Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Probing charge density in materials with atomic resolution in real space

Abstract

The charge distribution in materials at the nanoscale can often explain the origin of macroscopic properties such as localized conductivity or the plasmonic response and illuminate more fundamental changes in the microscopic structure such as changes in chemical bonding characteristics. Previously, direct visualization of the charge density with high spatial resolution was often a missing link in the formation of structure–property relationships, especially in heterogeneous materials systems. However, recent advancements in microscopy technology have enabled researchers to visualize the charge distribution in materials down to subatomic length scales. In this Technical Review, we discuss the developments in high-resolution real-space charge distribution imaging using diffraction techniques and electron microscopy, with a focus on the recent advancement of four-dimensional scanning transmission electron microscopy, electron holography, and applications to materials interfaces.

Key points

  • Real-space charge density imaging can provide key insights into the electronic properties of a material that are unavailable with other methods.

  • Transmission electron microscopy can provide high spatial resolution charge images through various methods.

  • Quantum crystallography and quantitative convergent beam electron diffraction can reveal the charge distribution in uniform structures with unparalleled accuracy and spatial resolution.

  • Phase-retrieval methods provide more direct ways to reveal the charge distribution in heterogeneous materials at atomic resolution in real space.

  • Continued development of both microscopy hardware and data analysis techniques will further enhance charge density imaging methods and expand our understanding of materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1 : X-ray and electron scattering.
Fig. 2: Quantitative convergent beam electron diffraction.
Fig. 3: 4D scanning transmission electron microscopy and holography.
Fig. 4: Applications to 2D materials.
Fig. 5: Applications to semiconductors.
Fig. 6: Applications to oxide interfaces.

Similar content being viewed by others

References

  1. Genoni, A. et al. Quantum crystallography: current developments and future perspectives. Chem. A Eur. J. 24, 10881–10905 (2018).

    Article  Google Scholar 

  2. Nakashima Philip, N. H., Smith Andrew, E., Etheridge, J. & Muddle Barrington, C. The bonding electron density in aluminum. Science 331, 1583–1586 (2011).

    Article  ADS  Google Scholar 

  3. Peng, D. & Nakashima, P. N. H. Measuring density functional parameters from electron diffraction patterns. Phys. Rev. Lett. 126, 176402 (2021).

    Article  ADS  Google Scholar 

  4. Shibata, N. et al. Differential phase-contrast microscopy at atomic resolution. Nat. Phys. 8, 611–615 (2012).

    Article  Google Scholar 

  5. Sánchez-Santolino, G. et al. Probing the internal atomic charge density distributions in real space. ACS Nano 12, 8875–8881 (2018).

    Article  Google Scholar 

  6. Müller, K. et al. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction. Nat. Commun. 5, 5653 (2014).

    Article  ADS  Google Scholar 

  7. Gao, W. et al. Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy. Nature 575, 480–484 (2019).

    Article  ADS  Google Scholar 

  8. Beyer, A. et al. Quantitative characterization of nanometer-scale electric fields via momentum-resolved STEM. Nano Lett. 21, 2018–2025 (2021).

    Article  ADS  Google Scholar 

  9. Zheng, Q. et al. Direct visualization of anionic electrons in an electride reveals inhomogeneities. Sci. Adv. 7, eabe6819 (2021).

    Article  ADS  Google Scholar 

  10. Song, K. et al. Direct imaging of the electron liquid at oxide interfaces. Nat. Nanotechnol. 13, 198–203 (2018).

    Article  ADS  Google Scholar 

  11. Boureau, V. et al. Quantitative mapping of the charge density in a monolayer of MoS2 at atomic resolution by off-axis electron holography. ACS Nano 14, 524–530 (2020).

    Article  Google Scholar 

  12. Winkler, F. et al. Absolute scale quantitative off-axis electron holography at atomic resolution. Phys. Rev. Lett. 120, 156101 (2018).

    Article  ADS  Google Scholar 

  13. Massa, L., Huang, L. & Karle, J. Quantum crystallography and the use of kernel projector matrices. Int. J. Quantum Chem. 56, 371–384 (1995).

    Article  Google Scholar 

  14. Piela, L. Ideas of Quantum Chemistry (Elsevier, 2014).

  15. Johnson, K. H. Quantum chemistry. Annu. Rev. Phys. Chem. 26, 39–57 (1975).

    Article  ADS  Google Scholar 

  16. Helgaker, T., Klopper, W. & Tew, D. P. Quantitative quantum chemistry. Mol. Phys. 106, 2107–2143 (2008).

    Article  ADS  Google Scholar 

  17. Hansen, N. K. & Coppens, P. Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr. A 34, 909–921 (1978).

    Article  ADS  Google Scholar 

  18. Stewart, R. Electron population analysis with rigid pseudoatoms. Acta Crystallogr. A 32, 565–574 (1976).

    Article  ADS  Google Scholar 

  19. Fischer, A. et al. Experimental and theoretical charge density studies at subatomic resolution. J. Phys. Chem. A 115, 13061–13071 (2011).

    Article  Google Scholar 

  20. Makal, A. M., Plażuk, D., Zakrzewski, J., Misterkiewicz, B. & Woźniak, K. Experimental charge density analysis of symmetrically substituted ferrocene derivatives. Inorg. Chem. 49, 4046–4059 (2010).

    Article  Google Scholar 

  21. Dittrich, B., Sze, E., Holstein, J. J., Hubschle, C. B. & Jayatilaka, D. Crystal-field effects in l-homoserine: multipoles versus quantum chemistry. Acta Crystallogr. A 68, 435–442 (2012).

    Article  Google Scholar 

  22. Metherell, J. F. in Electron Microscopy in Materials Science, Part 2 Vol. 397 (eds Valdre, U. & Ruedl, E.) 401–550 (1976).

  23. Midgley Paul, A. Electronic bonding revealed by electron diffraction. Science 331, 1528–1529 (2011).

    Article  ADS  Google Scholar 

  24. Zuo, J. M. & Spence, J. C. H. Electron Microdiffraction (Springer, 1991).

  25. Tsuda, K. & Tanaka, M. Refinement of crystal structure parameters using convergent-beam electron diffraction: the low-temperature phase of SrTiO3. Acta Crystallogr. A 51, 7–19 (1995).

    Article  Google Scholar 

  26. Zuo, J. M., Kim, M., O’Keeffe, M. & Spence, J. C. H. Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O. Nature 401, 49–52 (1999).

    Article  ADS  Google Scholar 

  27. Koshima, H. Photomechanical motion of molecular crystals. Acta Crystallogr. A 67, C176 (2011).

    Article  Google Scholar 

  28. Sang, X. H., Kulovits, A. & Wiezorek, J. M. K. Simultaneous determination of highly precise Debye–Waller factors and structure factors for chemically ordered NiAl. Acta Crystallogr. A 66, 694–702 (2010).

    Article  ADS  Google Scholar 

  29. Jiang, B., Zuo, J. M., Jiang, N., O’Keeffe, M. & Spence, J. C. Charge density and chemical bonding in rutile, TiO2. Acta Crystallogr. A 59, 341–350 (2003).

    Article  Google Scholar 

  30. Pennington, R. S., Wang, F. & Koch, C. T. Stacked-Bloch-wave electron diffraction simulations using GPU acceleration. Ultramicroscopy 141, 32–37 (2014).

    Article  Google Scholar 

  31. Cowley, J. M. & Moodie, A. F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. 10, 609–619 (1957).

    Article  Google Scholar 

  32. Saunders, M. et al. Measurement of low-order structure factors for silicon from zone-axis CBED patterns. Ultramicroscopy 60, 311–323 (1995).

    Article  Google Scholar 

  33. Müller, K. et al. Refinement of the 200 structure factor for GaAs using parallel and convergent beam electron nanodiffraction data. Ultramicroscopy 109, 802–814 (2009).

    Article  Google Scholar 

  34. Ogata, Y., Tsuda, K., Akishige, Y. & Tanaka, M. Refinement of the crystal structural parameters of the intermediate phase of h-BaTiO3 using convergent-beam electron diffraction. Acta Crystallogr. A 60, 525–531 (2004).

    Article  ADS  Google Scholar 

  35. Ogata, Y., Tsuda, K. & Tanaka, M. Determination of the electrostatic potential and electron density of silicon using convergent-beam electron diffraction. Acta Crystallogr. A 64, 587–597 (2008).

    Article  ADS  Google Scholar 

  36. Nakashima, P. N. H. Quantitative convergent-beam electron diffraction and quantum crystallography — the metallic bond in aluminium. Struct. Chem. 28, 1319–1332 (2017).

    Article  Google Scholar 

  37. Zuo, J. M. Measurements of electron densities in solids: a real-space view of electronic structure and bonding in inorganic crystals. Rep. Prog. Phys. 67, 2053–2103 (2004).

    Article  ADS  Google Scholar 

  38. Tanaka, M. & Tsuda, K. Convergent-beam electron diffraction. J. Electron. Microsc. 60, S245–S267 (2011).

    Google Scholar 

  39. Vulović, M., Voortman, L. M., van Vliet, L. J. & Rieger, B. When to use the projection assumption and the weak-phase object approximation in phase contrast cryo-EM. Ultramicroscopy 136, 61–66 (2014).

    Article  Google Scholar 

  40. Kirkland, E. J. Advanced Computing in Electron Microscopy 3rd edn (Springer, 2020).

  41. Knut, M. in Transmissionelektronenmikroskopie von InGaNAs Nanostrukturen mittels ab-initio Strukturfaktoren für verspannungsrelaxierte Superzellen (Universität Bremen FB1 Physik/Elektrotechnik, 2011).

  42. Brown, H. G. Advances in Atomic Resolution Imaging Using Scanning Transmission Electron Microscopy (2017).

  43. Winkler, F., Barthel, J., Dunin-Borkowski, R. E. & Müller-Caspary, K. Direct measurement of electrostatic potentials at the atomic scale: a conceptual comparison between electron holography and scanning transmission electron microscopy. Ultramicroscopy 210, 112926 (2020).

    Article  Google Scholar 

  44. Hachtel, J. A., Idrobo, J. C. & Chi, M. Sub-ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope. Adv. Struct. Chem. Imaging 4, 10 (2018).

    Article  Google Scholar 

  45. Shukla, A. K. et al. Effect of composition on the structure of lithium- and manganese-rich transition metal oxides. Energy Environ. Sci. 11, 830–840 (2018).

    Article  Google Scholar 

  46. Nalin Mehta, A. et al. Unravelling stacking order in epitaxial bilayer MX2 using 4D-STEM with unsupervised learning. Nanotechnology 31, 445702 (2020).

    Article  Google Scholar 

  47. Ozdol, V. B. et al. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction. Appl. Phys. Lett. 106, 253107 (2015).

    Article  ADS  Google Scholar 

  48. LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Position averaged convergent beam electron diffraction: theory and applications. Ultramicroscopy 110, 118–125 (2010).

    Article  Google Scholar 

  49. Tsuda, K., Yasuhara, A. & Tanaka, M. Two-dimensional mapping of polarizations of rhombohedral nanostructures in the tetragonal phase of BaTiO3 by the combined use of the scanning transmission electron microscopy and convergent-beam electron diffraction methods. Appl. Phys. Lett. 103, 082908 (2013).

    Article  ADS  Google Scholar 

  50. Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).

    Article  ADS  Google Scholar 

  51. Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).

    Article  ADS  Google Scholar 

  52. Panova, O. et al. Diffraction imaging of nanocrystalline structures in organic semiconductor molecular thin films. Nat. Mater. 18, 860–865 (2019).

    Article  ADS  Google Scholar 

  53. Cao, M. C. et al. Theory and practice of electron diffraction from single atoms and extended objects using an EMPAD. Microscopy 67, i150–i161 (2018).

    Article  Google Scholar 

  54. Levin, B. D. A. Direct detectors and their applications in electron microscopy for materials science. J. Phys. Mater. 4, 042005 (2021).

    Article  Google Scholar 

  55. Plotkin-Swing, B. et al. 100,000 Diffraction patterns per second with live processing for 4D-STEM. Microsc. Microanal. 28, 422–424 (2022).

    Article  Google Scholar 

  56. Ciston, J. et al. The 4D camera: very high speed electron counting for 4D-STEM. Microsc. Microanal. 25, 1930–1931 (2019).

    Article  Google Scholar 

  57. Ercius, P. et al. The 4D camera — an 87 kHz frame-rate detector for counted 4D-STEM experiments. Microsc. Microanal. 26, 1896–1897 (2020).

    Article  Google Scholar 

  58. Philipp, H. et al. Wide dynamic range, 10 kHz framing detector for 4D-STEM. Microsc. Microanal. 27, 992–993 (2021).

    Article  Google Scholar 

  59. Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).

    Article  ADS  Google Scholar 

  60. MacLaren, I., Macgregor, T. A., Allen, C. S. & Kirkland, A. I. Detectors — the ongoing revolution in scanning transmission electron microscopy and why this important to material characterization. APL Mater. 8, 110901 (2020).

    Article  ADS  Google Scholar 

  61. Rose, H. Phase contrast in scanning transmission electron microscopy. Optik 39, 416–436 (1974).

    Google Scholar 

  62. De Christoph, H. Differential phase constrast in a STEM. Optik 41, 452–456 (1974).

    Google Scholar 

  63. Rose, H. Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251–267 (1976).

    Article  Google Scholar 

  64. Lazić, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016).

    Article  Google Scholar 

  65. Close, R., Chen, Z., Shibata, N. & Findlay, S. D. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. Ultramicroscopy 159, 124–137 (2015).

    Article  Google Scholar 

  66. Brown, H. G. et al. Measuring nanometre-scale electric fields in scanning transmission electron microscopy using segmented detectors. Ultramicroscopy 182, 169–178 (2017).

    Article  Google Scholar 

  67. Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    Article  ADS  Google Scholar 

  68. Gabor, D. & Bragg, W. L. Microscopy by reconstructed wave-fronts. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 197, 454–487 (1949).

    ADS  MATH  Google Scholar 

  69. Lichte, H. & Lehmann, M. Electron holography — basics and applications. Rep. Prog. Phys. 71, 016102 (2007).

    Article  ADS  Google Scholar 

  70. Linck, M., Freitag, B., Kujawa, S., Lehmann, M. & Niermann, T. State of the art in atomic resolution off-axis electron holography. Ultramicroscopy 116, 13–23 (2012).

    Article  Google Scholar 

  71. Bürger, J., Riedl, T. & Lindner, J. K. N. Influence of lens aberrations, specimen thickness and tilt on differential phase contrast STEM images. Ultramicroscopy 219, 113118 (2020).

    Article  Google Scholar 

  72. Lichte, H. Performance limits of electron holography. Ultramicroscopy 108, 256–262 (2008).

    Article  Google Scholar 

  73. Müller-Caspary, K. et al. Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy. Ultramicroscopy 178, 62–80 (2017).

    Article  Google Scholar 

  74. Addiego, C., Gao, W. & Pan, X. Thickness and defocus dependence of inter-atomic electric fields measured by scanning diffraction. Ultramicroscopy 208, 112850 (2020).

    Article  Google Scholar 

  75. Robert, H. L. et al. Dynamical diffraction of high-energy electrons investigated by focal series momentum-resolved scanning transmission electron microscopy at atomic resolution. Ultramicroscopy 233, 113425 (2022).

    Article  Google Scholar 

  76. Lehmann, M. Determination and correction of the coherent wave aberration from a single off-axis electron hologram by means of a genetic algorithm. Ultramicroscopy 85, 165–182 (2000).

    Article  Google Scholar 

  77. Rodenburg, J. M. in Advances in Imaging and Electron Physics Vol. 150 (ed. Hawkes, P.) 87–184 (Elsevier, 2008).

  78. Rodenburg, J. M. & Faulkner, H. M. L. A phase retrieval algorithm for shifting illumination. Appl. Phys. Lett. 85, 4795–4797 (2004).

    Article  ADS  Google Scholar 

  79. Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009).

    Article  Google Scholar 

  80. Rodenburg, J. M. & Bates, R. H. T. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 339, 521–553 (1992).

    ADS  Google Scholar 

  81. Nellist, P. D., McCallum, B. C. & Rodenburg, J. M. Resolution beyond the ‘information limit’ in transmission electron microscopy. Nature 374, 630–632 (1995).

    Article  ADS  Google Scholar 

  82. Maiden, A. M., Humphry, M. J. & Rodenburg, J. M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A 29, 1606–1614 (2012).

    Article  ADS  Google Scholar 

  83. Wang, P., Zhang, F., Gao, S., Zhang, M. & Kirkland, A. I. Electron ptychographic diffractive imaging of boron atoms in LaB6 crystals. Sci. Rep. 7, 2857 (2017).

    Article  ADS  Google Scholar 

  84. Zhou, L. et al. Low-dose phase retrieval of biological specimens using cryo-electron ptychography. Nat. Commun. 11, 2773 (2020).

    Article  ADS  Google Scholar 

  85. Yang, H. et al. Electron ptychographic phase imaging of light elements in crystalline materials using Wigner distribution deconvolution. Ultramicroscopy 180, 173–179 (2017).

    Article  Google Scholar 

  86. Pennycook, T. J. et al. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: experimental demonstration at atomic resolution. Ultramicroscopy 151, 160–167 (2015).

    Article  Google Scholar 

  87. Yang, H. et al. Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures. Nat. Commun. 7, 12532 (2016).

    Article  ADS  Google Scholar 

  88. Lozano, J. G., Martinez, G. T., Jin, L., Nellist, P. D. & Bruce, P. G. Low-dose aberration-free imaging of Li-rich cathode materials at various states of charge using electron ptychography. Nano Lett. 18, 6850–6855 (2018).

    Article  ADS  Google Scholar 

  89. Chen, Z. et al. Mixed-state electron ptychography enables sub-ångström resolution imaging with picometer precision at low dose. Nat. Commun. 11, 2994 (2020).

    Article  ADS  Google Scholar 

  90. Gao, S. et al. Electron ptychographic microscopy for three-dimensional imaging. Nat. Commun. 8, 163 (2017).

    Article  ADS  Google Scholar 

  91. Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 559, 343–349 (2018).

    Article  ADS  Google Scholar 

  92. Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

    Article  ADS  Google Scholar 

  93. Martinez, G. T. et al. Direct imaging of charge redistribution due to bonding at atomic resolution via electron ptychography. Preprint at https://doi.org/10.48550/arXiv.1907.12974 (2019).

  94. Lupini, A. R., Oxley, M. P. & Kalinin, S. V. Pushing the limits of electron ptychography. Science 362, 399–400 (2018).

    Article  ADS  Google Scholar 

  95. Rodenburg, J. & Maiden, A. in Springer Handbook of Microscopy (eds Hawkes, P. W. & Spence, J. C. H.) 819–904 (Springer, 2019).

  96. Ge, R. et al. Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434–441 (2018).

    Article  ADS  Google Scholar 

  97. Kim, M. et al. Zero-static power radio-frequency switches based on MoS2 atomristors. Nat. Commun. 9, 2524 (2018).

    Article  ADS  Google Scholar 

  98. Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    Article  ADS  Google Scholar 

  99. Siao, M. D. et al. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nat. Commun. 9, 1442 (2018).

    Article  ADS  Google Scholar 

  100. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  ADS  Google Scholar 

  101. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  102. Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).

    Article  Google Scholar 

  103. Wang, L. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).

    Article  ADS  Google Scholar 

  104. Fang, S. et al. Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy. Nat. Commun. 10, 1127 (2019).

    Article  ADS  Google Scholar 

  105. Han, Y. et al. Sub-nanometre channels embedded in two-dimensional materials. Nat. Mater. 17, 129–133 (2018).

    Article  ADS  Google Scholar 

  106. Huang, L. et al. Anomalous fracture in two-dimensional rhenium disulfide. Sci. Adv. 6, eabc2282 (2020).

    Article  ADS  Google Scholar 

  107. O’Leary, C. M. et al. Phase reconstruction using fast binary 4D STEM data. Appl. Phys. Lett. 116, 124101 (2020).

    Article  ADS  Google Scholar 

  108. Chang, S. L. Y., Dwyer, C., Barthel, J., Boothroyd, C. B. & Dunin-Borkowski, R. E. Performance of a direct detection camera for off-axis electron holography. Ultramicroscopy 161, 90–97 (2016).

    Article  Google Scholar 

  109. Müller-Caspary, K. et al. Atomic-scale quantification of charge densities in two-dimensional materials. Phys. Rev. B 98, 121408 (2018).

    Article  ADS  Google Scholar 

  110. Ishikawa, R. et al. Direct electric field imaging of graphene defects. Nat. Commun. 9, 3878 (2018).

    Article  ADS  Google Scholar 

  111. O’Leary, C. M., Haas, B., Koch, C. T., Nellist, P. D. & Jones, L. Increasing spatial fidelity and SNR of 4D-STEM using multi-frame data fusion. Microsc. Microanal. 28, 1417–1427 (2022).

    Article  ADS  Google Scholar 

  112. Shibata, N. et al. Imaging of built-in electric field at a p–n junction by scanning transmission electron microscopy. Sci. Rep. 5, 10040 (2015).

    Article  ADS  Google Scholar 

  113. Rau, W. D., Schwander, P., Baumann, F. H., Höppner, W. & Ourmazd, A. Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys. Rev. Lett. 82, 2614–2617 (1999).

    Article  ADS  Google Scholar 

  114. McCartney, M. R. & Smith, D. J. Electron holography: phase imaging with nanometer resolution. Annu. Rev. Mater. Res. 37, 729–767 (2007).

    Article  ADS  Google Scholar 

  115. McCartney, M. R., Dunin-Borkowski, R. E. & Smith, D. J. Quantitative measurement of nanoscale electrostatic potentials and charges using off-axis electron holography: developments and opportunities. Ultramicroscopy 203, 105–118 (2019).

    Article  Google Scholar 

  116. Han, M.-G. et al. Sample preparation for precise and quantitative electron holographic analysis of semiconductor devices. Microsc. Microanal. 12, 295–301 (2006).

    Article  ADS  Google Scholar 

  117. Ikarashi, N., Takeda, H., Yako, K. & Hane, M. In-situ electron holography of surface potential response to gate voltage application in a sub-30-nm gate-length metal-oxide-semiconductor field-effect transistor. Appl. Phys. Lett. 100, 143508 (2012).

    Article  ADS  Google Scholar 

  118. Haas, B., Rouvière, J.-L., Boureau, V., Berthier, R. & Cooper, D. Direct comparison of off-axis holography and differential phase contrast for the mapping of electric fields in semiconductors by transmission electron microscopy. Ultramicroscopy 198, 58–72 (2019).

    Article  Google Scholar 

  119. Bruas, L. et al. Improved measurement of electric fields by nanobeam precession electron diffraction. J. Appl. Phys. 127, 205703 (2020).

    Article  ADS  Google Scholar 

  120. Koch, C. T. Towards full-resolution inline electron holography. Micron 63, 69–75 (2014).

    Article  Google Scholar 

  121. Schlom, D. G. et al. Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118–130 (2014).

    Article  Google Scholar 

  122. Huyan, H., Li, L., Addiego, C., Gao, W. & Pan, X. Structures and electronic properties of domain walls in BiFeO3 thin films. Natl Sci. Rev. 6, 669–683 (2019).

    Article  Google Scholar 

  123. Ye, F. et al. Emergent properties at oxide interfaces controlled by ferroelectric polarization. npj Comput. Mater. 7, 130 (2021).

    Article  ADS  Google Scholar 

  124. Ramesh, R. & Schlom, D. G. Creating emergent phenomena in oxide superlattices. Nat. Rev. Mater. 4, 257–268 (2019).

    Article  ADS  Google Scholar 

  125. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  ADS  Google Scholar 

  126. Niranjan, M. K., Wang, Y., Jaswal, S. S. & Tsymbal, E. Y. Prediction of a switchable two-dimensional electron gas at ferroelectric oxide interfaces. Phys. Rev. Lett. 103, 016804 (2009).

    Article  ADS  Google Scholar 

  127. Zhang, Z., Wu, P., Chen, L. & Wang, J. First-principles prediction of a two dimensional electron gas at the BiFeO3/SrTiO3 interface. Appl. Phys. Lett. 99, 062902 (2011).

    Article  ADS  Google Scholar 

  128. Fredrickson, K. D. & Demkov, A. A. Switchable conductivity at the ferroelectric interface: nonpolar oxides. Phys. Rev. B 91, 115126 (2015).

    Article  ADS  Google Scholar 

  129. Yin, B., Aguado-Puente, P., Qu, S. & Artacho, E. Two-dimensional electron gas at the PbTiO3/SrTiO3 interface: an ab initio study. Phys. Rev. B 92, 115406 (2015).

    Article  ADS  Google Scholar 

  130. Zhang, Y. et al. Anisotropic polarization-induced conductance at a ferroelectric–insulator interface. Nat. Nanotechnol. 13, 1132–1136 (2018).

    Article  ADS  Google Scholar 

  131. Li, L. et al. Giant resistive switching via control of ferroelectric charged domain walls. Adv. Mater. 28, 6574–6580 (2016).

    Article  ADS  Google Scholar 

  132. Ma, J. et al. Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nat. Nanotechnol. 13, 947–952 (2018).

    Article  ADS  Google Scholar 

  133. Campanini, M., Erni, R., Yang, C. H., Ramesh, R. & Rossell, M. D. Periodic giant polarization gradients in doped BiFeO3 thin films. Nano Lett. 18, 717–724 (2018).

    Article  ADS  Google Scholar 

  134. Campanini, M. et al. Atomic-resolution differential phase contrast STEM on ferroelectric materials: a mean-field approach. Phys. Rev. B 101, 184116 (2020).

    Article  ADS  Google Scholar 

  135. Bader, R. F. W. & Nguyen-Dang, T. T. in Advances in Quantum Chemistry Vol. 14 (ed. Löwdin, P.-O.) 63–124 (Academic Press, 1981).

  136. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  137. Huyan, H. et al. Direct observation of polarization-induced two-dimensional electron/hole gases at ferroelectric-insulator interface. npj Quantum Mater. 6, 88 (2021).

    Article  ADS  Google Scholar 

  138. Campanini, M. et al. Imaging and quantification of charged domain walls in BiFeO3. Nanoscale 12, 9186–9193 (2020).

    Article  Google Scholar 

  139. Zachman, M. J. et al. Measuring and directing charge transfer in heterogenous catalysts. Nat. Commun. 13, 3253 (2022).

    Article  ADS  Google Scholar 

  140. Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article  ADS  Google Scholar 

  141. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article  ADS  Google Scholar 

  142. Das, S. et al. Local negative permittivity and topological phase transition in polar skyrmions. Nat. Mater. 20, 194–201 (2021).

    Article  ADS  Google Scholar 

  143. Deb, P. et al. Imaging polarity in two dimensional materials by breaking Friedel’s Law. Ultramicroscopy 215, 113019 (2020).

    Article  Google Scholar 

  144. Seo, J., Koch, C. T., Ryu, S., Eom, C.-B. & Oh, S. H. Analysis of local charges at hetero-interfaces by electron holography—a comparative study of different techniques. Ultramicroscopy 231, 113236 (2021).

    Article  Google Scholar 

  145. Ozsoy-Keskinbora, C., Boothroyd, C. B., Dunin-Borkowski, R. E., van Aken, P. A. & Koch, C. T. Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity. Sci. Rep. 4, 7020 (2014).

    Article  ADS  Google Scholar 

  146. Ozsoy-Keskinbora, C., Boothroyd, C. B., Dunin-Borkowski, R. E., van Aken, P. A. & Koch, C. T. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography. Ultramicroscopy 165, 8–14 (2016).

    Article  Google Scholar 

  147. Nakajima, H. et al. Electrostatic potential measurement at the Pt/TiO2 interface using electron holography. J. Appl. Phys. 129, 174304 (2021).

    Article  ADS  Google Scholar 

  148. Wu, L., Meng, Q. & Zhu, Y. Mapping valence electron distributions with multipole density formalism using 4D-STEM. Ultramicroscopy 219, 113095 (2020).

    Article  Google Scholar 

  149. Zhang, C., Han, R., Zhang, A. R. & Voyles, P. M. Denoising atomic resolution 4D scanning transmission electron microscopy data with tensor singular value decomposition. Ultramicroscopy 219, 113123 (2020).

    Article  Google Scholar 

  150. Kohno, Y., Seki, T., Findlay, S. D., Ikuhara, Y. & Shibata, N. Real-space visualization of intrinsic magnetic fields of an antiferromagnet. Nature 602, 234–239 (2022).

    Article  ADS  Google Scholar 

  151. Addiego, C., Gao, W. & Pan, X. Multiscale electric field imaging of vortices in PbTiO3-SrTiO3 superlattice. Microsc. Microanal. 26, 466–468 (2020).

    Article  ADS  Google Scholar 

  152. Eldred, T. B., Smith, J. G. & Gao, W. Polarization fluctuation of BaTiO3 at unit cell level mapped by four-dimensional scanning transmission electron microscopy. J. Vac. Sci. Technol. A 40, 013205 (2021).

    Article  Google Scholar 

  153. Tan, H., Verbeeck, J., Abakumov, A. & Van Tendeloo, G. Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116, 24–33 (2012).

    Article  Google Scholar 

  154. Zhang, Z., Sigle, W. & Rühle, M. Atomic and electronic characterization of the a[100] dislocation core in SrTiO3. Phys. Rev. B 66, 094108 (2002).

    Article  ADS  Google Scholar 

  155. Egerton, R. Electron Energy-Loss Spectroscopy in the Electron Microscope 3rd edn (Springer, 2011).

  156. Muller, D. A. Simple model for relating EELS and XAS spectra of metals to changes in cohesive energy. Phys. Rev. B 58, 5989–5995 (1998).

    Article  ADS  Google Scholar 

  157. Hitchcock, A. P. Near edge electron energy loss spectroscopy: comparison to X-ray absorption. Jpn J. Appl. Phys. 32, 176 (1993).

    Article  ADS  Google Scholar 

  158. Mory, C., Kohl, H., Tencé, M. & Colliex, C. Experimental investigation of the ultimate EELS spatial resolution. Ultramicroscopy 37, 191–201 (1991).

    Article  Google Scholar 

  159. Hitchcock, A. P., Dynes, J. J., Johansson, G., Wang, J. & Botton, G. Comparison of NEXAFS microscopy and TEM-EELS for studies of soft matter. Micron 39, 741–748 (2008).

    Article  Google Scholar 

  160. Wang, Z. L., Yin, J. S. & Jiang, Y. D. EELS analysis of cation valence states and oxygen vacancies in magnetic oxides. Micron 31, 571–580 (2000).

    Article  Google Scholar 

  161. Rez, P. & Muller, D. A. The theory and interpretation of electron energy loss near-edge fine structure. Annu. Rev. Mater. Res. 38, 535–558 (2008).

    Article  ADS  Google Scholar 

  162. Colella, M., Lumpkin, G. R., Zhang, Z., Buck, E. C. & Smith, K. L. Determination of the uranium valence state in the brannerite structure using EELS, XPS, and EDX. Phys. Chem. Miner. 32, 52–64 (2005).

    Article  ADS  Google Scholar 

  163. Yoshiya, M., Tanaka, I., Kaneko, K. & Adachi, H. First principles calculation of chemical shifts in ELNES/NEXAFS of titanium oxides. J. Phys. Condens. Matter 11, 3217–3228 (1999).

    Article  ADS  Google Scholar 

  164. Lee, J. S. et al. Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface. Nat. Mater. 12, 703–706 (2013).

    Article  ADS  Google Scholar 

  165. Ma, C. et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ. Sci. 7, 1638–1642 (2014).

    Article  Google Scholar 

  166. Yu, L., Li, M., Wen, J., Amine, K. & Lu, J. (S)TEM-EELS as an advanced characterization technique for lithium-ion batteries. Mater. Chem. Front. 5, 5186–5193 (2021).

    Article  Google Scholar 

  167. Su, L. et al. Direct observation of elemental fluctuation and oxygen octahedral distortion-dependent charge distribution in high entropy oxides. Nat. Commun. 13, 2358 (2022).

    Article  ADS  Google Scholar 

  168. Gadre, C. A. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022).

    Article  ADS  Google Scholar 

  169. Li, L. et al. Observation of strong polarization enhancement in ferroelectric tunnel junctions. Nano Lett. 19, 6812–6818 (2019).

    Article  ADS  Google Scholar 

  170. Repp, J., Meyer, G., Stojković, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Article  ADS  Google Scholar 

  171. Gross, L. et al. High-resolution molecular orbital imaging using a p-wave STM tip. Phys. Rev. Lett. 107, 086101 (2011).

    Article  ADS  Google Scholar 

  172. Han, Z. et al. Imaging the halogen bond in self-assembled halogenbenzenes on silver. Science 358, 206–210 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under grant number DE-SC0014430, and partially by the National Science Foundation under grant number DMR-2034738.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Wenpei Gao or Xiaoqing Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addiego, C., Gao, W., Huyan, H. et al. Probing charge density in materials with atomic resolution in real space. Nat Rev Phys 5, 117–132 (2023). https://doi.org/10.1038/s42254-022-00541-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00541-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing