Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Magnetic resonance elastography from fundamental soft-tissue mechanics to diagnostic imaging

Abstract

Magnetic resonance elastography (MRE) is a versatile imaging technique for mapping the viscoelastic properties of soft biological tissues. It has been widely used to detect liver fibrosis and is increasingly being used in the diagnosis of other diseases ranging from cancer to chronic kidney diseases. Many pathologies are associated with or even caused by changes in mechanical properties. For example, fibrosis, hypertension, cellular oedema and hyperplasia have been shown to increase tissue stiffness, and neurodegeneration, neuroinflammation, hypoperfusion and necrosis are associated with softening. Beyond stiffness, measurement of viscosity provides a rich, still widely unexplored, source of image contrast in MRE that is related to intrinsic mechanical friction and the fluid behaviour of soft tissues. This Review summarizes the basic technical concepts of MRE — including hardware requirements, excitation and encoding of harmonic motions and inverse problem solutions to viscoelastic theory — and outlines preclinical and clinical applications in cancer, renal disease and cardiac MRE.

Key points

  • Quantification of the viscoelastic behaviour of soft biological matter provides information on the mechanical integrity of multiscale tissue structures that vary significantly with tissue function and disease.

  • Magnetic resonance elastography (MRE) can noninvasively map the viscoelastic properties of soft tissues in a wide range of diagnostic applications of magnetic resonance imaging (MRI).

  • MRE encodes externally induced harmonic shear waves by vibration-synchronized phase-contrast MRI and uses inversion algorithms for the reconstruction of mechanical parameters.

  • Mechanical parameters measured with MRE include harmonic shear strain, storage and loss moduli, shear wave speed, wave attenuation and loss angle.

  • In vivo MRE provides parameter maps with spatial resolutions ranging from millimetres to sub-millimetres and at dynamic ranges from tens of hertz to kilohertz in patients and small animals, respectively.

  • MRE extends clinical imaging protocols by a few minutes and can be combined with complementary quantitative MRI methods to characterize various mechanofunctional and structural properties of pathologically altered tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiscale sensitivity of magnetic resonance elastography.
Fig. 2: Motion encoding in magnetic resonance elastography compared with diffusion-weighted and flow-sensitive magnetic resonance imaging.
Fig. 3: Magnetic resonance elastography data acquisition and basic processing.
Fig. 4: Mapping of shear wave speed as surrogate of stiffness in abdominal organs based on tomoelastography compared with conventional imaging such as T2-weighted magnetic resonance imaging (MRI) and T1-weighted MRI and computed tomography.
Fig. 5: Preclinical magnetic resonance elastography (MRE) in biomedical applications that provided insights into time-dependent or immediate parameter changes that could not be studied by clinical MRE.

Similar content being viewed by others

References

  1. Hirsch, S., Braun, J. & Sack I. Magnetic Resonance Elastography: Physical Background and Medical Applications (Wiley-VCH, 2017).

  2. Fung, Y. Biomechanics: Mechanical Properties of Living Tissue (Springer-Verlag, 1993).

  3. Ormachea, J. & Parker, K. J. Elastography imaging: the 30 year perspective. Phys. Med. Biol. 65, 24TR06 (2020).

    Google Scholar 

  4. Murphy, W., Black, J. & Hastings, G. Handbook of Biomaterial Properties (Springer, 2016).

  5. Sauer, F. et al. Collagen networks determine viscoelastic properties of connective tissues yet do not hinder diffusion of the aqueous solvent. Soft Matter 15, 3055–3064 (2019).

    Article  ADS  Google Scholar 

  6. Rump, J., Braun, J., Papazoglou, S., Taupitz, M. & Sack, I. Alterations of the proton-T(2) time in relaxed skeletal muscle induced by passive extremity flexions. J. Magn. Reson. Imaging 23, 541–546 (2006).

    Article  Google Scholar 

  7. Dresner, M. A. et al. Magnetic resonance elastography of skeletal muscle. J. Magn. Reson. Imaging 13, 269–276 (2001).

    Article  Google Scholar 

  8. Dewey, M. & Kachelrieß, M. Fundamentals of X-ray computed tomography: acquisition and reconstruction. in Quantification of Biophysical Parameters in Medical Imaging (eds Sack, I. & Schaeffter, T.) Ch. 14, 325–339 (Springer, 2017).

  9. Bojorquez, J. Z. et al. What are normal relaxation times of tissues at 3 T? Magn. Reson. Imaging 35, 69–80 (2017).

    Article  Google Scholar 

  10. Tzschätzsch H. Methods and approaches in ultrasound elastography. in Quantification of Biophysical Parameters in Medical Imaging (eds Sack, I. & Schaeffter, T.) Ch. 12, 281–302 (Springer, 2017).

  11. Lerner, R. M., Huang, S. R. & Parker, K. J. ‘Sonoelasticity’ images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med. Biol. 16, 231–239 (1990).

    Article  Google Scholar 

  12. Muthupillai, R. et al. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269, 1854–1857 (1995).

    Article  ADS  Google Scholar 

  13. Pesavento, A., Perrey, C., Krueger, M. & Ermert, A. A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 46, 1057–1067 (1999).

    Article  Google Scholar 

  14. Plewes, D. B., Betty, I., Urchuk, S. N. & Soutar, I. Visualizing tissue compliance with MR imaging. J. Magn. Reson. Imaging 5, 733–738 (1995).

    Article  Google Scholar 

  15. Sarvazyan, A. P., Urban, M. W. & Greenleaf, J. F. Acoustic waves in medical imaging and diagnostics. Ultrasound Med. Biol. 39, 1133–1146 (2013).

    Article  Google Scholar 

  16. Parker, K. J. & Lerner, R. M. Sonoelasticity of organs — shear-waves ring a bell. J. Ultrasound Med. 11, 387–392 (1992).

    Article  Google Scholar 

  17. Catheline, S. & Benech, N. Longitudinal shear wave and transverse dilatational wave in solids. J. Acoust. Soc. Am. 137, EL200–EL205 (2015).

    Article  ADS  Google Scholar 

  18. Perrinez, P. R., Kennedy, F. E., Van Houten, E. E., Weaver, J. B. & Paulsen, K. D. Modeling of soft poroelastic tissue in time-harmonic MR elastography. IEEE Trans. Biomed. Eng. 56, 598–608 (2009).

    Article  Google Scholar 

  19. Hirsch, S. A biphasic poroelastic model for soft tissues. in Quantification of Biophysical Parameters in Medical Imaging. 1st edn (eds Sack, I. & Schaeffter, T.) 71 (Springer, 2018).

  20. Vena, P. & Royston, T. J. Dilatational and shear waves in poro-vioscoelastic media. J. Mech. Behav. Biomed. Mater. 97, 99–107 (2019).

    Article  Google Scholar 

  21. Papazoglou, S., Hamhaber, U., Braun, J. & Sack, I. Horizontal shear wave scattering from a nonwelded interface observed by magnetic resonance elastography. Phys. Med. Biol. 52, 675–684 (2007).

    Article  Google Scholar 

  22. Papazoglou, S. et al. Scatter-based magnetic resonance elastography. Phys. Med. Biol. 54, 2229–2241 (2009).

    Article  Google Scholar 

  23. Yin, Z. et al. Slip interface imaging predicts tumor–brain adhesion in vestibular schwannomas. Radiology 277, 507–517 (2015).

    Article  ADS  Google Scholar 

  24. Du, Q. S. Z., Bel-Brunon, A., Lambert, S. A. & Hamila, N. Numerical simulation of wave propagation through interfaces using the extended finite element method for magnetic resonance elastography. J. Acoust. Soc. Am. 151, 3481–3495 (2022).

    Article  ADS  Google Scholar 

  25. Bigot, M. et al. The apparent mechanical effect of isolated amyloid-beta and alpha-synuclein aggregates revealed by multi-frequency MRE. NMR Biomed. 33, e4174 (2020).

    Article  Google Scholar 

  26. Juge, L. et al. Microvasculature alters the dispersion properties of shear waves — a multi-frequency MR elastography study. NMR Biomed. 28, 1763–1771 (2015).

    Article  Google Scholar 

  27. Lambert, S. A. et al. Bridging three orders of magnitude: multiple scattered waves sense fractal microscopic structures via dispersion. Phys. Rev. Lett. 115, 094301 (2015).

    Article  ADS  Google Scholar 

  28. Morr, A. S. et al. Liquid-liver phantom: mimicking the viscoelastic dispersion of human liver for ultrasound- and MRI-based elastography. Invest. Radiol. 57, 502–509 (2022).

    Article  Google Scholar 

  29. Sack, I., Joehrens, K., Wuerfel, E. & Braun, J. Structure sensitive elastography: on the viscoelastic powerlaw behavior of in vivo human tissue in health and disease. Soft Matter 9, 5672–5680 (2013).

    Article  ADS  Google Scholar 

  30. Herthum, H. et al. Superviscous properties of the in vivo brain at large scales. Acta Biomater. 121, 393–404 (2021).

    Article  Google Scholar 

  31. Bertalan, G. et al. Fast tomoelastography of the mouse brain by multifrequency single-shot MR elastography. Magn. Reson. Med. 81, 2676–2687 (2019).

    Article  Google Scholar 

  32. Tschoegl, N. W. The Phenomenological Theory of Linear Viscoelastic Behavior (Springer, 1989).

  33. Klatt, D., Hamhaber, U., Asbach, P., Braun, J. & Sack, I. Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys. Med. Biol. 52, 7281–7294 (2007).

    Article  Google Scholar 

  34. Poul, S. S., Ormachea, J., Ge, G. R. & Parker, K. J. Comprehensive experimental assessments of rheological models’ performance in elastography of soft tissues. Acta Biomater. 146, 259–273 (2022).

    Article  Google Scholar 

  35. Sack, I. et al. The impact of aging and gender on brain viscoelasticity. Neuroimage 46, 652–657 (2009).

    Article  Google Scholar 

  36. Schiessel, H. & Blumen, A. Mesoscopic pictures of the sol–gel transition — ladder models and fractal networks. Macromolecules 28, 4013–4019 (1995).

    Article  ADS  Google Scholar 

  37. Holm, S. Waves with Power-Law Attenuation (ASA Press/Springer/Springer International Publishing/Springer, 2019).

  38. Fabry, B. et al. Time scale and other invariants of integrative mechanical behavior in living cells. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, 041914 (2003).

    Article  Google Scholar 

  39. Blehm, B. H., Devine, A., Staunton, J. R. & Tanner, K. In vivo tissue has non-linear rheological behavior distinct from 3D biomimetic hydrogels, as determined by AMOTIV microscopy. Biomaterials 83, 66–78 (2016).

    Article  Google Scholar 

  40. Asbach, P. et al. Viscoelasticity-based staging of hepatic fibrosis with multifrequency MR elastography. Radiology 257, 80–86 (2010).

    Article  Google Scholar 

  41. Reiter, R. et al. Wideband MRE and static mechanical indentation of human liver specimen: sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis. J. Biomech. 47, 1665–1674 (2014).

    Article  Google Scholar 

  42. Klatt, D., Papazoglou, S., Braun, J. & Sack, I. Viscoelasticity-based magnetic resonance elastography of skeletal muscle. Phys. Med. Biol. 55, 6445–6459 (2010).

    Article  Google Scholar 

  43. Klatt, D. et al. Viscoelastic properties of liver measured by oscillatory rheometry and multifrequency magnetic resonance elastography. Biorheology 47, 133–141 (2010).

    Article  Google Scholar 

  44. Mandelbrot, B. B. The Fractal Geometry of Nature (W. H. Freeman, 1983).

  45. Posnansky, O. et al. Fractal network dimension and viscoelastic powerlaw behavior: I. A modeling approach based on a coarse-graining procedure combined with shear oscillatory rheometry. Phys. Med. Biol. 57, 4023–4040 (2012).

    Article  Google Scholar 

  46. Guo, J. et al. Fractal network dimension and viscoelastic powerlaw behavior: II. An experimental study of structure-mimicking phantoms by magnetic resonance elastography. Phys. Med. Biol. 57, 4041–4053 (2012).

    Article  Google Scholar 

  47. Corominas-Murtra, B. & Petridou, N. I. Viscoelastic networks: forming cells and tissues. Front. Phys. https://doi.org/10.3389/fphy.2021.666916 (2021).

    Article  Google Scholar 

  48. Sauer, F. et al. Whole tissue and single cell mechanics are correlated in human brain tumors. Soft Matter 17, 10744–10752 (2021).

    Article  ADS  Google Scholar 

  49. Uffmann, K. & Ladd, M. E. Actuation systems for MR elastography: design and applications. IEEE Eng. Med. Biol. Mag. 27, 28–34 (2008).

    Article  Google Scholar 

  50. Braun, J., Braun, K. & Sack, I. Electromagnetic actuator for generating variably oriented shear waves in MR elastography. Magn. Reson. Med. 50, 220–222 (2003).

    Article  Google Scholar 

  51. Plewes, D. B., Luginbuhl, C., Macgowan, C. & Sack, I. An inductive method to measure mechanical excitation spectra for MRI elastography. Concepts Magn. Reson. Pt B Magn. Reson. Eng. 21, 32–39 (2004).

    Article  Google Scholar 

  52. Pepin, K. M., Welle, C. L., Guglielmo, F. F., Dillman, J. R. & Venkatesh, S. K. Magnetic resonance elastography of the liver: everything you need to know to get started. Abdom. Radiol. 47, 94–114 (2022).

    Article  Google Scholar 

  53. Venkatesh, S. K. & Ehman, R. L. Magnetic resonance elastography of abdomen. Abdom. Imaging 40, 745–759 (2015).

    Article  Google Scholar 

  54. Venkatesh, S. K., Yin, M. & Ehman, R. L. Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J. Magn. Reson. Imaging 37, 544–555 (2013).

    Article  Google Scholar 

  55. Triolo, E. R. et al. Design, construction, and implementation of a magnetic resonance elastography actuator for research purposes. Curr. Protoc. 2, e379 (2022).

    Article  Google Scholar 

  56. Dittmann, F. et al. Tomoelastography of the prostate using multifrequency MR elastography and externally placed pressurized-air drivers. Magn. Reson. Med. 79, 1325–1333 (2018).

    Article  Google Scholar 

  57. Dittmann, F. et al. Tomoelastography of the abdomen: tissue mechanical properties of the liver, spleen, kidney, and pancreas from single MR elastography scans at different hydration states. Magn. Reson. Med. 78, 976–983 (2017).

    Article  Google Scholar 

  58. Shahryari, M. et al. Tomoelastography distinguishes noninvasively between benign and malignant liver lesions. Cancer Res. 79, 5704–5710 (2019).

    Article  Google Scholar 

  59. Zhu, L. et al. Distinguishing pancreatic cancer and autoimmune pancreatitis with in vivo tomoelastography. Eur. Radiol. 31, 3366–3374 (2021).

    Article  Google Scholar 

  60. Lang, S. T. et al. Multiparametric quantitative MRI for the detection of IgA nephropathy using tomoelastography, DWI, and BOLD imaging. Invest. Radiol. 54, 669–674 (2019).

    Article  Google Scholar 

  61. Li, M. et al. Tomoelastography based on multifrequency MR elastography for prostate cancer detection: comparison with multiparametric MRI. Radiology 299, 362–370 (2021).

    Article  Google Scholar 

  62. Hetzer, S., Hirsch, S., Braun, J., Sack, I. & Weygandt, M. Viscoelasticity of striatal brain areas reflects variations in body mass index of lean to overweight male adults. Brain Imaging Behav. 14, 2477–2487 (2019).

    Article  Google Scholar 

  63. Gnanago, J. L. et al. Actuators for MRE: new perspectives with flexible electroactive materials. Front. Phys. 9, 633848 (2021).

    Article  Google Scholar 

  64. Neumann, W. et al. A novel 3D printed mechanical actuator using centrifugal force for magnetic resonance elastography: initial results in an anthropomorphic prostate phantom. PLoS ONE 13, e0205442 (2018).

    Article  Google Scholar 

  65. Runge, J. H. et al. A novel magnetic resonance elastography transducer concept based on a rotational eccentric mass: preliminary experiences with the gravitational transducer. Phys. Med. Biol. 64, 045007 (2019).

    Article  Google Scholar 

  66. Sahebjavaher, R. S., Baghani, A., Honarvar, M., Sinkus, R. & Salcudean, S. E. Transperineal prostate MR elastography: initial in vivo results. Magn. Reson. Med. 69, 411–420 (2013).

    Article  Google Scholar 

  67. Thormer, G. et al. Novel technique for MR elastography of the prostate using a modified standard endorectal coil as actuator. J. Magn. Reson. Imaging 37, 1480–1485 (2013).

    Article  Google Scholar 

  68. Arani, A. et al. In vivo, high-frequency three-dimensional cardiac MR elastography: feasibility in normal volunteers. Magn. Reson. Med. 77, 351–360 (2017).

    Article  ADS  Google Scholar 

  69. Bayly, P. V. & Garbow, J. R. Pre-clinical MR elastography: principles, techniques, and applications. J. Magn. Reson. 291, 73–83 (2018).

    Article  ADS  Google Scholar 

  70. Atay, S. M., Kroenke, C. D., Sabet, A. & Bayly, P. V. Measurement of the dynamic shear modulus of mouse brain tissue in vivo by magnetic resonance elastography. J. Biomech. Eng. 130, 021013 (2008).

    Article  Google Scholar 

  71. Clayton, E. H., Garbow, J. R. & Bayly, P. V. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography. Phys. Med. Biol. 56, 2391–2406 (2011).

    Article  Google Scholar 

  72. Riek, K. et al. Magnetic resonance elastography reveals altered brain viscoelasticity in experimental autoimmune encephalomyelitis. NeuroImage: Clin. 1, 81–90 (2012).

    Article  Google Scholar 

  73. Li, J. et al. Tumour biomechanical response to the vascular disrupting agent ZD6126 in vivo assessed by magnetic resonance elastography. Br. J. Cancer 110, 1727–1732 (2014).

    Article  Google Scholar 

  74. Liu, Y. F., Yasar, T. K. & Royston, T. J. Ultra wideband (0.5–16 kHz) MR elastography for robust shear viscoelasticity model identification. Phys. Med. Biol. 59, 7717–7734 (2014).

    Article  Google Scholar 

  75. Dittmann, F. et al. In vivo wideband multifrequency MR elastography of the human brain and liver. Magn. Reson. Med. 76, 1116–1126 (2016).

    Article  Google Scholar 

  76. Hirsch, S., Schaeffter, T. & Sack, I. The fundamentals of transport in living tissues quantified by medical imaging technologies. in Quantification of Biophysical Parameters in Medical Imaging 1st edn (eds Sack, I. & Schaeffter, T.) 9 (Springer, 2018).

  77. Yin, Z., Magin, R. L., Klatt, D. & Simultaneous, M. R. Elastography and diffusion acquisitions: diffusion-MRE (dMRE). Magn. Reson. Med. 71, 1682–1688 (2014).

    Article  Google Scholar 

  78. Lin, S., Sutton, B., Magin, R., Anderson, A. & Klatt, D. Development of in vivo human brain DTI-MRE: preliminary results. in Proc. 31st Annual Meeting ISMRM 3940 (ISMRM, 2022).

  79. Yin, Z., Kearney, S. P., Magin, R. L. & Klatt, D. Concurrent 3D acquisition of diffusion tensor imaging and magnetic resonance elastography displacement data (DTI-MRE): theory and in vivo application. Magn. Reson. Med. 77, 273–284 (2017).

    Article  Google Scholar 

  80. Le Bihan, D. What can we see with IVIM MRI? NeuroImage 187, 56–67 (2019).

    Article  Google Scholar 

  81. Rump, J., Klatt, D., Braun, J., Warmuth, C. & Sack, I. Fractional encoding of harmonic motions in MR elastography. Magn. Reson. Med. 57, 388–395 (2007).

    Article  Google Scholar 

  82. Obmann, V. C. et al. Liver MR relaxometry at 3T-segmental normal T-1 and T-2* values in patients without focal or diffuse liver disease and in patients with increased liver fat and elevated liver stiffness. Sci. Rep. 9, 8106 (2019).

    Article  ADS  Google Scholar 

  83. Guenthner, C. et al. Unipolar MR elastography: theory, numerical analysis and implementation. NMR Biomed. 33, e4138 (2020).

    Article  Google Scholar 

  84. Guenthner, C., Runge, J. H., Sinkus, R. & Kozerke, S. Analysis and improvement of motion encoding in magnetic resonance elastography. NMR Biomed. 31, e3908 (2018).

    Article  Google Scholar 

  85. Klatt, D., Yasar, T. K., Royston, T. J. & Magin, R. L. Sample interval modulation for the simultaneous acquisition of displacement vector data in magnetic resonance elastography: theory and application. Phys. Med. Biol. 58, 8663–8675 (2013).

    Article  Google Scholar 

  86. Klatt, D., Johnson, C. L. & Magin, R. L. Simultaneous, multidirectional acquisition of displacement fields in magnetic resonance elastography of the in vivo human brain. J. Magn. Reson. Imaging 42, 297–304 (2015).

    Article  Google Scholar 

  87. Guenthner, C. et al. A generalized multi-shot GRE-MRE sequence. NMR Biomed. 32, e4049 (2019).

    Article  Google Scholar 

  88. Schrank, F. et al. Cardiac-gated steady-state multifrequency magnetic resonance elastography of the brain: effect of cerebral arterial pulsation on brain viscoelasticity. J. Cereb. Blood Flow. Metab. https://doi.org/10.1177/0271678X19850936 (2019).

    Article  Google Scholar 

  89. Herthum, H. et al. Real-time multifrequency MR elastography of the human brain reveals rapid changes in viscoelasticity in response to the valsalva maneuver. Front. Bioeng. Biotechnol. 9, 666456 (2021).

    Article  Google Scholar 

  90. Sinkus, R. et al. High-resolution tensor MR elastography for breast tumour detection. Phys. Med. Biol. 45, 1649–1664 (2000).

    Article  Google Scholar 

  91. Shahryari, M. et al. Reduction of breathing artifacts in multifrequency magnetic resonance elastography of the abdomen. Magn. Reson. Med. 85, 1962–1973 (2021).

    Article  Google Scholar 

  92. Gallichan, D., Robson, M. D., Bartsch, A. & Miller, K. L. TREMR: table-resonance elastography with MR. Magn. Reson. Med. 62, 815–821 (2009).

    Article  Google Scholar 

  93. McCracken, P. J., Manduca, A., Felmlee, J. & Ehman, R. L. Mechanical transient-based magnetic resonance elastography. Magn. Reson. Med. 53, 628–639 (2005).

    Article  Google Scholar 

  94. Doyley, M. M. Model-based elastography: a survey of approaches to the inverse elasticity problem. Phys. Med. Biol. 57, R35–R73 (2012).

    Article  ADS  Google Scholar 

  95. Fovargue, D., Nordsletten, D. & Sinkus, R. Stiffness reconstruction methods for MR elastography. NMR Biomed. 31, e3935 (2018).

    Article  Google Scholar 

  96. Manduca, A. et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med. Image Anal. 5, 237–254 (2001).

    Article  Google Scholar 

  97. Tzschatzsch, H. et al. Tomoelastography by multifrequency wave number recovery from time-harmonic propagating shear waves. Med. Image Anal. 30, 1–10 (2016).

    Article  Google Scholar 

  98. Oliphant, T. E., Manduca, A., Ehman, R. L. & Greenleaf, J. F. Complex-valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation. Magn. Reson. Med. 45, 299–310 (2001).

    Article  Google Scholar 

  99. Papazoglou, S., Hamhaber, U., Braun, J. & Sack, I. Algebraic Helmholtz inversion in planar magnetic resonance elastography. Phys. Med. Biol. 53, 3147–3158 (2008).

    Article  Google Scholar 

  100. Romano, A. J., Bucaro, J. A., Ehnan, R. L. & Shirron, J. J. Evaluation of a material parameter extraction algorithm using MRI-based displacement measurements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1575–1581 (2000).

    Article  Google Scholar 

  101. Romano, A. J., Shirron, J. J. & Bucaro, J. A. On the noninvasive determination of material parameters from a knowledge of elastic displacements theory and numerical simulation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 751–759 (1998).

    Article  Google Scholar 

  102. McGarry, M. D. et al. elastography using nonlinear inversion. Med. Phys. 39, 6388–6396 (2012).

    Article  Google Scholar 

  103. Honarvar, M., Lobo, J., Mohareri, O., Salcudean, S. E. & Rohling, R. Direct vibro-elastography FEM inversion in Cartesian and cylindrical coordinate systems without the local homogeneity assumption. Phys. Med. Biol. 60, 3847–3868 (2015).

    Article  Google Scholar 

  104. Fovargue, D., Kozerke, S., Sinkus, R. & Nordsletten, D. Robust MR elastography stiffness quantification using a localized divergence free finite element reconstruction. Med. Image Anal. 44, 126–142 (2018).

    Article  Google Scholar 

  105. Davies, P. J. & Sack, I. A stacked frequency approach for inhomogeneous time-dependent MRE: an inverse problem for the elastic shear modulus. IMA J. Appl. Math. 86, 121–145 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  106. Van Houten, E. E. et al. Subzone based magnetic resonance elastography using a Rayleigh damped material model. Med. Phys. 38, 1993–2004 (2011).

    Article  Google Scholar 

  107. Lilaj, L. et al. Separation of fluid and solid shear wave fields and quantification of coupling density by magnetic resonance poroelastography. Magn. Reson. Med. 85, 1655–1668 (2021).

    Article  Google Scholar 

  108. Van Houten, E. E., Paulsen, K. D., Miga, M. I., Kennedy, F. E. & Weaver, J. B. An overlapping subzone technique for MR-based elastic property reconstruction. Magn. Reson. Med. 42, 779–786 (1999).

    Article  Google Scholar 

  109. Honarvar, M., Sahebjavaher, R., Sinkus, R., Rohling, R. & Salcudean, S. E. Curl-based finite element reconstruction of the shear modulus without assuming local homogeneity: time harmonic case. IEEE Trans. Med. Imaging 32, 2189–2199 (2013).

    Article  Google Scholar 

  110. Barnhill, E. et al. Heterogeneous multifrequency direct inversion (HMDI) for magnetic resonance elastography with application to a clinical brain exam. Med. Image Anal. 46, 180–188 (2018).

    Article  Google Scholar 

  111. Galarce, F. et al. Assimilation of magnetic resonance elastography data in an in silico brain model. Preprint at arXiv https://doi.org/10.48550/arXiv:2204.12445 (2022).

    Article  Google Scholar 

  112. Scott, J. M. et al. Impact of material homogeneity assumption on cortical stiffness estimates by MR elastography. Magn. Reson. Med. 88, 916–929 (2022).

    Article  Google Scholar 

  113. McGarry, M. D. et al. Suitability of poroelastic and viscoelastic mechanical models for high and low frequency MR elastography. Med. Phys. 42, 947 (2015).

    Article  Google Scholar 

  114. Perrinez, P. R., Kennedy, F. E., Van Houten, E. E., Weaver, J. B. & Paulsen, K. D. Magnetic resonance poroelastography: an algorithm for estimating the mechanical properties of fluid-saturated soft tissues. IEEE Trans. Med. Imaging 29, 746–755 (2010).

    Article  Google Scholar 

  115. Solamen, L. M. et al. Poroelastic mechanical properties of the brain tissue of normal pressure hydrocephalus patients during lumbar drain treatment using intrinsic actuation MR elastography. Acad. Radiol. 28, 457–466 (2021).

    Article  Google Scholar 

  116. Sack, I. et al. Observation of nonlinear shear wave propagation using magnetic resonance elastography. Magn. Reson. Med. 52, 842 (2004).

    Article  Google Scholar 

  117. Page, G. et al. Assessing tumor mechanics by MR elastography at different strain levels. J. Magn. Reson. Imaging 50, 1982–1989 (2019).

    Article  Google Scholar 

  118. Page, G. et al. Tumor solid stress: assessment with MR elastography under compression of patient-derived hepatocellular carcinomas and cholangiocarcinomas xenografted in mice. Cancers 13, 1891 (2021).

    Article  Google Scholar 

  119. Sinkus, R. et al. Imaging anisotropic and viscous properties of breast tissue by magnetic resonance elastography. Magn. Reson. Med. 53, 372–387 (2005).

    Article  Google Scholar 

  120. Papazoglou, S., Rump, J., Braun, J. & Sack, I. Shear-wave group-velocity inversion in MR elastography of human skeletal muscle. Magn. Reson. Med. 56, 489–497 (2006).

    Article  Google Scholar 

  121. Guo, J., Hirsch, S., Scheel, M., Braun, J. & Sack, I. Three-parameter shear wave inversion in MR elastography of incompressible transverse isotropic media: application to in vivo lower leg muscles. Magn. Reson. Med. 75, 1537–1545 (2016).

    Article  Google Scholar 

  122. Feng, Y., Okamoto, R. J., Namani, R., Genin, G. M. & Bayly, P. V. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–132 (2013).

    Article  Google Scholar 

  123. Schmidt, J. L. et al. Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography. J. Mech. Behav. Biomed. Mater. 79, 30–37 (2018).

    Article  Google Scholar 

  124. Smith, D. R. et al. Multi-excitation magnetic resonance elastography of the brain: wave propagation in anisotropic white matter. J. Biomech. Eng. 142, 0710051–0710059 (2020).

    Article  Google Scholar 

  125. Babaei, B. et al. Magnetic resonance elastography reconstruction for anisotropic tissues. Med. Image Anal. 74, 102212 (2021).

    Article  Google Scholar 

  126. McGarry, M. et al. Mapping heterogenous anisotropic tissue mechanical properties with transverse isotropic nonlinear inversion MR elastography. Med. Image Anal. 78, 102432 (2022).

    Article  Google Scholar 

  127. Manduca, A. et al. MR elastography: principles, guidelines, and terminology. Magn. Reson. Med. 85, 2377–2390 (2021).

    Article  Google Scholar 

  128. Gordon-Wylie, S. W. et al. MR elastography at 1Hz of gelatin phantoms using 3D or 4D acquisition. J. Magn. Reson. 296, 112–120 (2018).

    Article  ADS  Google Scholar 

  129. Kolipaka, A. et al. Magnetic resonance elastography: inversions in bounded media. Magn. Reson. Med. 62, 1533–1542 (2009).

    Article  Google Scholar 

  130. Romano, A., Scheel, M., Hirsch, S., Braun, J. & Sack, I. In vivo waveguide elastography of white matter tracts in the human brain. Magn. Reson. Med. 68, 1410–1422 (2012).

    Article  Google Scholar 

  131. Nenadic, I. Z. et al. On Lamb and Rayleigh wave convergence in viscoelastic tissues. Phys. Med. Biol. 56, 6723–6738 (2011).

    Article  Google Scholar 

  132. Manduca, A. et al. Waveguide effects and implications for cardiac magnetic resonance elastography: a finite element study. NMR Biomed. https://doi.org/10.1002/nbm.3996 (2018).

    Article  Google Scholar 

  133. Sinkus, R. et al. MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn. Reson. Med. 58, 1135–1144 (2007).

    Article  Google Scholar 

  134. Mura, J., Schrank, F. & Sack, I. An analytical solution to the dispersion-by-inversion problem in magnetic resonance elastography. Magn. Reson. Med. 84, 61–71 (2020).

    Article  Google Scholar 

  135. Davies, P. J., Barnhill, E. & Sack, I. The MRE inverse problem for the elastic shear modulus. SIAM J. Appl. Math. 79, 1367–1388 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  136. McGee, K. P. et al. Calculation of shear stiffness in noise dominated magnetic resonance elastography data based on principal frequency estimation. Phys. Med. Biol. 56, 4291–4309 (2011).

    Article  Google Scholar 

  137. Dong, H., Ahmad, R., Miller, R. & Kolipaka, A. MR elastography inversion by compressive recovery. Phys. Med. Biol. https://doi.org/10.1088/1361-6560/ac145a (2021).

    Article  Google Scholar 

  138. Manduca, A., Lake, D. S., Kruse, S. A. & Ehman, R. L. Spatio-temporal directional filtering for improved inversion of MR elastography images. Med. Image Anal. 7, 465–473 (2003).

    Article  MATH  Google Scholar 

  139. Streitberger, K. J. et al. How tissue fluidity influences brain tumor progression. Proc. Natl Acad. Sci. USA 117, 128–134 (2020).

    Article  ADS  Google Scholar 

  140. Solamen, L. M., McGarry, M. D., Tan, L., Weaver, J. B. & Paulsen, K. D. Phantom evaluations of nonlinear inversion MR elastography. Phys. Med. Biol. 63, 145021 (2018).

    Article  Google Scholar 

  141. Sinkus, R. et al. Rheological determinants for simultaneous staging of hepatic fibrosis and inflammation in patients with chronic liver disease. NMR Biomed. 31, e3956 (2018).

    Article  Google Scholar 

  142. Reiter, R. et al. Influence of fibrosis progression on the viscous properties of in vivo liver tissue elucidated by shear wave dispersion in multifrequency MR elastography. J. Mech. Behav. Biomed. Mater. 121, 104645 (2021).

    Article  Google Scholar 

  143. Yin, M. et al. Distinguishing between hepatic inflammation and fibrosis with MR elastography. Radiology 284, 694–705 (2017).

    Article  Google Scholar 

  144. Perrinez, P. R., Pattison, A. J., Kennedy, F. E., Weaver, J. B. & Paulsen, K. D. Contrast detection in fluid-saturated media with magnetic resonance poroelastography. Med. Phys. 37, 3518–3526 (2010).

    Article  Google Scholar 

  145. Hirsch, S. et al. In vivo measurement of volumetric strain in the human brain induced by arterial pulsation and harmonic waves. Magn. Reson. Med. 70, 671–683 (2012).

    Article  Google Scholar 

  146. Lilaj, L. et al. Inversion-recovery MR elastography of the human brain for improved stiffness quantification near fluid-solid boundaries. Magn. Reson. Med. 86, 2552–2561 (2021).

    Article  Google Scholar 

  147. Biot, M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid. 1. Low-frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  148. Hirsch, S. et al. Towards compression-sensitive magnetic resonance elastography of the liver: sensitivity of harmonic volumetric strain to portal hypertension. J. Magn. Reson. Imaging 39, 298–306 (2014).

    Article  Google Scholar 

  149. Hirsch, S. et al. Compression-sensitive magnetic resonance elastography. Phys. Med. Biol. 58, 5287–5299 (2013).

    Article  Google Scholar 

  150. Aichele, J. & Catheline, S. Fluids alter elasticity measurements: porous wave propagation accounts for shear wave dispersion in elastography. Front. Phys. https://doi.org/10.3389/fphy.2021.697990 (2021).

    Article  Google Scholar 

  151. Nia, H. T. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 1, 0004 (2016).

    Article  Google Scholar 

  152. van Oosten, A. S. G. et al. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature 573, 96–101 (2019).

    Article  ADS  Google Scholar 

  153. Nia, H. T. et al. Quantifying solid stress and elastic energy from excised or in situ tumors. Nat. Protoc. 13, 1091–1105 (2018).

    Article  Google Scholar 

  154. Testu, J. et al. Viscoelastic power law parameters of in vivo human brain estimated by MR elastography. J. Mech. Behav. Biomed. Mater. 74, 333–341 (2017).

    Article  Google Scholar 

  155. Streitberger, K. J. et al. High-resolution mechanical imaging of glioblastoma by multifrequency magnetic resonance elastography. PLoS ONE 9, e110588 (2014).

    Article  ADS  Google Scholar 

  156. Hirsch, S. et al. MR elastography of the liver and the spleen using a piezoelectric driver, single-shot wave-field acquisition, and multifrequency dual parameter reconstruction. Magn. Reson. Med. 71, 267–277 (2014).

    Article  Google Scholar 

  157. Marticorena Garcia, S. R. et al. Tomoelastography paired with T2* magnetic resonance imaging detects lupus nephritis with normal renal function. Invest. Radiol. 54, 89–97 (2019).

    Article  Google Scholar 

  158. Marticorena Garcia, S. R. et al. Tomoelastography of the native kidney: regional variation and physiological effects on in vivo renal stiffness. Magn. Reson. Med. 79, 2126–2134 (2018).

    Article  Google Scholar 

  159. Gultekin, E. et al. Added value of tomoelastography for characterization of pancreatic neuroendocrine tumor aggressiveness based on stiffness. Cancers 13, 5185 (2021).

    Article  Google Scholar 

  160. Hu, J. et al. Rectal tumor stiffness quantified by in vivo tomoelastography and collagen content estimated by histopathology predict tumor aggressiveness. Front. Oncol. 11, 701336 (2021).

    Article  Google Scholar 

  161. Jamin, Y. et al. Exploring the biomechanical properties of brain malignancies and their pathologic determinants in vivo with magnetic resonance elastography. Cancer Res. 75, 1216–1224 (2015).

    Article  Google Scholar 

  162. Li, J. et al. Investigating the contribution of collagen to the tumor biomechanical phenotype with noninvasive magnetic resonance elastography. Cancer Res. 79, 5874–5883 (2019).

    Article  Google Scholar 

  163. Schregel, K. et al. Characterization of glioblastoma in an orthotopic mouse model with magnetic resonance elastography. NMR Biomed. 31, e3840 (2018).

    Article  Google Scholar 

  164. Schregel, K. et al. Magnetic resonance elastography reveals effects of anti-angiogenic glioblastoma treatment on tumor stiffness and captures progression in an orthotopic mouse model. Cancer Imaging 20, 35 (2020).

    Article  Google Scholar 

  165. Millward, J. M. et al. Tissue structure and inflammatory processes shape viscoelastic properties of the mouse brain. NMR Biomed. 28, 831–839 (2015).

    Article  Google Scholar 

  166. Silva, R. V. et al. Contribution of tissue inflammation and blood–brain barrier disruption to brain softening in a mouse model of multiple sclerosis. Front. Neurosci. 15, 701308 (2021).

    Article  Google Scholar 

  167. Wang, S. et al. MR elastography-based assessment of matrix remodeling at lesion sites associated with clinical severity in a model of multiple sclerosis. Front. Neurol. 10, 1382 (2019).

    Article  Google Scholar 

  168. Murphy, M. C. et al. Magnetic resonance elastography of the brain in a mouse model of Alzheimer’s disease: initial results. Magn. Reson. Imaging 30, 535–539 (2011).

    Article  Google Scholar 

  169. Murphy, M. C. et al. Decreased brain stiffness in Alzheimer’s disease determined by magnetic resonance elastography. J. Magn. Reson. Imaging 34, 494–498 (2011).

    Article  Google Scholar 

  170. Freimann, F. B. et al. MR elastography in a murine stroke model reveals correlation of macroscopic viscoelastic properties of the brain with neuronal density. NMR Biomed. 26, 1534–1539 (2013).

    Article  Google Scholar 

  171. Bertalan, G. et al. The influence of body temperature on tissue stiffness, blood perfusion and water diffusion in the mouse brain. Acta Biomater. 96, 412–420 (2019).

    Article  Google Scholar 

  172. Bertalan, G. et al. Biomechanical properties of the hypoxic and dying brain quantified by magnetic resonance elastography. Acta Biomater. 101, 395–402 (2020).

    Article  Google Scholar 

  173. Salameh, N. et al. Early detection of steatohepatitis in fatty rat liver by using MR elastography. Radiology 253, 90–97 (2009).

    Article  Google Scholar 

  174. Salameh, N. et al. Hepatic viscoelastic parameters measured with MR elastography: correlations with quantitative analysis of liver fibrosis in the rat. J. Magn. Reson. Imaging 26, 956–962 (2007).

    Article  Google Scholar 

  175. Tang, H. et al. Evaluation of a PEGylated fibroblast growth factor 21 variant using novel preclinical magnetic resonance imaging and magnetic resonance elastography in a mouse model of nonalcoholic steatohepatitis. J. Magn. Reson. Imaging 56, 712–724 (2022).

    Article  Google Scholar 

  176. Yin, Z. et al. Prediction of nonalcoholic fatty liver disease (NAFLD) activity score (NAS) with multiparametric hepatic magnetic resonance imaging and elastography. Eur. Radiol. 29, 5823–5831 (2019).

    Article  Google Scholar 

  177. Jordan, J. E. L. et al. Microscopic multifrequency MR elastography for mapping viscoelasticity in zebrafish. Magn. Reson. Med. 87, 1435–1445 (2022).

    Article  Google Scholar 

  178. Mangarova, D. B. et al. Microscopic multifrequency magnetic resonance elastography of ex vivo abdominal aortic aneurysms for extracellular matrix imaging in a mouse model. Acta Biomater. 140, 389–397 (2022).

    Article  Google Scholar 

  179. Braun, J. et al. A compact 0.5 T MR elastography device and its application for studying viscoelasticity changes in biological tissues during progressive formalin fixation. Magn. Reson. Med. 79, 470–478 (2018).

    Article  Google Scholar 

  180. Huwart, L. et al. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed. 19, 173–179 (2006).

    Article  Google Scholar 

  181. Moura Cunha, G. et al. Quantitative magnetic resonance imaging for chronic liver disease. Br. J. Radiol. 94, 20201377 (2021).

    Article  Google Scholar 

  182. Talwalkar, J. A. et al. Magnetic resonance imaging of hepatic fibrosis: emerging clinical applications. Hepatology 47, 332–342 (2008).

    Article  Google Scholar 

  183. Singh, S. et al. Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clin. Gastroenterol. Hepatol. 13, 440–451.e6 (2015).

    Article  Google Scholar 

  184. Gidener, T. et al. Change in serial liver stiffness measurement by magnetic resonance elastography and outcomes in NAFLD. Hepatology https://doi.org/10.1002/hep.32594 (2022).

    Article  Google Scholar 

  185. Lee, Y. S. et al. MRE-based NASH score for diagnosis of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease. Hepatol. Int. 16, 316–324 (2022).

    Article  Google Scholar 

  186. Ajmera, V. et al. Prognostic utility of magnetic resonance elastography and MEFIB index in predicting liver-related outcomes and mortality in individuals at risk of and with nonalcoholic fatty liver disease. Therap. Adv. Gastroenterol. 15, 17562848221093869 (2022).

    Article  Google Scholar 

  187. Higuchi, M. et al. Longitudinal association of magnetic resonance elastography-associated liver stiffness with complications and mortality. Aliment. Pharmacol. Ther. 55, 292–301 (2022).

    Article  Google Scholar 

  188. Fritsch, A. et al. Are biomechanical changes necessary for tumour progression? Nat. Phys. 6, 730–732 (2010).

    Article  Google Scholar 

  189. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    Article  Google Scholar 

  190. Nia, H. D. T., Munn, L. L. & Jain, R. K. Physical traits of cancer. Science 370, eaaz0868 (2020).

    Article  Google Scholar 

  191. Venkatesh, S. K. et al. MR elastography of liver tumors: preliminary results. AJR Am. J. Roentgenol. 190, 1534–1540 (2008).

    Article  Google Scholar 

  192. Garteiser, P. et al. MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation. Eur. Radiol. 22, 2169–2177 (2012).

    Article  Google Scholar 

  193. Gordic, S. et al. Value of tumor stiffness measured with MR elastography for assessment of response of hepatocellular carcinoma to locoregional therapy. Abdom. Radiol. 42, 1685–1694 (2017).

    Article  Google Scholar 

  194. Cho, H. J. et al. Liver stiffness measured by MR elastography is a predictor of early HCC recurrence after treatment. Eur. Radiol. 30, 4182–4192 (2020).

    Article  Google Scholar 

  195. Wang, J. et al. 3D MR elastography of hepatocellular carcinomas as a potential biomarker for predicting tumor recurrence. J. Magn. Reson. Imaging 49, 719–730 (2019).

    Article  Google Scholar 

  196. Hennedige, T. P. et al. Comparison of magnetic resonance elastography and diffusion-weighted imaging for differentiating benign and malignant liver lesions. Eur. Radiol. 26, 398–406 (2016).

    Article  Google Scholar 

  197. Asbach, P. et al. In vivo quantification of water diffusion, stiffness, and tissue fluidity in benign prostatic hyperplasia and prostate cancer. Invest. Radiol. 55, 524–530 (2020).

    Google Scholar 

  198. Marticorena Garcia, S. R. et al. Tomoelastography for measurement of tumor volume related to tissue stiffness in pancreatic ductal adenocarcinomas. Invest. Radiol. 55, 769–774 (2020).

    Article  Google Scholar 

  199. Li, M. et al. MR elastography-based shear strain mapping for assessment of microvascular invasion in hepatocellular carcinoma. Eur. Radiol. 32, 5024–5032 (2022).

    Article  Google Scholar 

  200. Kennedy, P. et al. Early effect of (90)Y radioembolisation on hepatocellular carcinoma and liver parenchyma stiffness measured with MR elastography: initial experience. Eur. Radiol. 31, 5791–5801 (2021).

    Article  Google Scholar 

  201. Dominguez, A. et al. Assessment of SE-MRE-derived shear stiffness at 3.0 Tesla for solid liver tumors characterization. Abdom. Radiol. 46, 1904–1911 (2021).

    Article  Google Scholar 

  202. Singh, S. et al. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 11, 1573–1584.e2 (2013).

    Article  Google Scholar 

  203. Sahebjavaher, R. S. et al. MR elastography of prostate cancer: quantitative comparison with histopathology and repeatability of methods. NMR Biomed. 28, 124–139 (2015).

    Google Scholar 

  204. Bunevicius, A., Schregel, K., Sinkus, R., Golby, A. & Patz, S. REVIEW: MR elastography of brain tumors. Neuroimage Clin. 25, 102109 (2020).

    Article  Google Scholar 

  205. Reiss-Zimmermann, M. et al. High resolution imaging of viscoelastic properties of intracranial tumours by multi-frequency magnetic resonance elastography. Clin. Neuroradiol. 25, 371–378 (2015).

    Article  Google Scholar 

  206. Flogstad Svensson, S. et al. Decreased tissue stiffness in glioblastoma by MR elastography is associated with increased cerebral blood flow. Eur. J. Radiol. 147, 110136 (2022).

    Article  Google Scholar 

  207. Friedl, P., Locker, J., Sahai, E. & Segall, J. E. Classifying collective cancer cell invasion. Nat. Cell Biol. 14, 777–783 (2012).

    Article  Google Scholar 

  208. Ilina, O. et al. Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat. Cell Biol. https://doi.org/10.1038/s41556-41020-40552-41556 (2020).

    Article  Google Scholar 

  209. Oswald, L., Grosser, S., Smith, D. M. & Kas, J. A. Jamming transitions in cancer. J. Phys. D Appl. Phys. 50, 483001 (2017).

    Article  ADS  Google Scholar 

  210. Gennisson, J. L., Grenier, N., Combe, C. & Tanter, M. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med. Biol. 38, 1559–1567 (2012).

    Article  Google Scholar 

  211. Marticorena Garcia, S. R. et al. Comparison of ultrasound shear wave elastography with magnetic resonance elastography and renal microvascular flow in the assessment of chronic renal allograft dysfunction. Acta Radiol. 59, 1139–1145 (2018).

    Article  Google Scholar 

  212. Gandhi, D. et al. Magnetic resonance elastography-derived stiffness of the kidneys and its correlation with water perfusion. NMR Biomed. 33, e4237 (2020).

    Article  Google Scholar 

  213. Lanzman, R. S. & Wittsack, H. J. Diffusion tensor imaging in abdominal organs. NMR Biomed. 30, 3 (2017).

    Article  Google Scholar 

  214. Kovesdy, C. P. Epidemiology of chronic kidney disease: an update 2022. Kidney Int. Suppl. 12, 7–11 (2022).

    Article  Google Scholar 

  215. Anders, H. J., Huber, T. B., Isermann, B. & Schiffer, M. CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat. Rev. Nephrol. 14, 361–377 (2018).

    Article  Google Scholar 

  216. Grossmann, M. et al. US time-harmonic elastography for the early detection of glomerulonephritis. Radiology 292, 676–684 (2019).

    Article  Google Scholar 

  217. Shannon, J. L. et al. Studies on the innervation of human renal allografts. J. Pathol. 186, 109–115 (1998).

    Article  Google Scholar 

  218. Marticorena Garcia, S. R. et al. Multifrequency magnetic resonance elastography for the assessment of renal allograft function. Invest. Radiol. 51, 591–595 (2016).

    Article  Google Scholar 

  219. Grenier, N., Gennisson, J. L., Cornelis, F., Le Bras, Y. & Couzi, L. Renal ultrasound elastography. Diagn. Interv. Imaging 94, 545–550 (2013).

    Article  Google Scholar 

  220. Bensamoun, S. F., Robert, L., Leclerc, G. E., Debernard, L. & Charleux, F. Stiffness imaging of the kidney and adjacent abdominal tissues measured simultaneously using magnetic resonance elastography. Clin. Imaging 35, 284–287 (2011).

    Article  Google Scholar 

  221. Garcia, S. M. R. et al. Tomoelastography for longitudinal monitoring of viscoelasticity changes in the liver and in renal allografts after direct-acting antiviral treatment in 15 kidney transplant recipients with chronic HCV infection. J. Clin. Med. 10, 510 (2021).

    Article  Google Scholar 

  222. Serai, S. D. & Yin, M. MR elastography of the abdomen: experimental protocols. Methods Mol. Biol. 2216, 519–546 (2021).

    Article  Google Scholar 

  223. Gandhi, D. et al. Magnetic resonance elastography of kidneys: SE-EPI MRE reproducibility and its comparison to GRE MRE. NMR Biomed. 32, e4141 (2019).

    Article  Google Scholar 

  224. Kolipaka, A., Araoz, P. A., McGee, K. P., Manduca, A. & Ehman, R. L. Magnetic resonance elastography as a method for the assessment of effective myocardial stiffness throughout the cardiac cycle. Magn. Reson. Med. 64, 862–870 (2010).

    Article  Google Scholar 

  225. Elgeti, T., Beling, M., Hamm, B., Braun, J. & Sack, I. Elasticity-based determination of isovolumetric phases in the human heart. J. Cardiovasc. Magn. Reson. 12, 60 (2010).

    Article  Google Scholar 

  226. Elgeti, T. et al. Cardiac MR elastography: comparison with left ventricular pressure measurement. J. Cardiovasc. Magn. Reson. 11, 44 (2009).

    Article  Google Scholar 

  227. Kolipaka, A. et al. In vivo assessment of MR elastography-derived effective end-diastolic myocardial stiffness under different loading conditions. J. Magn. Reson. Imaging 33, 1224–1228 (2011).

    Article  Google Scholar 

  228. Kolipaka, A. et al. MR elastography as a method for the assessment of myocardial stiffness: comparison with an established pressure–volume model in a left ventricular model of the heart. Magn. Reson. Med. 62, 135–140 (2009).

    Article  Google Scholar 

  229. Khan, S., Fakhouri, F., Majeed, W. & Kolipaka, A. Cardiovascular magnetic resonance elastography: a review. NMR Biomed. 31, e3853 (2018).

    Article  Google Scholar 

  230. Pernot, M. et al. Real-time assessment of myocardial contractility using shear wave imaging. J. Am. Coll. Cardiol. 58, 65–72 (2011).

    Article  Google Scholar 

  231. Ponikowski, P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 37, 2129–2200 (2016).

    Article  Google Scholar 

  232. Elgeti, T. et al. Shear-wave amplitudes measured with cardiac MR elastography for diagnosis of diastolic dysfunction. Radiology 271, 681–687 (2014).

    Article  Google Scholar 

  233. Aurigemma, G. P., Zile, M. R. & Gaasch, W. H. Contractile behavior of the left ventricle in diastolic heart failure: with emphasis on regional systolic function. Circulation 113, 296–304 (2006).

    Article  Google Scholar 

  234. Nordsletten, D. et al. A viscoelastic model for human myocardium. Acta Biomater. 135, 441–457 (2021).

    Article  Google Scholar 

  235. Urban, M. W., Pislaru, C., Nenadic, I. Z., Kinnick, R. R. & Greenleaf, J. F. Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV). IEEE Trans. Med. Imaging 32, 247–261 (2013).

    Article  Google Scholar 

  236. von Deuster, C. et al. Studying dynamic myofiber aggregate reorientation in dilated cardiomyopathy using in vivo magnetic resonance diffusion tensor imaging. Circ. Cardiovasc. Imaging 9, e005018 (2016).

    Article  Google Scholar 

  237. Villemain, O. et al. Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults. JACC Cardiovasc. Imaging 12, 1135–1145 (2019).

    Article  Google Scholar 

  238. Rump, J., Warmuth, C., Braun, J. & Sack, I. Phase preparation in steady-state free precession MR elastography. Magn. Reson. Imaging 26, 228–235 (2008).

    Article  Google Scholar 

  239. Arani, A. et al. Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis. J. Magn. Reson. Imaging 46, 1361–1367 (2017).

    Article  ADS  Google Scholar 

  240. Elgeti, T., Beling, M., Hamm, B., Braun, J. & Sack, I. Cardiac magnetic resonance elastography: toward the diagnosis of abnormal myocardial relaxation. Invest. Radiol. 45, 782–787 (2010).

    Article  Google Scholar 

  241. Troelstra, M. A. et al. Shear wave cardiovascular MR elastography using intrinsic cardiac motion for transducer-free non-invasive evaluation of myocardial shear wave velocity. Sci. Rep. 11, 1403 (2021).

    Article  ADS  Google Scholar 

  242. Burnhope, E. et al. Assessment of myocardial stiffness in patients with left ventricular hypertrophy: CMR elastography using intrinsic actuation. JACC Cardiovasc. Imaging 15, 1163–1165 (2022).

    Article  Google Scholar 

  243. Schrank, F. et al. Elastography for viscoelasticity quantification in skeletal muscle during dynamic exercises. Magn. Reson. Med. 84, 103–114 (2020).

    Article  Google Scholar 

  244. Schaafs, L. A. et al. Steady-state multifrequency magnetic resonance elastography of the thoracic and abdominal human aorta-validation and reference values. Invest. Radiol. 55, 451–456 (2020).

    Google Scholar 

  245. European Association for the Study of the Liver. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis — 2021 update. J. Hepatol. 75, 659–689 (2021).

    Article  Google Scholar 

  246. Hudert, C. A. et al. US time-harmonic elastography: detection of liver fibrosis in adolescents with extreme obesity with nonalcoholic fatty liver disease. Radiology 288, 99–106 (2018).

    Article  Google Scholar 

  247. Ormachea, J., Parker, K. J. & Barr, R. G. An initial study of complete 2D shear wave dispersion images using a reverberant shear wave field. Phys. Med. Biol. 64, 145009 (2019).

    Article  Google Scholar 

  248. Meyer, T. et al. Valsalva maneuver decreases liver and spleen stiffness measured by time-harmonic ultrasound elastography. Front. Bioeng. Biotechnol. 10, 886363 (2022).

    Article  Google Scholar 

  249. Herthum, H. et al. 2D or 3D MR elastography of the brain? Answers from a 1-year follow-up study in healthy volunteers. in Proc. 31st Annual Meeting ISMRM 2244 (ISMRM, 2022).

  250. Wang, Y., Rossman, P. J., Grimm, R. C., Riederer, S. J. & Ehman, R. L. Navigator-echo-base real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology 198, 55–60 (1996).

    Article  Google Scholar 

  251. Herthum, H. et al. In vivo stiffness of multiple sclerosis lesions is similar to that of normal-appearing white matter. Acta Biomater. 138, 410–421 (2022).

    Article  Google Scholar 

  252. Garteiser, P., Doblas, S. & Van Beers, B. E. Magnetic resonance elastography of liver and spleen: methods and applications. NMR Biomed. 31, e3891 (2018).

    Article  Google Scholar 

  253. Hamhaber, U. et al. In vivo magnetic resonance elastography of human brain at 7 T and 1.5 T. J. Magn. Reson. Imaging 32, 577–583 (2010).

    Article  Google Scholar 

  254. Serai, S. D., Yin, M., Wang, H., Ehman, R. L. & Podberesky, D. J. Cross-vendor validation of liver magnetic resonance elastography. Abdom. Imaging 40, 789–794 (2015).

    Article  Google Scholar 

  255. Kennedy, P. et al. Quantitative elastography methods in liver disease: current evidence and future directions. Radiology 286, 738–763 (2018).

    Article  Google Scholar 

  256. Wagner, M. et al. Technical failure of MR elastography examinations of the liver: experience from a large single-center study. Radiology 284, 401–412 (2017).

    Article  Google Scholar 

  257. Barnhill, E. et al. Fast robust dejitter and interslice discontinuity removal in MRI phase acquisitions: application to magnetic resonance elastography. IEEE Trans. Med. Imaging 38, 1578–1587 (2019).

    Article  Google Scholar 

  258. Hannum, A. J., McIlvain, G., Sowinski, D., McGarry, M. D. J. & Johnson, C. L. Correlated noise in brain magnetic resonance elastography. Magn. Reson. Med. 87, 1313–1328 (2022).

    Article  Google Scholar 

  259. Barnhill, E., Kennedy, P., Johnson, C. L., Mada, M. & Roberts, N. Real-time 4D phase unwrapping applied to magnetic resonance elastography. Magn. Reson. Med. https://doi.org/10.1002/mrm.25332 (2014).

    Article  Google Scholar 

  260. Herthum, H. et al. Multiple motion encoding in phase-contrast MRI: A general theory and application to elastography imaging. Med. Image Anal. 78, 102416 (2022).

    Article  Google Scholar 

  261. Dassios, G. & Lindell, I. V. Uniqueness and reconstruction for the anisotropic Helmholtz decomposition. J. Phys. A Math. Gen. 35, 5139–5146 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  262. McGrath, D. M., Ravikumar, N., Wilkinson, I. D., Frangi, A. F. & Taylor, Z. A. Magnetic resonance elastography of the brain: an in silico study to determine the influence of cranial anatomy. Magn. Reson. Med. 76, 645–662 (2016).

    Article  Google Scholar 

  263. McGarry, M. et al. A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography. Phys. Med. Biol. 66, ab9a84 (2021).

    Article  Google Scholar 

  264. Yin, Z. Y. et al. In vivo characterization of 3D skull and brain motion during dynamic head vibration using magnetic resonance elastography. Magn. Reson. Med. 80, 2573–2585 (2018).

    Article  Google Scholar 

  265. Bamber, J. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall Med. 34, 169–184 (2013).

    Article  Google Scholar 

  266. Cosgrove, D. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall Med. 34, 238–253 (2013).

    Article  Google Scholar 

  267. Dietrich, C. F. et al. EFSUMB guidelines and recommendations on the clinical use of liver ultrasound elastography, update 2017 (short version). Ultraschall Med. 38, 377–394 (2017).

    Article  Google Scholar 

  268. Scott, J. M. et al. Artificial neural networks for magnetic resonance elastography stiffness estimation in inhomogeneous materials. Med. Image Anal. 63, 101710 (2020).

    Article  Google Scholar 

  269. Papazoglou, S., Hirsch, S., Braun, J. & Sack, I. Multifrequency inversion in magnetic resonance elastography. Phys. Med. Biol. 57, 2329–2346 (2012).

    Article  Google Scholar 

  270. Jenkinson, M. Fast, automated, N-dimensional phase-unwrapping algorithm. Magn. Reson. Med. 49, 193–197 (2003).

    Article  Google Scholar 

  271. Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 36, 813–821 (1998).

    Article  ADS  Google Scholar 

  272. Albrecht, H. H. A family of cosine-sum windows for high-resolution measurements. in IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2001).

  273. Sinkus, R. et al. Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn. Reson. Imaging 23, 159–165 (2005).

    Article  Google Scholar 

  274. Schmitter, S. & Schnell, S. 4D flow MRI. in Quantification of Biophysical Parameters in Medical Imaging (eds Sack, I. & Schaeffter, T.) Ch. 9, 187–212 (Springer, 2017).

  275. Aldoj, N., Biavati, F., Michallek, F., Stober, S. & Dewey, M. Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net. Sci. Rep. 10, 14315 (2020).

    Article  ADS  Google Scholar 

  276. Guo, J. et al. Magnetic resonance elastography of cysts and fluid filled cavities. in Proc 22st Annual Meeting ISMRM 1696 (ISMRM, 2014).

  277. Garczynska, K. et al. Effect of post-mortem interval and perfusion on the biophysical properties of ex vivo liver tissue investigated longitudinally by MRE and DWI. Front. Physiol. 12, 696304 (2021).

    Article  Google Scholar 

  278. Guo, J. et al. Brain maturation is associated with increasing tissue stiffness and decreasing tissue fluidity. Acta Biomater. 99, 433–442 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

Support of the German Research Foundation is gratefully acknowledged (GRK2260 BIOQIC, CRC1340 Matrix-in-Vision). The author thanks H. Tzschätzsch for proof reading, B. Herwig for language editing and J. Braun, M. Shahryari and J. Guo for help with the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingolf Sack.

Ethics declarations

Competing interests

I.S. holds patents related to MRE and is a shareholder of Time Harmonic Elastography Applications and Devices.

Peer review

Peer review information

Nature Reviews Physics thanks Simon Lambert, Sudhakar Venkatesh and the other, anonymous, referee(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sack, I. Magnetic resonance elastography from fundamental soft-tissue mechanics to diagnostic imaging. Nat Rev Phys 5, 25–42 (2023). https://doi.org/10.1038/s42254-022-00543-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00543-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing