Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optimizing the dynamic pair distribution function method for inelastic neutron spectrometry


The dynamic pair distribution function (DyPDF) is an inelastic neutron scattering method that provides detailed information about the local dynamics of a crystalline material in real space. DyPDF has been applied to many systems, including ferroelectrics, superconductors and charge-density-wave materials, but a more complete adoption has been limited by lack of proper data treatment, understanding of the effects of different spectrometers and a robust method of data analysis. In this Technical Review, we provide suggestions on optimizing the use of DyPDF based on case studies of polycrystalline nickel on several inelastic neutron scattering instruments. A robust data treatment regimen is outlined to enable quantitative comparison of data across spectrometers, and an explanation and comparison of the instrumental effects are presented. We aim to show that, by a careful choice of instrument and experimental conditions, DyPDF can serve as a routine real-space complement to traditional local vibrational probes such as infrared and Raman spectroscopy.

Key points

  • The dynamic pair distribution function is a robust inelastic neutron scattering method that allows for the real-space correlation of atomic displacements.

  • The energy resolution in DyPDF depends on instrument configuration and incident energy. Such resolution information should be considered when choosing the instrument and incident energy for an experiment.

  • Background treatment, including a removal of an approximation to the single-phonon background contribution, is of the utmost importance in obtaining high-quality DyPDF data that is comparable between instruments within the energy resolution of the configuration.

  • When proper data treatment is performed, the data are quantitatively comparable across inelastic instruments within the Goldilocks principle of DyPDF.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Explanation of pair distribution function and dynamic pair distribution function.
Fig. 2: Energy resolution and S(Q,E) of Ni on different inelastic neutron spectrometers.
Fig. 3: Comparison of nickel DyPDF spectra across instruments.
Fig. 4: Data treatment methods.


  1. Gersten, J. & Smith, F. The Physics and Chemistry of Materials (Wiley, 2001).

  2. Callister, W. & Rethwisch, D. Materials Science and Engineering: An Introduction (Wiley, 2018).

  3. Stolow, A. & Jonas, D. M. Multidimensional snapshots of chemical dynamics. Science 305, 1575–1577 (2004).

    Article  Google Scholar 

  4. Cho, M. Coherent two-dimensional optical spectroscopy. Chem. Rev. 108, 1331–1418 (2008).

    Article  Google Scholar 

  5. Zanni, M. T. & Hochstrasser, R. M. Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures. Curr. Opin. Struct. Biol. 11, 516–522 (2001).

    Article  Google Scholar 

  6. Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).

    Article  ADS  Google Scholar 

  7. Makal, A. et al. Restricted photochemistry in the molecular solid state: structural changes on photoexcitation of Cu(i) phenanthroline metal-to-ligand charge transfer (MLCT) complexes by time-resolved diffraction. J. Phys. Chem. A 116, 3359–3365 (2012).

    Article  Google Scholar 

  8. Kupitz, C. et al. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513, 261–265 (2014).

    Article  ADS  Google Scholar 

  9. Neutze, R. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Phil. Trans. R. Soc. B 369, 20130318 (2014).

    Article  Google Scholar 

  10. Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

    Article  ADS  Google Scholar 

  11. Elsaesser, T. & Woerner, M. Photoinduced structural dynamics of polar solids studied by femtosecond X-ray diffraction. Acta Crystallogr. A 66, 168–178 (2010).

    Article  ADS  Google Scholar 

  12. Elsaesser, T. & Woerner, M. Perspective: Structural dynamics in condensed matter mapped by femtosecond X-ray diffraction. J. Chem. Phys. 140, 020901 (2014).

    Article  ADS  Google Scholar 

  13. Bargheer, M. et al. Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction. Science 306, 1771–1773 (2004).

    Article  ADS  Google Scholar 

  14. Zewail, A. H. 4D ultrafast electron diffraction, crystallography, and microscopy. Annu. Rev. Phys. Chem. 57, 65–103 (2006).

    Article  ADS  Google Scholar 

  15. Roh, J. H. et al. Multistage collapse of a bacterial ribozyme observed by time-resolved small-angle X-ray scattering. J. Am. Chem. Soc. 132, 10148–10154 (2010).

    Article  Google Scholar 

  16. Moffat, K. The frontiers of time-resolved macromolecular crystallography: movies and chirped X-ray pulses. Faraday Discuss. 122, 65–77 (2003).

    Article  ADS  Google Scholar 

  17. Mitchell, P. C. H., Parker, S. F., Ramirez-Cuesta, A. J. & Tomkinson, J. Vibrational Spectroscopy with Neutrons: with Applications In Chemistry, Biology, Materials Science and Catalysis (World Scientific, 2005).

  18. Egami, T. & Billinge, S. J. L. Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Elsevier, 2012).

  19. Chupas, P. J., Chapman, K. W. & Lee, P. L. Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements. J. Appl. Crystallogr. 40, 463–470 (2007).

    Article  Google Scholar 

  20. Hannon, A. C., Arai, M. & Delaplane, R. G. A dynamic correlation function from inelastic neutron scattering data. Nucl. Instrum. Methods Phys. Res. A 354, 96–103 (1995).

    Article  ADS  Google Scholar 

  21. McQueeney, R. J. Dynamic radial distribution function from inelastic neutron scattering. Phys. Rev. B 57, 10560–10568 (1998).

    Article  ADS  Google Scholar 

  22. Hannon, A. C., Arai, M., Sinclair, R. N. & Wright, A. C. A dynamic correlation function for amorphous solids. J. Non Cryst. Solids 150, 239–244 (1992).

    Article  ADS  Google Scholar 

  23. Arai, M. et al. Local structural instability of high-Tc oxide superconductors studied by inelastic neutron scattering. J. Supercond. 7, 415–418 (1994).

    Article  ADS  Google Scholar 

  24. Dmowski, W. et al. Local lattice dynamics and the origin of the relaxor ferroelectric behavior. Phys. Rev. Lett. 100, 137602 (2008).

    Article  ADS  Google Scholar 

  25. Li, B. et al. Dynamic distortions in the YTiO3 ferromagnet. J. Phys. Soc. Jpn. 83, 084601 (2014).

    Article  ADS  Google Scholar 

  26. Li, B. et al. Lattice and magnetic dynamics in perovskite Y1xLaxTiO3. Phys. Rev. B 94, 224301 (2016).

    Article  ADS  Google Scholar 

  27. Park, K., Taylor, J. W. & Louca, D. Dynamics of local bond correlations in FeSexTe1−x by inelastic neutron scattering. J. Supercond. Nov. Magn. 27, 1927–1934 (2014).

    Article  Google Scholar 

  28. Pramanick, A. et al. Stabilization of polar nanoregions in Pb-free ferroelectrics. Phys. Rev. Lett. 120, 207603 (2018).

    Article  ADS  Google Scholar 

  29. Pramanick, A. et al. Dynamical origins of weakly coupled relaxor behavior in Sn-doped (Ba,Ca)TiO3-BiScO3. Phys. Rev. B 103, 214105 (2021).

    Article  ADS  Google Scholar 

  30. Neilson, J. R. et al. Dynamical bond formation in KNi2Se2. Z. Anorg. Allg. Chem. 648, e202200042 (2022).

    Article  Google Scholar 

  31. Fry-Petit, A. M. et al. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique. J. Chem. Phys. 143, 124201 (2015).

    Article  ADS  Google Scholar 

  32. Kimber, S. A. J. et al. Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe. Nat. Mater. (2023).

    Article  Google Scholar 

  33. Granroth, G., Fry-Petit, A., Neilson, J., McQueen, T. M. & Abernathy, D. L. Inelastic neutron measurements of polycrystalline Ni at relatively high incident energies. Preprint at (2022).

  34. Abernathy, D. L. et al. Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source. Rev. Sci. Instrum. 83, 015114 (2012).

    Article  ADS  Google Scholar 

  35. Walker, H. ISIS Data Home. (2022).

  36. Bewley, R. I. et al. MERLIN, a new high count rate spectrometer at ISIS. Phys. B 385–386, 1029–1031 (2006).

    Article  ADS  Google Scholar 

  37. Nakamura, M., Kikuchi, T. & Kawakita, Y. Applicability and limitations of G(r,E) analysis transformed from the inelastic neutron scattering data. Phys. B 567, 61–64 (2019).

    Article  ADS  Google Scholar 

  38. Zernike, F. & Prins, J. A. Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung. Z. Phys. A 41, 184–194 (1927).

    Article  Google Scholar 

  39. Debye, P. Zerstreuung von Röntgenstrahlen. Ann. Phys. 351, 809–823 (1915).

    Article  Google Scholar 

  40. Matsumoto, R. A. et al. Investigating the accuracy of water models through the Van Hove correlation function. J. Chem. Theory Comput. 17, 5992–6005 (2021).

    Article  Google Scholar 

  41. Shinohara, Y. et al. Identifying water–anion correlated motion in aqueous solutions through Van Hove functions. J. Phys. Chem. Lett. 10, 7119–7125 (2019).

    Article  Google Scholar 

  42. Farrow, C. L. & Billinge, S. J. L. Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles. Acta Crystallogr. A 65, 232–239 (2009).

    Article  ADS  Google Scholar 

  43. Kresch, M., Delaire, O., Stevens, R., Lin, J. Y. Y. & Fultz, B. Neutron scattering measurements of phonons in nickel at elevated temperatures. Phys. Rev. B 75, 104301 (2007).

    Article  ADS  Google Scholar 

  44. Birgeneau, R. J., Cordes, J., Dolling, G. & Woods, A. D. B. Normal modes of vibration in nickel. Phys. Rev. 136, A1359–A1365 (1964).

    Article  ADS  Google Scholar 

  45. Farrow, C. L., Shaw, M., Kim, H., Juhás, P. & Billinge, S. J. L. Nyquist–Shannon sampling theorem applied to refinements of the atomic pair distribution function. Phys. Rev. B 84, 134105 (2011).

    Article  ADS  Google Scholar 

  46. Arnold, O. et al. Mantid — Data analysis and visualization package for neutron scattering and μSR experiments. Nucl. Instrum. Methods Phys. Res. A 764, 156–166 (2014).

    Article  ADS  Google Scholar 

  47. Phillips, G. R. & Eyring, E. M. Comparison of conventional and robust regression in analysis of chemical data. Anal. Chem. 55, 1134–1138 (1983).

    Article  Google Scholar 

  48. Toby, B. H. & Egami, T. Accuracy of pair distribution function analysis applied to crystalline and non-crystalline materials. Acta Crystallogr. A 48, 336–346 (1992).

    Article  Google Scholar 

  49. Kajimoto, R. et al. The Fermi chopper spectrometer 4SEASONS at J-PARC. J. Phys. Soc. Jpn 80, SB025 (2011).

    Article  Google Scholar 

  50. McQueeney, R. J. & Robinson, R. A. Pharos — a chopper spectrometer for inelastic-neutron-scattering studies of excitations in materials. Neutron N. 14, 36–39 (2003).

    Article  Google Scholar 

  51. Robinson, R. A., Nutter, M., Silver, R. N., Hooten, D. T. & Ricketts, R. L. The New Chopper Spectrometer at LANSCE, PHAROS. Institute of Physics Conference Series 97 (ed. Hyer, D. K.) 403–408 (IOP, 1989).

Download references


A portion of this research at Oak Ridge National Laboratory’s Spallation Neutron Source was sponsored by the US Department of Energy, Office of Basic Energy Sciences. The authors specifically acknowledge the help and guidance provided by D. Abernathy about the nature of the ARCS instrument and the DyPDF method. The authors also acknowledge the support and council of T. McQueen in the development of background treatments for DyPDF.

Author information

Authors and Affiliations



All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Allyson M. Fry-Petit.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Ryoichi Kajimoto, Alice Smith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acosta, K.A., Walker, H.C. & Fry-Petit, A.M. Optimizing the dynamic pair distribution function method for inelastic neutron spectrometry. Nat Rev Phys (2023).

Download citation

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing