Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Progress in quantum teleportation

Abstract

Thirty years after it was first proposed, quantum teleportation remains one of the most important protocols in quantum information and quantum technologies, enabling the nonlocal transmission of an unknown quantum state. Quantum teleportation can be used to overcome the distance limitation in directly transferring quantum states in quantum communication and the difficulty in realizing long-range interactions among qubits in quantum computation. Since 2015, experimental quantum teleportation has moved from simple to complex quantum states (multiple degrees of freedom, high-dimensional quantum states) and from proof-of-principle demonstrations to real-world applications. We overview these advances, in particular, the understanding of the nonclassical nature of quantum teleportation, the teleportation of complex quantum states, progress in experiments with photons, atoms and solid-state systems and applications to quantum communication and computation, and discuss the challenges and opportunities for future developments.

Key points

  • Quantum teleportation is the transfer of an unknown quantum state over long distances. This process requires entanglement and therefore cannot be simulated with classical channels.

  • In practice, a single particle has many degrees of freedom, forming a complex quantum state. Quantum teleportation of such states requires more complex entanglement preparation and Bell-state measurements.

  • Quantum teleportation is key for quantum communication technology. Long-distance quantum teleportation has been realized over a 100-km optical fibre channel and a 1,400-km satellite-to-ground free space channel, respectively.

  • Quantum gate teleportation distributes local gate operations between spatially separated particles, so that it can be used to establish links among distributed quantum computing nodes in quantum networks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different types of quantum teleportation and examples of applications.
Fig. 2: Teleportation of photonic complex quantum states.
Fig. 3: Quantum teleportation for quantum communication.
Fig. 4: Quantum gate teleportation for quantum computing.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A. & Braunstein, S. L. Advances in quantum teleportation. Nat. Photon. 9, 641–652 (2015).

    Article  ADS  Google Scholar 

  4. Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

    Article  ADS  Google Scholar 

  5. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).

    Article  ADS  Google Scholar 

  6. Zhang, W. et al. A device-independent quantum key distribution system for distant users. Nature 607, 687–691 (2022).

    Article  ADS  Google Scholar 

  7. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article  Google Scholar 

  8. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  ADS  Google Scholar 

  9. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  10. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  MATH  Google Scholar 

  11. Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998).

    Article  ADS  Google Scholar 

  12. Erhard, M., Krenn, M. & Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2, 365–381 (2020).

    Article  Google Scholar 

  13. Hu, X.-M. et al. Experimental high-dimensional quantum teleportation. Phys. Rev. Lett. 125, 230501 (2020).

    Article  ADS  Google Scholar 

  14. Luo, Y.-H. et al. Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019).

    Article  ADS  Google Scholar 

  15. Wang, X.-L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).

    Article  ADS  Google Scholar 

  16. Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).

    Article  ADS  Google Scholar 

  17. Sun, Q.-C. et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photon. 10, 671–675 (2016).

    Article  ADS  Google Scholar 

  18. Valivarthi, R. et al. Quantum teleportation across a metropolitan fibre network. Nat. Photon. 10, 676–680 (2016).

    Article  ADS  Google Scholar 

  19. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Jiang, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007).

    Article  ADS  Google Scholar 

  21. Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    Article  ADS  Google Scholar 

  22. Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature 561, 368–373 (2018).

    Article  ADS  Google Scholar 

  23. Wan, Y. et al. Quantum gate teleportation between separated qubits in a trapped-ion processor. Science 364, 875–878 (2019).

    Article  ADS  Google Scholar 

  24. Daiss, S. et al. A quantum-logic gate between distant quantum-network modules. Science 371, 614–617 (2021).

    Article  ADS  Google Scholar 

  25. Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Cavalcanti, D., Skrzypczyk, P. & Šupić, I. All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119, 110501 (2017).

    Article  ADS  Google Scholar 

  27. Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020).

    Article  Google Scholar 

  28. Hermans, S. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022).

    Article  ADS  Google Scholar 

  29. Calsamiglia, J. & Lütkenhaus, N. Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67–71 (2001).

    Article  ADS  Google Scholar 

  30. Weinfurter, H. Experimental bell-state analysis. Europhys. Lett. 25, 559 (1994).

    Article  ADS  Google Scholar 

  31. Braunstein, S. L. & Mann, A. Measurement of the Bell operator and quantum teleportation. Phys. Rev. A 51, R1727 (1995).

    Article  ADS  Google Scholar 

  32. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    Article  ADS  Google Scholar 

  33. Ishizaka, S. & Hiroshima, T. Asymptotic teleportation scheme as a universal programmable quantum processor. Phys. Rev. Lett. 101, 240501 (2008).

    Article  ADS  Google Scholar 

  34. Karlsson, A. & Bourennane, M. Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  35. van Loock, P. & Braunstein, S. L. Multipartite entanglement for continuous variables: a quantum teleportation network. Phys. Rev. Lett. 84, 3482 (2000).

    Article  ADS  Google Scholar 

  36. Scarani, V., Iblisdir, S., Gisin, N. & Acin, A. Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Hayashi, A., Hashimoto, T. & Horibe, M. Reexamination of optimal quantum state estimation of pure states. Phys. Rev. A 72, 032325 (2005).

    Article  ADS  Google Scholar 

  38. Bruß, D. & Macchiavello, C. Optimal state estimation for d-dimensional quantum systems. Phys. Lett. A 253, 249–251 (1999).

    Article  ADS  Google Scholar 

  39. Chen, C.-K., Chen, S.-H., Huang, N.-N. & Li, C.-M. Identifying genuine quantum teleportation. Phys. Rev. A 104, 052429 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  40. Carvacho, G. et al. Experimental study of nonclassical teleportation beyond average fidelity. Phys. Rev. Lett. 121, 140501 (2018).

    Article  ADS  Google Scholar 

  41. Hu, X.-M. et al. Experimental certification for nonclassical teleportation. Quantum Eng. 1, e13 (2019).

    Article  Google Scholar 

  42. Lipka-Bartosik, P. & Skrzypczyk, P. Operational advantages provided by nonclassical teleportation. Phys. Rev. Res. 2, 023029 (2020).

    Article  Google Scholar 

  43. Mozrzymas, M., Studziński, M. & Kopszak, P. Optimal multi-port-based teleportation schemes. Quantum 5, 477 (2021).

    Article  MATH  Google Scholar 

  44. Studziński, M., Mozrzymas, M., Kopszak, P. & Horodecki, M. Efficient multi port-based teleportation schemes. IEEE Trans. Inf. Theory 68, 7892–7912 (2022).

    Article  MathSciNet  Google Scholar 

  45. Mozrzymas, M., Studziński, M., Strelchuk, S. & Horodecki, M. Optimal port-based teleportation. New J. Phys. 20, 053006 (2018).

    Article  ADS  Google Scholar 

  46. Studziński, M., Strelchuk, S., Mozrzymas, M. & Horodecki, M. Port-based teleportation in arbitrary dimension. Sci. Rep. 7, 10871 (2017).

    Article  ADS  Google Scholar 

  47. Pereira, J. L., Banchi, L. & Pirandola, S. Continuous variable port-based teleportation. Preprint at https://arxiv.org/abs/2302.08522 (2023).

  48. Achatz, L. et al. Simultaneous transmission of hyper-entanglement in 3 degrees of freedom through a multicore fiber. Preprint at https://arxiv.org/abs/2208.10777 (2022).

  49. Thomas, P., Ruscio, L., Morin, O. & Rempe, G. Efficient generation of entangled multi-photon graph states from a single atom. Nature 608, 677–681 (2022).

    Article  ADS  Google Scholar 

  50. Conlon, L. O. et al. Approaching optimal entangling collective measurements on quantum computing platforms. Nat. Phys. 19, 351–357 (2023).

    Article  Google Scholar 

  51. Hou, Z. et al. Deterministic realization of collective measurements via photonic quantum walks. Nat. Commun. 9, 1414 (2018).

    Article  ADS  Google Scholar 

  52. Laurenza, R., Lupo, C., Spedalieri, G., Braunstein, S. L. & Pirandola, S. Channel simulation in quantum metrology. Quantum Meas. Quantum Metrol. 5, 1–12 (2018).

    Article  ADS  Google Scholar 

  53. Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).

    Article  ADS  Google Scholar 

  54. Bennett, C. H., DiVincenzo, D. P. & Smolin, J. A. Capacities of quantum erasure channels. Phys. Rev. Lett. 78, 3217 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012).

    Article  ADS  Google Scholar 

  56. Laurenza, R. et al. Tight bounds for private communication over bosonic Gaussian channels based on teleportation simulation with optimal finite resources. Phys. Rev. A 100, 042301 (2019).

    Article  ADS  Google Scholar 

  57. Laurenza, R. & Pirandola, S. General bounds for sender–receiver capacities in multipoint quantum communications. Phys. Rev. A 96, 032318 (2017).

    Article  ADS  Google Scholar 

  58. Pirandola, S. Capacities of repeater-assisted quantum communications. Preprint at https://arxiv.org/abs/1601.00966 (2016).

  59. Laurenza, R., Walk, N., Eisert, J. & Pirandola, S. Rate limits in quantum networks with lossy repeaters. Phys. Rev. Res. 4, 023158 (2022).

    Article  Google Scholar 

  60. Pirandola, S. End-to-end capacities of a quantum communication network. Commun. Phys. 2, 51 (2019).

    Article  Google Scholar 

  61. Pirandola, S., Bardhan, B. R., Gehring, T., Weedbrook, C. & Lloyd, S. Advances in photonic quantum sensing. Nat. Photon. 12, 724–733 (2018).

    Article  ADS  Google Scholar 

  62. Pirandola, S. & Lupo, C. Ultimate precision of adaptive noise estimation. Phys. Rev. Lett. 118, 100502 (2017).

    Article  ADS  Google Scholar 

  63. Zhou, S. & Jiang, L. Asymptotic theory of quantum channel estimation. PRX Quantum 2, 010343 (2021).

    Article  Google Scholar 

  64. Zhuang, Q. & Pirandola, S. Ultimate limits for multiple quantum channel discrimination. Phys. Rev. Lett. 125, 080505 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  65. Pirandola, S., Laurenza, R., Lupo, C. & Pereira, J. L. Fundamental limits to quantum channel discrimination. npj Quantum Inf. 5, 50 (2019).

    Article  ADS  Google Scholar 

  66. Sedlák, M., Bisio, A. & Ziman, M. Optimal probabilistic storage and retrieval of unitary channels. Phys. Rev. Lett. 122, 170502 (2019).

    Article  ADS  Google Scholar 

  67. Banchi, L., Pereira, J., Lloyd, S. & Pirandola, S. Convex optimization of programmable quantum computers. npj Quantum Inf. 6, 42 (2020).

    Article  ADS  Google Scholar 

  68. Kubicki, A. M., Palazuelos, C. & Perez-Garcia, D. Resource quantification for the no-programing theorem. Phys. Rev. Lett. 122, 080505 (2019).

    Article  ADS  Google Scholar 

  69. Pereira, J., Banchi, L. & Pirandola, S. Characterising port-based teleportation as universal simulator of qubit channels. J. Phys. A Math. Theor. 54, 205301 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Lipka-Bartosik, P. & Skrzypczyk, P. Catalytic quantum teleportation. Phys. Rev. Lett. 127, 080502 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  71. Yoshida, B. & Yao, N. Y. Disentangling scrambling and decoherence via quantum teleportation. Phys. Rev. X 9, 011006 (2019).

    Google Scholar 

  72. Schuster, T. et al. Many-body quantum teleportation via operator spreading in the traversable wormhole protocol. Phys. Rev. X 12, 031013 (2022).

    Google Scholar 

  73. Chen, M.-C. et al. Directly measuring a multiparticle quantum wave function via quantum teleportation. Phys. Rev. Lett. 127, 030402 (2021).

    Article  ADS  Google Scholar 

  74. Hou, P.-Y. et al. Quantum teleportation from light beams to vibrational states of a macroscopic diamond. Nat. Commun. 7, 11736 (2016).

    Article  ADS  Google Scholar 

  75. Sun, K. et al. Experimental quantum entanglement and teleportation by tuning remote spatial indistinguishability of independent photons. Opt. Lett. 45, 6410–6413 (2020).

    Article  ADS  Google Scholar 

  76. Li, J.-Y. et al. Activating hidden teleportation power: theory and experiment. Phys. Rev. Res. 3, 023045 (2021).

    Article  Google Scholar 

  77. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995).

    Article  ADS  Google Scholar 

  78. Wang, F. et al. Generation of the complete four-dimensional Bell basis. Optica 4, 1462–1467 (2017).

    Article  ADS  Google Scholar 

  79. Martin, A. et al. Quantifying photonic high-dimensional entanglement. Phys. Rev. Lett. 118, 110501 (2017).

    Article  ADS  Google Scholar 

  80. Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    Article  ADS  Google Scholar 

  82. Lütkenhaus, N., Calsamiglia, J. & Suominen, K.-A. Bell measurements for teleportation. Phys. Rev. A 59, 3295 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  83. Vaidman, L. & Yoran, N. Methods for reliable teleportation. Phys. Rev. A 59, 116 (1999).

    Article  ADS  Google Scholar 

  84. Schuck, C., Huber, G., Kurtsiefer, C. & Weinfurter, H. Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006).

    Article  ADS  Google Scholar 

  85. Sheng, Y.-B., Deng, F.-G. & Long, G. L. Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010).

    Article  ADS  Google Scholar 

  86. Williams, B. P., Sadlier, R. J. & Humble, T. S. Superdense coding over optical fiber links with complete Bell-state measurements. Phys. Rev. Lett. 118, 050501 (2017).

    Article  ADS  Google Scholar 

  87. Kim, Y.-H., Kulik, S. P. & Shih, Y. Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370 (2001).

    Article  ADS  Google Scholar 

  88. Grice, W. P. Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84, 042331 (2011).

    Article  ADS  Google Scholar 

  89. Ewert, F. & van Loock, P. 3/4-Efficient bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett. 113, 140403 (2014).

    Article  ADS  Google Scholar 

  90. Ewert, F., Bergmann, M. & van Loock, P. Ultrafast long-distance quantum communication with static linear optics. Phys. Rev. Lett. 117, 210501 (2016).

    Article  ADS  Google Scholar 

  91. Schmidt, F. & van Loock, P. Efficiencies of logical Bell measurements on Calderbank–Shor–Steane codes with static linear optics. Phys. Rev. A 99, 062308 (2019).

    Article  ADS  Google Scholar 

  92. Bayerbach, M. J., D’Aurelio, S. E., van Loock, P. & Barz, S. Bell-state measurement exceeding 50% success probability with linear optics. Preprint at https://arxiv.org/abs/2208.02271 (2022).

  93. Graham, T. M., Bernstein, H. J., Wei, T.-C., Junge, M. & Kwiat, P. G. Superdense teleportation using hyperentangled photons. Nat. Commun. 6, 7185 (2015).

    Article  Google Scholar 

  94. Chapman, J. C., Graham, T. M., Zeitler, C. K., Bernstein, H. J. & Kwiat, P. G. Time-bin and polarization superdense teleportation for space applications. Phys. Rev. Appl. 14, 014044 (2020).

    Article  ADS  Google Scholar 

  95. Ru, S. et al. Quantum state transfer between two photons with polarization and orbital angular momentum via quantum teleportation technology. Phys. Rev. A 103, 052404 (2021).

    Article  ADS  Google Scholar 

  96. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  97. Wei, T.-C., Barreiro, J. T. & Kwiat, P. G. Hyperentangled Bell-state analysis. Phys. Rev. A 75, 060305 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  98. Luo, M.-X., Li, H.-R., Lai, H. & Wang, X. Teleportation of a ququart system using hyperentangled photons assisted by atomic-ensemble memories. Phys. Rev. A 93, 012332 (2016).

    Article  ADS  Google Scholar 

  99. Choi, S., Lee, S.-H. & Jeong, H. Teleportation of a multiphoton qubit using hybrid entanglement with a loss-tolerant carrier qubit. Phys. Rev. A 102, 012424 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  100. Friis, N., Vitagliano, G., Malik, M. & Huber, M. Entanglement certification from theory to experiment. Nat. Rev. Phys. 1, 72–87 (2019).

    Article  Google Scholar 

  101. Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).

    Article  ADS  Google Scholar 

  102. Ecker, S. et al. Experimental single-copy entanglement distillation. Phys. Rev. Lett. 127, 040506 (2021).

    Article  ADS  Google Scholar 

  103. Xie, Z. et al. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb. Nat. Photon. 9, 536–542 (2015).

    Article  ADS  Google Scholar 

  104. Kim, J.-H. et al. Noise-resistant quantum communications using hyperentanglement. Optica 8, 1524–1531 (2021).

    Article  ADS  Google Scholar 

  105. Hu, X.-M. et al. Long-distance entanglement purification for quantum communication. Phys. Rev. Lett. 126, 010503 (2021).

    Article  ADS  Google Scholar 

  106. Steinlechner, F. et al. Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8, 15971 (2017).

    Article  ADS  Google Scholar 

  107. Cervera-Lierta, A., Krenn, M., Aspuru-Guzik, A. & Galda, A. Experimental high-dimensional Greenberger–Horne–Zeilinger entanglement with superconducting transmon qutrits. Phys. Rev. Appl. 17, 024062 (2022).

    Article  ADS  Google Scholar 

  108. Ringbauer, M. et al. A universal qudit quantum processor with trapped ions. Nat. Phys. 18, 1053–1057 (2022).

    Article  Google Scholar 

  109. Fu, Y. et al. Experimental investigation of quantum correlations in a two-qutrit spin system. Phys. Rev. Lett. 129, 100501 (2022).

    Article  ADS  Google Scholar 

  110. Ding, Y. et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf. 3, 25 (2017).

    Article  ADS  Google Scholar 

  111. Hu, X.-M. et al. Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4, eaat9304 (2018).

    Article  ADS  Google Scholar 

  112. Wang, T.-J, Yang, G.-Q & Wang, C. Control power of high-dimensional controlled teleportation. Phys. Rev. A 101, 012323 (2020).

    Article  ADS  Google Scholar 

  113. Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).

    Article  ADS  Google Scholar 

  114. Ecker, S. et al. Overcoming noise in entanglement distribution. Phys. Rev. X 9, 041042 (2019).

    Google Scholar 

  115. Hu, X.-M. et al. Pathways for entanglement-based quantum communication in the face of high noise. Phys. Rev. Lett. 127, 110505 (2021).

    Article  ADS  Google Scholar 

  116. Neeley, M. et al. Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722–725 (2009).

    Article  ADS  Google Scholar 

  117. Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009).

    Article  Google Scholar 

  118. Collins, D., Gisin, N., Linden, N., Massar, S. & Popescu, S. Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. Hu, X.-M. et al. Efficient distribution of high-dimensional entanglement through 11 km fiber. Optica 7, 738–743 (2020).

    Article  ADS  Google Scholar 

  120. Calsamiglia, J. Generalized measurements by linear elements. Phys. Rev. A 65, 030301 (2002).

    Article  ADS  Google Scholar 

  121. Zhang, Y. et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat. Commun. 8, 632 (2017).

    Article  ADS  Google Scholar 

  122. Ivonovic, I. Geometrical description of quantal state determination. J. Phys. A Math. Gen. 14, 3241 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  123. Walborn, S. P., Monken, C., Pádua, S. & Ribeiro, P. S. Spatial correlations in parametric down-conversion. Phys. Rep. 495, 87–139 (2010).

    Article  ADS  Google Scholar 

  124. Qiu, X., Guo, H. & Chen, L. Quantum teleportation of high-dimensional spatial modes: towards an image teleporter. Preprint at https://arxiv.org/abs/2112.03764 (2021).

  125. Sephton, B. et al. High-dimensional spatial teleportation enabled by nonlinear optics. Preprint at https://arxiv.org/abs/2111.13624v1 (2021).

  126. Chen, L. Quantum discord of thermal two-photon orbital angular momentum state: mimicking teleportation to transmit an image. Light Sci. Appl. 10, 148 (2021).

    Article  ADS  Google Scholar 

  127. Lundeen, J. S., Sutherland, B., Patel, A., Stewart, C. & Bamber, C. Direct measurement of the quantum wavefunction. Nature 474, 188–191 (2011).

    Article  Google Scholar 

  128. Cao, H. et al. Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber. Optica 7, 232–237 (2020).

    Article  ADS  Google Scholar 

  129. Ikuta, T. & Takesue, H. Four-dimensional entanglement distribution over 100 km. Sci. Rep. 8, 817 (2018).

    Article  ADS  Google Scholar 

  130. Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).

    Article  Google Scholar 

  131. Pu, Y. et al. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells. Nat. Commun. 8, 15359 (2017).

    Article  ADS  Google Scholar 

  132. Dąbrowski, M. et al. Certification of high-dimensional entanglement and Einstein–Podolsky–Rosen steering with cold atomic quantum memory. Phys. Rev. A 98, 042126 (2018).

    Article  ADS  Google Scholar 

  133. Tiranov, A. et al. Quantification of multidimensional entanglement stored in a crystal. Phys. Rev. A 96, 040303 (2017).

    Article  ADS  Google Scholar 

  134. Zhou, Z.-Q. et al. Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal. Phys. Rev. Lett. 115, 070502 (2015).

    Article  ADS  Google Scholar 

  135. Li, C. et al. Quantum communication between multiplexed atomic quantum memories. Phys. Rev. Lett. 124, 240504 (2020).

    Article  ADS  Google Scholar 

  136. Bacco, D., Bulmer, J. F., Erhard, M., Huber, M. & Paesani, S. Proposal for practical multidimensional quantum networks. Phys. Rev. A 104, 052618 (2021).

    Article  ADS  Google Scholar 

  137. Braunstein, S. L. & Van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  138. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article  ADS  Google Scholar 

  139. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article  ADS  Google Scholar 

  140. Krauter, H. et al. Deterministic quantum teleportation between distant atomic objects. Nat. Phys. 9, 400–404 (2013).

    Article  Google Scholar 

  141. Liuzzo-Scorpo, P., Mari, A., Giovannetti, V. & Adesso, G. Optimal continuous variable quantum teleportation with limited resources. Phys. Rev. Lett. 119, 120503 (2017).

    Article  ADS  Google Scholar 

  142. He, Q., Rosales-Zárate, L., Adesso, G. & Reid, M. D. Secure continuous variable teleportation and Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 115, 180502 (2015).

    Article  ADS  Google Scholar 

  143. Lie, S. H. & Jeong, H. Limitations of teleporting a qubit via a two-mode squeezed state. Photonics Res. 7, A7–A13 (2019).

    Article  Google Scholar 

  144. Tserkis, S., Dias, J. & Ralph, T. C. Simulation of Gaussian channels via teleportation and error correction of Gaussian states. Phys. Rev. A 98, 052335 (2018).

    Article  ADS  Google Scholar 

  145. Dias, J. & Ralph, T. C. Quantum repeaters using continuous-variable teleportation. Phys. Rev. A 95, 022312 (2017).

    Article  ADS  Google Scholar 

  146. Borregaard, J., Gehring, T., Neergaard-Nielsen, J. S. & Andersen, U. L. Super sensitivity and super resolution with quantum teleportation. npj Quantum Inf. 5, 16 (2019).

    Article  ADS  Google Scholar 

  147. Liu, S., Lou, Y. & Jing, J. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun. 11, 3875 (2020).

    Article  ADS  Google Scholar 

  148. Liu, S., Lou, Y., Chen, Y. & Jing, J. All-optical entanglement swapping. Phys. Rev. Lett. 128, 060503 (2022).

    Article  ADS  Google Scholar 

  149. Wu, Y. et al. Multi-channel multiplexing quantum teleportation based on the entangled sideband modes. Photonics Res. 10, 1909–1914 (2022).

    Article  Google Scholar 

  150. Andersen, U. L., Neergaard-Nielsen, J. S., Van Loock, P. & Furusawa, A. Hybrid discrete-and continuous-variable quantum information. Nat. Phys. 11, 713–719 (2015).

    Article  Google Scholar 

  151. Brask, J. B., Rigas, I., Polzik, E. S., Andersen, U. L. & Sørensen, A. S. Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett. 105, 160501 (2010).

    Article  ADS  Google Scholar 

  152. Takeda, S., Fuwa, M., van Loock, P. & Furusawa, A. Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114, 100501 (2015).

    Article  ADS  Google Scholar 

  153. Ulanov, A. E., Sychev, D., Pushkina, A. A., Fedorov, I. A. & Lvovsky, A. Quantum teleportation between discrete and continuous encodings of an optical qubit. Phys. Rev. Lett. 118, 160501 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  154. Guccione, G. et al. Connecting heterogeneous quantum networks by hybrid entanglement swapping. Sci. Adv. 6, eaba4508 (2020).

    Article  ADS  Google Scholar 

  155. Sychev, D. V. et al. Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nat. Commun. 9, 3672 (2018).

    Article  ADS  Google Scholar 

  156. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).

    Article  ADS  Google Scholar 

  157. Yu, Y. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240–245 (2020).

    Article  ADS  Google Scholar 

  158. van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature 607, 69–73 (2022).

    Article  ADS  Google Scholar 

  159. Nadlinger, D. et al. Experimental quantum key distribution certified by Bell’s theorem. Nature 607, 682–686 (2022).

    Article  ADS  Google Scholar 

  160. Liu, X. et al. Heralded entanglement distribution between two absorptive quantum memories. Nature 594, 41–45 (2021).

    Article  ADS  Google Scholar 

  161. Lago-Rivera, D., Grandi, S., Rakonjac, J. V., Seri, A. & de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 594, 37–40 (2021).

    Article  ADS  Google Scholar 

  162. Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    Article  ADS  Google Scholar 

  163. Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Preprint at https://arxiv.org/abs/2212.10820 (2022).

  164. Sangouard, N., Simon, C., De Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011).

    Article  ADS  Google Scholar 

  165. Munro, W. J., Azuma, K., Tamaki, K. & Nemoto, K. Inside quantum repeaters. IEEE J. Sel. Top. Quantum Electron. 21, 78–90 (2015).

    Article  ADS  Google Scholar 

  166. Wei, S.-H. et al. Towards real-world quantum networks: a review. Laser Photonics Rev. 16, 2100219 (2022).

    Article  ADS  Google Scholar 

  167. Barasiński, A., Černoch, A. & Lemr, K. Demonstration of controlled quantum teleportation for discrete variables on linear optical devices. Phys. Rev. Lett. 122, 170501 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  168. Lee, S. M., Lee, S.-W., Jeong, H. & Park, H. S. Quantum teleportation of shared quantum secret. Phys. Rev. Lett. 124, 060501 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  169. Awschalom, D. et al. Development of quantum interconnects (quics) for next-generation information technologies. PRX Quant. 2, 017002 (2021).

    Article  Google Scholar 

  170. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012).

    Article  ADS  Google Scholar 

  171. Yang, T. et al. Experimental synchronization of independent entangled photon sources. Phys. Rev. Lett. 96, 110501 (2006).

    Article  ADS  Google Scholar 

  172. Kaltenbaek, R., Blauensteiner, B., Żukowski, M., Aspelmeyer, M. & Zeilinger, A. Experimental interference of independent photons. Phys. Rev. Lett. 96, 240502 (2006).

    Article  ADS  Google Scholar 

  173. Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  Google Scholar 

  174. Reindl, M. et al. All-photonic quantum teleportation using on-demand solid-state quantum emitters. Sci. Adv. 4, eaau1255 (2018).

    Article  ADS  Google Scholar 

  175. Basso Basset, F. et al. Quantum teleportation with imperfect quantum dots. npj Quantum Inf. 7, 7 (2021).

    Article  ADS  Google Scholar 

  176. Anderson, M. et al. Quantum teleportation using highly coherent emission from telecom c-band quantum dots. npj Quantum Inf. 6, 14 (2020).

    Article  ADS  Google Scholar 

  177. Anderson, M. et al. Gigahertz-clocked teleportation of time-bin qubits with a quantum dot in the telecommunication c band. Phys. Rev. Appl. 13, 054052 (2020).

    Article  ADS  Google Scholar 

  178. Sun, Q.-C. et al. Entanglement swapping over 100 km optical fiber with independent entangled photon-pair sources. Optica 4, 1214–1218 (2017).

    Article  ADS  Google Scholar 

  179. Takesue, H. et al. Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2, 832–835 (2015).

    Article  ADS  Google Scholar 

  180. Valivarthi, R. et al. Teleportation systems toward a quantum internet. PRX Quantum 1, 020317 (2020).

    Article  ADS  Google Scholar 

  181. Shen, S. et al. Hertz-rate metropolitan quantum teleportation. Preprint at https://arxiv.org/abs/2303.13866 (2022).

  182. Huo, M. et al. Deterministic quantum teleportation through fiber channels. Sci. Adv. 4, eaas9401 (2018).

    Article  ADS  Google Scholar 

  183. Liu, Z.-D. et al. Efficient quantum teleportation under noise with hybrid entanglement and reverse decoherence. Preprint at https://arxiv.org/abs/2210.14935 (2022).

  184. Fortes, R. & Rigolin, G. Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015).

    Article  ADS  Google Scholar 

  185. Yin, J. et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012).

    Article  ADS  Google Scholar 

  186. Ma, X.-S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).

    Article  ADS  Google Scholar 

  187. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  188. Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010).

    Article  ADS  Google Scholar 

  189. Lu, C.-Y., Cao, Y., Peng, C.-Z. & Pan, J.-W. Micius quantum experiments in space. Rev. Mod. Phys. 94, 035001 (2022).

    Article  ADS  Google Scholar 

  190. Jennewein, T. et al. Qeyssat: a mission proposal for a quantum receiver in space. In Advances in Photonics of Quantum Computing, Memory, and Communication VII, Vol. 8997, 21–27 (SPIE, 2014).

  191. Oi, D. K. et al. Cubesat quantum communications mission. EPJ Quantum Technol. 4, 6 (2017).

    Article  Google Scholar 

  192. Chen, L.-K. et al. Observation of ten-photon entanglement using thin BiB3O6 crystals. Optica 4, 77–83 (2017).

    Article  ADS  Google Scholar 

  193. Zuo, Z., Wang, Y., Liao, Q. & Guo, Y. Overcoming the uplink limit of satellite-based quantum communication with deterministic quantum teleportation. Phys. Rev. A 104, 022615 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  194. Chen, Y.-A. et al. An integrated space-to-ground quantum communication network over 4600 kilometres. Nature 589, 214–219 (2021).

    Article  ADS  Google Scholar 

  195. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  196. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article  ADS  Google Scholar 

  197. Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).

    Article  Google Scholar 

  198. Vigliar, C. et al. Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).

    Article  Google Scholar 

  199. Zhang, M. et al. Generation of multiphoton quantum states on silicon. Light Sci. Appl. 8, 41 (2019).

    Article  ADS  Google Scholar 

  200. Metcalf, B. J. et al. Quantum teleportation on a photonic chip. Nat. Photon. 8, 770–774 (2014).

    Article  ADS  Google Scholar 

  201. Taballione, C. et al. 8 × 8 Reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express 27, 26842–26857 (2019).

    Article  ADS  Google Scholar 

  202. Zhang, H. et al. Resource-efficient high-dimensional subspace teleportation with a quantum autoencoder. Sci. Adv. 8, eabn9783 (2022).

    Article  ADS  Google Scholar 

  203. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  ADS  Google Scholar 

  204. Fiaschi, N. et al. Optomechanical quantum teleportation. Nat. Photon. 15, 817–821 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  205. Lago-Rivera, D., Rakonjac, J. V., Grandi, S. & de Riedmatten, H. Long-distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit. Preprint at https://arxiv.org/abs/2209.06249 (2022).

  206. Zhu, T.-X. et al. On-demand integrated quantum memory for polarization qubits. Phys. Rev. Lett. 128, 180501 (2022).

    Article  ADS  Google Scholar 

  207. Seri, A. et al. Laser-written integrated platform for quantum storage of heralded single photons. Optica 5, 934–941 (2018).

    Article  ADS  Google Scholar 

  208. Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article  ADS  Google Scholar 

  209. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001).

    Article  ADS  MATH  Google Scholar 

  210. Gross, D. & Eisert, J. Novel schemes for measurement-based quantum computation. Phys. Rev. Lett. 98, 220503 (2007).

    Article  ADS  Google Scholar 

  211. Eisert, J., Jacobs, K., Papadopoulos, P. & Plenio, M. B. Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000).

    Article  ADS  Google Scholar 

  212. Huang, Y.-F., Ren, X.-F., Zhang, Y.-S., Duan, L.-M. & Guo, G.-C. Experimental teleportation of a quantum controlled-not gate. Phys. Rev. Lett. 93, 240501 (2004).

    Article  ADS  Google Scholar 

  213. Gao, W.-B. et al. Teleportation-based realization of an optical quantum two-qubit entangling gate. Proc. Natl Acad. Sci. USA 107, 20869–20874 (2010).

    Article  ADS  Google Scholar 

  214. Ewert, F. & van Loock, P. Teleportation-assisted optical controlled-sign gates. Phys. Rev. A 99, 032333 (2019).

    Article  ADS  Google Scholar 

  215. Qiao, H. et al. Conditional teleportation of quantum-dot spin states. Nat. Commun. 11, 3022 (2020).

    Article  ADS  Google Scholar 

  216. Kojima, Y. et al. Probabilistic teleportation of a quantum dot spin qubit. npj Quantum Inf. 7, 68 (2021).

    Article  ADS  Google Scholar 

  217. Shor, P. W. Fault-tolerant quantum computation. In Proceedings of 37th Conference on Foundations of Computer Science 56–65 (IEEE, 1996).

  218. Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  219. Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016).

    Article  ADS  Google Scholar 

  220. Fedorov, K. G. et al. Experimental quantum teleportation of propagating microwaves. Sci. Adv. 7, eabk0891 (2021).

    Article  ADS  Google Scholar 

  221. Zhong, Y. et al. Violating Bell’s inequality with remotely connected superconducting qubits. Nat. Phys. 15, 741–744 (2019).

    Article  Google Scholar 

  222. Yan, H. et al. Entanglement purification and protection in a superconducting quantum network. Phys. Rev. Lett. 128, 080504 (2022).

    Article  ADS  Google Scholar 

  223. Wu, J., Cui, C., Fan, L. & Zhuang, Q. Deterministic microwave-optical transduction based on quantum teleportation. Phys. Rev. Appl. 16, 064044 (2021).

    Article  ADS  Google Scholar 

  224. Ning, W. et al. Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett. 123, 060502 (2019).

    Article  ADS  Google Scholar 

  225. Krutyanskiy, V. et al. Entanglement of trapped-ion qubits separated by 230 meters. Preprint at https://arxiv.org/abs/2208.14907 (2022).

  226. Walther, H., Varcoe, B. T., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325 (2006).

    Article  ADS  Google Scholar 

  227. Langenfeld, S. et al. Quantum teleportation between remote qubit memories with only a single photon as a resource. Phys. Rev. Lett. 126, 130502 (2021).

    Article  ADS  Google Scholar 

  228. Kandel, Y. P. et al. Coherent spin-state transfer via Heisenberg exchange. Nature 573, 553–557 (2019).

    Article  ADS  Google Scholar 

  229. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  ADS  Google Scholar 

  230. Jing, B. et al. Entanglement of three quantum memories via interference of three single photons. Nat. Photon. 13, 210–213 (2019).

    Article  ADS  Google Scholar 

  231. Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Article  ADS  Google Scholar 

  232. Walshe, B. W., Baragiola, B. Q., Alexander, R. N. & Menicucci, N. C. Continuous-variable gate teleportation and bosonic-code error correction. Phys. Rev. A 102, 062411 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  233. Luo, Y.-H. et al. Quantum teleportation of physical qubits into logical code spaces. Proc. Natl Acad. Sci. USA 118, e2026250118 (2021).

    Article  Google Scholar 

  234. Nielsen, M. A. & Chuang, I. Quantum Computation and Quantum Information Ch. 10 (Cambridge Univ. Press, 2002).

  235. Huang, H.-L. et al. Emulating quantum teleportation of a Majorana zero mode qubit. Phys. Rev. Lett. 126, 090502 (2021).

    Article  ADS  Google Scholar 

  236. Sarma, S. D., Freedman, M. & Nayak, C. Majorana zero modes and topological quantum computation. npj Quantum Inf. 1, 15001 (2015).

    Article  ADS  Google Scholar 

  237. Olivo, A. & Grosshans, F. Ancilla-assisted linear optical Bell measurements and their optimality. Phys. Rev. A 98, 042323 (2018).

    Article  ADS  Google Scholar 

  238. Aktas, D. et al. Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography. Laser Photonics Rev. 10, 451–457 (2016).

    Article  ADS  Google Scholar 

  239. Zhong, H.-S. et al. 12-Photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

    Article  ADS  Google Scholar 

  240. Qiu, X., Li, F., Liu, H., Chen, X. & Chen, L. Optical vortex copier and regenerator in the Fourier domain. Photonics Res. 6, 641–646 (2018).

    Article  Google Scholar 

  241. Schimpf, C. et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks. Appl. Phys. Lett. 118, 100502 (2021).

    Article  ADS  Google Scholar 

  242. Kaneda, F. & Kwiat, P. G. High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5, eaaw8586 (2019).

    Article  ADS  Google Scholar 

  243. Lu, J. et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica 8, 539–544 (2021).

    Article  ADS  Google Scholar 

  244. Goss, N. et al. High-fidelity qutrit entangling gates for superconducting circuits. Preprint at https://arxiv.org/abs/2206.07216 (2022).

  245. Riebe, M. et al. Deterministic entanglement swapping with an ion-trap quantum computer. Nat. Phys. 4, 839–842 (2008).

    Article  Google Scholar 

  246. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  247. van Leent, T. et al. Long-distance distribution of atom-photon entanglement at telecom wavelength. Phys. Rev. Lett. 124, 010510 (2020).

    Article  Google Scholar 

  248. Luo, X.-Y. et al. Postselected entanglement between two atomic ensembles separated by 12.5 km. Phys. Rev. Lett. 129, 050503 (2022).

    Article  ADS  Google Scholar 

  249. Gong, M. et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science 372, 948–952 (2021).

    Article  Google Scholar 

  250. Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    Article  ADS  Google Scholar 

  251. Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2, 411–425 (2020).

    Article  Google Scholar 

  252. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article  ADS  Google Scholar 

  253. Chen, L. et al. Planar-integrated magneto-optical trap. Phys. Rev. Appl. 17, 034031 (2022).

    Article  ADS  Google Scholar 

  254. Yao, R. et al. Experimental realization of a multiqubit quantum memory in a 218-ion chain. Phys. Rev. A 106, 062617 (2022).

    Article  Google Scholar 

  255. Rakonjac, J. V. et al. Entanglement between a telecom photon and an on-demand multimode solid-state quantum memory. Phys. Rev. Lett. 127, 210502 (2021).

    Article  ADS  Google Scholar 

  256. Sakr, H. et al. Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1100 nm. Nat. Commun. 11, 6030 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFE0113100), NSFC (Nos 11874345, 11821404, 11904357, 12174367 and 12204458), the Innovation Program for Quantum Science and Technology (No. 2021ZD0301200), the Fundamental Research Funds for the Central Universities, USTC Tang Scholarship, Science and Technological Fund of Anhui Province for Outstanding Youth (2008085J02), China Postdoctoral Science Foundation (2021M700138) and China Postdoctoral for Innovative Talents (BX2021289). This work was partially supported by the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Contributions

X.-M.H. wrote the manuscript with the help of Y.G and B.-H.L. B.-H.L, C.-F.L and G.-C.G. supervised the research. All authors discussed the content extensively.

Corresponding authors

Correspondence to Bi-Heng Liu or Chuan-Feng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, XM., Guo, Y., Liu, BH. et al. Progress in quantum teleportation. Nat Rev Phys 5, 339–353 (2023). https://doi.org/10.1038/s42254-023-00588-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00588-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing