number of vortices. Phys. Rev. Lett. 87, 060403 (2001).

    Article  ADS  Google Scholar 

  136. Mukherjee, B. et al. Crystallization of bosonic quantum Hall states in a rotating quantum gas. Nature 601, 58–62 (2022).

    Article  ADS  Google Scholar 

  137. Schweikhard, V., Coddington, I., Engels, P., Mogendorff, V. P. & Cornell, E. A. Rapidly rotating Bose–Einstein condensates in and near the lowest Landau level. Phys. Rev. Lett. 92, 040404 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.T. acknowledges support from the ANR grant ‘Droplets’ No. ANR-19-CE30-0003-02. L.S. is partially supported by the BIRD grant ‘Ultracold atoms in curved geometries’ of the University of Padova, by the ‘Iniziativa Specifica Quantum’ of INFN and by the European Union-NextGenerationEU within the National Center for HPC, Big Data and Quantum Computing (Project No. CN00000013, CN1 Spoke 10: ‘Quantum Computing’). A.T. thanks R. Dubessy and I.B. Spielman for interesting discussions. L.S. thanks A. Yakimenko for useful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Andrea Tononi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tononi, A., Salasnich, L. Low-dimensional quantum gases in curved geometries. Nat Rev Phys 5, 398–406 (2023). https://doi.org/10.1038/s42254-023-00591-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00591-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing