Abstract
The photoexcitation life cycle from incident photon (and creation of photoexcited electron–hole pair) to ultimate extraction of electrical current is a complex multiphysics process spanning across a range of spatiotemporal scales of quantum materials. Photocurrent is sensitive to a myriad of physical processes across these spatiotemporal scales, and over the past decade it has emerged as a versatile probe of electronic states, Bloch band quantum geometry, quantum kinetic processes and device characteristics of quantum materials. This Technical Review outlines the key multiphysics principles of photocurrent diagnostics, for resolving band structure and characterizing topological materials, for disentangling distinct types of carrier scattering that can range from femtosecond to nanosecond timescales and for enabling new types of remote-sensing protocols and photocurrent nanoscopy. These distinctive capabilities underscore photocurrent diagnostics as a novel multiphysics probe for a growing class of quantum materials with properties governed by physics spanning multiple spatiotemporal scales.
Key points
-
The transduction of light into electrical signals (photocurrent) in quantum materials involves physical phenomena across multiple spatiotemporal scales and, therefore, photocurrent stands out as a multiphysics diagnostic tool of quantum materials.
-
The long-range collection of locally generated photocurrent, as mediated by the streamlines of diffusion currents, enables a ‘remote’ sensing of local symmetry breaking such as p–n junctions and edges.
-
Photocurrent spectroscopy can probe charge, spin and collective excitations with enhanced signal-to-noise characteristics and resolution for atomically thin materials with low optical weight.
-
The intimate connection between light–matter interaction and Bloch band quantum geometry renders bulk geometric photocurrents highly sensitive to the crystal symmetry and light polarization.
-
Technique innovation including near-field photocurrent probes as well as ultrafast photocurrents grant high spatiotemporal resolution, providing a range of new photocurrent diagnostic tools for quantum materials.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Nelson, J. A. The Physics of Solar Cells (World Scientific Publishing Company, 2003).
Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nat. Nanotechnol. 7, 114–118 (2012).
Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013). This experiment used photocurrent to probe the carrier-cooling processes in graphene.
Tielrooij, K.-J. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 10, 437–443 (2015). This paper used photocurrent to probe the ultrafast carrier-heating processes in graphene.
Woessner, A. et al. Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nat. Commun. 7, 10783 (2016). This experiment demonstrated photocurrent mapping with 20 nm spatial resolution by combining a near-field microscope with photocurrent detection.
Lundeberg, M. B. et al. Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 16, 204–207 (2017). This experiment was the first to electrically detect spatial images of propagating plasmons in graphene by using photocurrent.
Sunku, S. S. et al. Hyperbolic enhancement of photocurrent patterns in minimally twisted bilayer graphene. Nat. Commun. 12, 1641 (2021).
Hesp, N. C. et al. Nano-imaging photoresponse in a Moiré unit cell of minimally twisted bilayer graphene. Nat. Commun. 12, 1640 (2021).
Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016). This paper unveiled the intimate connection between nonlinear optical responses and quantum geometry.
Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372, 68–72 (2021). This experiment realized bulk quantum geometric photocurrents in a two-dimensional heterostructure using van der Waals interface engineering.
Ma, C. et al. Intelligent infrared sensing enabled by tunable Moiré quantum geometry. Nature 604, 266–272 (2022). This experiment demonstrated how tunable quantum geometric photocurrents in a moiré heterostructure can be used for the intelligent sensing of infrared light.
Dong, Q. et al. Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).
Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021).
Orenstein, J. et al. Topology and symmetry of quantum materials via nonlinear optical responses. Annu. Rev. Condens. Matter Phys. 12, 247–272 (2021).
Park, J., Ahn, Y. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).
Cao, H. et al. Photo-Nernst current in graphene. Nat. Phys. 12, 236–239 (2016).
Ma, Q. et al. Giant intrinsic photoresponse in pristine graphene. Nat. Nanotechnol. 14, 145–150 (2019).
Wang, Q. et al. Robust edge photocurrent response on layered type II Weyl semimetal WTe2. Nat. Commun. 10, 5736 (2019).
Song, J. C. & Levitov, L. S. Shockley–Ramo theorem and long-range photocurrent response in gapless materials. Phys. Rev. B 90, 075415 (2014). This paper uncovered the spatially long-range nature of photocurrent in quantum materials and introduced a useful framework for understanding photocurrent spatial maps.
Shockley, W. Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635–636 (1938).
Ramo, S. Currents induced by electron motion. Proc. IRE 27, 584–585 (1939).
Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011). This experiment demonstrated how the photothermoelectric effect dominates the photocurrent response of graphene and bilayer graphene.
Seifert, P. et al. Quantized conductance in topological insulators revealed by the Shockley–Ramo theorem. Phys. Rev. Lett. 122, 146804 (2019).
Shao, Y. et al. Nonlinear nanoelectrodynamics of a Weyl metal. Proc. Natl Acad. Sci. USA 118, e2116366118 (2021).
Mayes, D. et al. Current flux imaging of a micromagnetic electrofoil. Preprint at https://arXiv.org/2002.07902 (2020).
Xu, X., Gabor, N. M., Alden, J. S., Van Der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).
Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 4134–4137 (2011).
Seifert, P. et al. Spin Hall photoconductance in a three-dimensional topological insulator at room temperature. Nat. Commun. 9, 331 (2018).
Dantscher, K.-M. et al. Photogalvanic probing of helical edge channels in two-dimensional HgTe topological insulators. Phys. Rev. B 95, 201103 (2017).
Plank, H. & Ganichev, S. D. A review on terahertz photogalvanic spectroscopy of Bi2Te3- and Sb2Te3-based three dimensional topological insulators. Solid-State Electron. 147, 44–50 (2018).
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Ju, L. et al. Tunable excitons in bilayer graphene. Science 358, 907–910 (2017).
Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).
Yang, J. et al. Spectroscopy signatures of electron correlations in a trilayer graphene/hBN moiré superlattice. Science 375, 1295–1299 (2022).
Han, T. et al. Accurate measurement of the gap of graphene/h-BN moiré superlattice through photocurrent spectroscopy. Phys. Rev. Lett. 126, 146402 (2021).
Song, J. C. & Levitov, L. S. Energy flows in graphene: hot carrier dynamics and cooling. J. Phys. Condens. Matter 27, 164201 (2015).
Song, J. C., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).
Nazin, G., Zhang, Y., Zhang, L., Sutter, E. & Sutter, P. Visualization of charge transport through Landau levels in graphene. Nat. Phys. 6, 870–874 (2010).
Brenneis, A. et al. Ultrafast electronic readout of diamond nitrogen–vacancy centres coupled to graphene. Nat. Nanotechnol. 10, 135–139 (2015).
Wang, Y.-X. et al. Visualizing the thermoelectric origin of photocurrent flow in anisotropic semimetals. Preprint at https://arXiv.org/2203.17176 (2022).
Ganichev, S. D. & Prettl, W. Spin photocurrents in quantum wells. J. Phys. Condens. Matter 15, R935 (2003).
Ivchenko, E. L. & Ganichev, S. D. Spin-dependent photogalvanic effects (a review). Preprint at https://arXiv.org/1710.09223 (2017).
McIver, J., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96 (2012).
Ganichev, S. D. & Golub, L. E. Interplay of Rashba/Dresselhaus spin splittings probed by photogalvanic spectroscopy — a review. Phys. Status Solidi (B) 251, 1801–1823 (2014).
Du, W., Wang, T., Chu, H.-S. & Nijhuis, C. A. Highly efficient on-chip direct electronic–plasmonic transducers. Nat. Photon. 11, 623–627 (2017).
Woessner, A. et al. Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride. npj 2D Mater. Appl. 1, 25 (2017).
Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).
Bandurin, D. A. et al. Resonant terahertz detection using graphene plasmons. Nat. Commun. 9, 5392 (2018).
Castilla, S. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 11, 4872 (2020).
Barati, F. et al. Hot carrier-enhanced interlayer electron–hole pair multiplication in 2D semiconductor heterostructure photocells. Nat. Nanotechnol. 12, 1134–1139 (2017).
Vialla, F. et al. Tuning of impurity-bound interlayer complexes in a van der Waals heterobilayer. 2D Mater. 6, 035032 (2019).
Barati, F. et al. Vibronic exciton–phonon states in stack-engineered van der Waals heterojunction photodiodes. Nano Lett. 22, 5751–5758 (2022).
Badioli, M. et al. Phonon-mediated mid-infrared photoresponse of graphene. Nano Lett. 14, 6374–6381 (2014).
Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959 (2010).
Provost, J. & Vallee, G. Riemannian structure on manifolds of quantum states. Commun. Math. Phys. 76, 289–301 (1980).
Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).
de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).
Moore, J. E. & Orenstein, J. Confinement-induced Berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010). This paper uncovered the Berry phase origin of helicity-dependent photocurrents.
Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).
Ahn, J., Guo, G.-Y. & Nagaosa, N. Low-frequency divergence and quantum geometry of the bulk photovoltaic effect in topological semimetals. Phys. Rev. X 10, 041041 (2020).
Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).
Song, J. C. & Kats, M. A. Giant Hall photoconductivity in narrow-gapped Dirac materials. Nano Lett. 16, 7346–7351 (2016).
Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).
Yin, J. et al. Tunable and giant valley-selective Hall effect in gapped bilayer graphene. Science 375, 1398–1402 (2022).
Tan, L. Z. et al. Shift current bulk photovoltaic effect in polar materials — hybrid and oxide perovskites and beyond. npj Comput. Mater. 2, 16026 (2016).
Fridkin, V. Bulk photovoltaic effect in noncentrosymmetric crystals. Crystallogr. Rep. 46, 654–658 (2001).
Cook, A. M., Fregoso, B. M., De Juan, F., Coh, S. & Moore, J. E. Design principles for shift current photovoltaics. Nat. Commun. 8, 14176 (2017).
von Baltz, R. & Kraut, W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B 23, 5590 (1981).
de Juan, F. et al. Difference frequency generation in topological semimetals. Phys. Rev. Res. 2, 012017 (2020).
Matsyshyn, O. & Sodemann, I. Nonlinear Hall acceleration and the quantum rectification sum rule. Phys. Rev. Lett. 123, 246602 (2019).
Gao, L., Addison, Z., Mele, E. & Rappe, A. M. Intrinsic Fermi-surface contribution to the bulk photovoltaic effect. Phys. Rev. Res. 3, L042032 (2021).
Watanabe, H. & Yanase, Y. Chiral photocurrent in parity-violating magnet and enhanced response in topological antiferromagnet. Phys. Rev. X 11, 011001 (2021).
Shi, L.-K., Matsyshyn, O., Song, J. C. & Villadiego, I. S. The Berry dipole photovoltaic demon and the thermodynamics of photo-current generation within the optical gap of metals. Preprint at https://arXiv.org/2207.03496 (2022).
Onishi, Y., Watanabe, H., Morimoto, T. & Nagaosa, N. Effects of relaxation on the photovoltaic effect and possibility for photocurrent within the transparent region. Phys. Rev. B 106, 235110 (2022).
Shi, L.-K, Zhang, D., Chang, K. & Song, J. C. Geometric photon-drag effect and nonlinear shift current in centrosymmetric crystals. Phys. Rev. Lett. 126, 197402 (2021).
Xiong, Y., Shi, L.-K. & Song, J. C. Polariton drag enabled quantum geometric photocurrents in high-symmetry materials. Phys. Rev. B 106, 205423 (2022).
Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017). This experiment realized helicity-dependent photocurrents in topological Weyl semimetals.
Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).
Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019).
Xu, S.-Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900–906 (2018).
Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).
Avdoshkin, A., Kozii, V. & Moore, J. E. Interactions remove the quantization of the chiral photocurrent at Weyl points. Phys. Rev. Lett. 124, 196603 (2020).
Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020).
Ni, Z. et al. Giant topological longitudinal circular photo-galvanic effect in the chiral multifold semimetal CoSi. Nat. Commun. 12, 154 (2021).
Liu, J. & Dai, X. Anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted graphene systems. npj Comput. Mater. 6, 57 (2020).
Kaplan, D., Holder, T. & Yan, B. Twisted photovoltaics at terahertz frequencies from momentum shift current. Phys. Rev. Res. 4, 013209 (2022).
Chaudhary, S., Lewandowski, C. & Refael, G. Shift-current response as a probe of quantum geometry and electron–electron interactions in twisted bilayer graphene. Phys. Rev. Res. 4, 013164 (2022).
Arora, A., Kong, J. F. & Song, J. C. Strain-induced large injection current in twisted bilayer graphene. Phys. Rev. B 104, L241404 (2021).
Otteneder, M. et al. Terahertz photogalvanics in twisted bilayer graphene close to the second magic angle. Nano Lett. 20, 7152–7158 (2020).
Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).
Zhang, Y. et al. Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3. Nat. Commun. 10, 3783 (2019).
Wang, H. & Qian, X. Electrically and magnetically switchable nonlinear photocurrent in PT-symmetric magnetic topological quantum materials. npj Comput. Mater. 6, 199 (2020).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).
Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).
Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Dirac fermions in an antiferromagnetic semimetal. Nat. Phys. 12, 1100–1104 (2016).
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).
Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799 (1987).
Fischer, M. C., Wilson, J. W., Robles, F. E. & Warren, W. S. Invited review article: pump-probe microscopy. Rev. Sci. Instrum. 87, 031101 (2016).
Gabor, N. M., Zhong, Z., Bosnick, K. & McEuen, P. L. Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube p–i–n photodiodes. Phys. Rev. Lett. 108, 087404 (2012).
Vogt, K. T., Shi, S.-F., Wang, F. & Graham, M. W. Ultrafast photocurrent and absorption microscopy of few-layer transition metal dichalcogenide devices that isolate rate-limiting dynamics driving fast and efficient photoresponse. J. Phys. Chem. C 124, 15195–15204 (2020).
Smith, F. et al. Picosecond GaAs-based photoconductive optoelectronic detectors. Appl. Phys. Lett. 54, 890–892 (1989).
Downey, P. & Schwartz, B. Picosecond photoresponse in 3He+ bombarded InP photoconductors. Appl. Phys. Lett. 44, 207–209 (1984).
Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).
Song, J. C., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron–phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).
Winzer, T., Knorr, A. & Malic, E. Carrier multiplication in graphene. Nano Lett. 10, 4839–4843 (2010).
Song, J. C., Tielrooij, K. J., Koppens, F. H. & Levitov, L. S. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Phys. Rev. B 87, 155429 (2013).
Tielrooij, K.-J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).
Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).
Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).
Tielrooij, K.-J. et al. Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41–46 (2018).
Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
Wang, H., Zhang, C., Chan, W., Tiwari, S. & Rana, F. Ultrafast response of monolayer molybdenum disulfide photodetectors. Nat. Commun. 6, 8831 (2015).
Massicotte, M. et al. Dissociation of two-dimensional excitons in monolayer WSe2. Nat. Commun. 9, 1633 (2018).
Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2016).
Dexheimer, S. L. Terahertz Spectroscopy: Principles and Applications (CRC Press, 2017).
Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 8, 256–260 (2013).
Cheng, L. et al. Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nat. Phys. 15, 347–351 (2019).
Prechtel, L. et al. Time-resolved photoinduced thermoelectric and transport currents in GaAs nanowires. Nano Lett. 12, 2337–2341 (2012).
Gallagher, P. et al. Quantum-critical conductivity of the Dirac fluid in graphene. Science 364, 158–162 (2019).
Prechtel, L. et al. Time-resolved picosecond photocurrents in contacted carbon nanotubes. Nano Lett. 11, 269–272 (2011).
McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020). This experiment demonstrated the ultrafast Floquet engineering of band structure in graphene using an ultrafast time-domain photocurrent technique.
Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).
Kitagawa, T., Oka, T., Brataas, A., Fu, L. & Demler, E. Transport properties of nonequilibrium systems under the application of light: photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B 84, 235108 (2011).
Liu, J., Xia, F., Xiao, D., Garcia de Abajo, F. J. & Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020).
Xu, S.-Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).
Sirica, N. et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Nat. Mater. 21, 62–66 (2022).
Lundeberg, M. B. & Koppens, F. H. Thermodynamic reciprocity in scanning photocurrent maps. Preprint at https://arXiv.org/2011.04311 (2020).
Xiong, Y., Shi, L.-K. & Song, J. C. Atomic configuration controlled photocurrent in van der Waals homostructures. 2D Mater. 8, 035008 (2021).
Wang, H., Tang, X., Xu, H., Li, J. & Qian, X. Generalized Wilson loop method for nonlinear light–matter interaction. npj Quantum Mater. 7, 61 (2022).
Huang, S.-M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).
Zhang, Y. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019).
Acknowledgements
The authors thank Z. Wang and Z. Huang from Ma Laboratory for COMSOL simulations and figure assistance. Q.M. was supported through NSF Career DMR-2143426 and the CIFAR Azrieli Global Scholars programme. R.K.K. acknowledges the EU Horizon 2020 programme under the MarieSkłodowska-Curie grant numbers 754510 and 893030. S.-Y.X. was supported through NSF Career (Harvard fund 129522) DMR-2143177. F.H.L.K. acknowledges support from the ERC TOPONANOP (726001), the Government of Spain (PID2019-106875GB-I00; Severo Ochoa CEX2019-000910-S (MCIN/AEI/10.13039/501100011033)), Fundació Cellex, Fundació Mir-Puig and Generalitat de Catalunya (CERCA, AGAUR, SGR 1656). Furthermore, the research leading to these results has received funding from the European Union’s Horizon 2020 under grant agreement numbers 881603 (Graphene flagship Core3) and 820378 (Quantum flagship). J.C.W.S. acknowledges support from the Singapore MOE Academic Research Fund Tier 3 Grant number MOE2018-T3-1-002.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks James McIver and other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ma, Q., Krishna Kumar, R., Xu, SY. et al. Photocurrent as a multiphysics diagnostic of quantum materials. Nat Rev Phys 5, 170–184 (2023). https://doi.org/10.1038/s42254-022-00551-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-022-00551-2