Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-Hermitian topology and exceptional-point geometries

Abstract

Non-Hermitian theory is a theoretical framework used to describe open systems. It offers a powerful tool in the characterization of both the intrinsic degrees of freedom of a system and the interactions with the external environment. The non-Hermitian framework consists of mathematical structures that are fundamentally different from those of Hermitian theories. These structures not only underpin novel approaches for precisely tailoring non-Hermitian systems for applications but also give rise to topologies not found in Hermitian systems. In this Review, we provide an overview of non-Hermitian topology by establishing its relationship with the behaviours of complex eigenvalues and biorthogonal eigenvectors. Special attention is given to exceptional points — branch-point singularities on the complex eigenvalue manifolds that exhibit nontrivial topological properties. We also discuss recent developments in non-Hermitian band topology, such as the non-Hermitian skin effect and non-Hermitian topological classifications.

Key points

  • A non-Hermitian Hamiltonian that describes an open system generically has complex eigenvalues, which must be studied on the complex plane, which leads to the emergence of eigenvalue topology, or spectral topology. This additional ‘layer’ of topology is a unique feature for non-Hermitian systems.

  • Spectral topology fundamentally affects the parallel-transport behaviours of eigenvectors of a non-Hermitian Hamiltonian.

  • Exceptional points are branch singularities on non-Hermitian eigenvalue manifolds and exhibit exotic topological phenomena associated with the winding of eigenvalues and eigenvectors.

  • The confluence of non-Hermiticity and band topology generates new phenomena such as the non-Hermitian skin effect, which is characterized by non-Bloch band theory and the re-establishment of bulk–boundary correspondence. It also ramifies the possible symmetry classes, thereby expanding the classifications of topological bands.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Eigenvalues and eigenvectors in non-Hermitian systems.
Fig. 2: Exceptional lines and arcs.
Fig. 3: A higher-order exceptional point and its hybrid topological characteristics.
Fig. 4: The non-Hermitian skin effect in a 1D lattice.

References

  1. Scholtz, F. G., Geyer, H. B. & Nahne, F. J. W. Quasi-Hermitian operators in quantum mechanics and the variational principle. Ann. Phys. 213, 74–101 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  2. Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bender, C. M., Brody, D. C. & Jones, H. F. Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  5. Dorey, P., Dunning, C. & Tateo, R. Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics. J. Phys. Math. Gen. 34, 5679–5704 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  6. Dorey, P., Dunning, C. & Tateo, R. The ODE/IM correspondence. J. Phys. Math. Theor. 40, R205–R283 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  7. Mostafazadeh, A. Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. J. Math. Phys. 43, 2814 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. Mostafazadeh, A. Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries. J. Math. Phys. 43, 3944–3951 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  9. Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007).

    Article  MathSciNet  Google Scholar 

  10. Philipp, M., Brentano, P., von, Pascovici, G. & Richter, A. Frequency and width crossing of two interacting resonances in a microwave cavity. Phys. Rev. E 62, 1922–1926 (2000).

    Article  Google Scholar 

  11. Dembowski, C. et al. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett. 86, 787–790 (2001). An experimental confirmation of the topological structure around an EP by measuring the evolution of wavefunctions.

    Article  Google Scholar 

  12. Stehmann, T., Heiss, W. D. & Scholtz, F. G. Observation of exceptional points in electronic circuits. J. Phys. Math. Gen. 37, 7813–7819 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    Article  Google Scholar 

  14. Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article  Google Scholar 

  15. Choi, Y. et al. Quasieigenstate coalescence in an atom-cavity quantum composite. Phys. Rev. Lett. 104, 153601 (2010).

    Article  Google Scholar 

  16. Bittner, S. et al. PT symmetry and spontaneous symmetry breaking in a microwave billiard. Phys. Rev. Lett. 108, 024101 (2012).

    Article  Google Scholar 

  17. Kato, T. Perturbation Theory for Linear Operators (Springer, 1995).

  18. Heiss, W. D. & Sannino, A. L. Avoided level crossing and exceptional points. J. Phys. Math. Gen. 23, 1167–1178 (1990).

    Article  Google Scholar 

  19. Heiss, W. D. Phases of wave functions and level repulsion. Eur. Phys. J. D 7, 1–4 (1999).

    Article  Google Scholar 

  20. Longhi, S. Parity-time symmetry meets photonics: A new twist in non-Hermitian optics. Europhys. Lett. 120, 64001 (2017).

    Article  Google Scholar 

  21. Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).

    Article  Google Scholar 

  22. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article  Google Scholar 

  23. Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  24. Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    Article  Google Scholar 

  25. Parto, M., Liu, Y. G. N., Bahari, B., Khajavikhan, M. & Christodoulides, D. N. Non-Hermitian and topological photonics: optics at an exceptional point. Nanophotonics 10, 403–423 (2020).

    Article  Google Scholar 

  26. Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249–435 (2020).

    Article  Google Scholar 

  27. Wang, H. et al. Topological physics of non-Hermitian optics and photonics: a review. J. Opt. 23, 123001 (2021).

    Article  Google Scholar 

  28. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article  MathSciNet  Google Scholar 

  29. Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    Article  Google Scholar 

  30. Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018). A comprehensive study on non-Hermitian topology and its classification.

    Google Scholar 

  31. Kawabata, K., Bessho, T. & Sato, M. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett. 123, 066405 (2019). This paper analyses the classification of topological bands in the presence of EPs.

    Article  MathSciNet  Google Scholar 

  32. Shen, H., Zhen, B. & Fu, L. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).

    Article  MathSciNet  Google Scholar 

  33. Wiersig, J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).

    Article  Google Scholar 

  34. Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).

    Article  Google Scholar 

  35. Lai, Y.-H., Lu, Y.-K., Suh, M.-G., Yuan, Z. & Vahala, K. Observation of the exceptional-point-enhanced Sagnac effect. Nature 576, 65–69 (2019).

    Article  Google Scholar 

  36. Hokmabadi, M. P., Schumer, A., Christodoulides, D. N. & Khajavikhan, M. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).

    Article  Google Scholar 

  37. Heiss, W. D. & Harney, H. L. The chirality of exceptional points. Eur. Phys. J. D 17, 149–151 (2001).

    Article  Google Scholar 

  38. Dembowski, C. et al. Observation of a chiral state in a microwave cavity. Phys. Rev. Lett. 90, 034101 (2003).

    Article  Google Scholar 

  39. Heiss, W. D. The physics of exceptional points. J. Phys. Math. Theor. 45, 444016 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  40. Leykam, D., Bliokh, K. Y., Huang, C., Chong, Y. D. & Nori, F. Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett. 118, 040401 (2017).

    Article  MathSciNet  Google Scholar 

  41. Yang, Z., Schnyder, A. P., Hu, J. & Chiu, C.-K. Fermion doubling theorems in two-dimensional non-Hermitian systems for Fermi points and exceptional points. Phys. Rev. Lett. 126, 086401 (2021).

    Article  MathSciNet  Google Scholar 

  42. Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    Article  Google Scholar 

  43. Tang, W., Ding, K. & Ma, G. Direct measurement of topological properties of an exceptional parabola. Phys. Rev. Lett. 127, 034301 (2021).

    Article  Google Scholar 

  44. Carlström, J., Stålhammar, M., Budich, J. C. & Bergholtz, E. J. Knotted non-Hermitian metals. Phys. Rev. B 99, 161115 (2019).

    Article  Google Scholar 

  45. Hu, H. & Zhao, E. Knots and non-Hermitian Bloch bands. Phys. Rev. Lett. 126, 010401 (2021).

    Article  MathSciNet  Google Scholar 

  46. Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).

    Article  Google Scholar 

  47. Patil, Y. S. S. et al. Measuring the knot of degeneracies and the eigenvalue braids near a third-order exceptional point. Nature 607, 271–275 (2022). References 46 and 47 experimentally demonstrate the eigenvalue knots of order-2 and order-3 EPs.

    Article  Google Scholar 

  48. Weigert, S. Completeness and orthonormality in PT-symmetric quantum systems. Phys. Rev. A 68, 062111 (2003).

    Article  MathSciNet  Google Scholar 

  49. Brody, D. C. Biorthogonal quantum mechanics. J. Phys. Math. Theor. 47, 035305 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  50. Xiao, Y.-X., Zhang, Z.-Q., Hang, Z. H. & Chan, C. T. Anisotropic exceptional points of arbitrary order. Phys. Rev. B 99, 241403 (2019).

    Article  Google Scholar 

  51. Chen, H.-Z. et al. Revealing the missing dimension at an exceptional point. Nat. Phys. 16, 571–578 (2020).

    Article  Google Scholar 

  52. Lee, C. H. Exceptional bound states and negative entanglement entropy. Phys. Rev. Lett. 128, 010402 (2022).

    Article  MathSciNet  Google Scholar 

  53. Chang, P.-Y., You, J.-S., Wen, X. & Ryu, S. Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory. Phys. Rev. Res. 2, 033069 (2020).

    Article  Google Scholar 

  54. Rotter, I. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. Math. Theor. 42, 153001 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  55. Bulgakov, E. N., Rotter, I. & Sadreev, A. F. Phase rigidity and avoided level crossings in the complex energy plane. Phys. Rev. E 74, 056204 (2006).

    Article  Google Scholar 

  56. Ding, K., Ma, G., Zhang, Z. Q. & Chan, C. T. Experimental demonstration of an anisotropic exceptional point. Phys. Rev. Lett. 121, 085702 (2018).

    Article  Google Scholar 

  57. Ding, K., Ma, G., Xiao, M., Zhang, Z. Q. & Chan, C. T. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X 6, 021007 (2016). The experimental verification of the existence of higher-order EPs in a four-state system and a study on their topology.

    Google Scholar 

  58. Wojcik, C. C., Sun, X.-Q., Bzdušek, T. & Fan, S. Homotopy characterization of non-Hermitian Hamiltonians. Phys. Rev. B 101, 205417 (2020).

    Article  Google Scholar 

  59. Li, Z. & Mong, R. S. K. Homotopical characterization of non-Hermitian band structures. Phys. Rev. B 103, 155129 (2021). References 58 and 59 use homotopy theory to comprehensively study the spectral topology in non-Hermitian bands.

    Article  Google Scholar 

  60. Vanderbilt, D. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ. Press, 2018).

  61. Lee, S.-Y., Ryu, J.-W., Kim, S. W. & Chung, Y. Geometric phase around multiple exceptional points. Phys. Rev. A 85, 064103 (2012).

    Article  Google Scholar 

  62. Dembowski, C. et al. Encircling an exceptional point. Phys. Rev. E 69, 056216 (2004).

    Article  Google Scholar 

  63. Lee, S.-B. et al. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett. 103, 134101 (2009).

    Article  Google Scholar 

  64. Budich, J. C., Carlström, J., Kunst, F. K. & Bergholtz, E. J. Symmetry-protected nodal phases in non-Hermitian systems. Phys. Rev. B 99, 041406 (2019).

    Article  Google Scholar 

  65. Okugawa, R. & Yokoyama, T. Topological exceptional surfaces in non-Hermitian systems with parity-time and parity-particle-hole symmetries. Phys. Rev. B 99, 041202 (2019).

    Article  Google Scholar 

  66. Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

    Article  Google Scholar 

  67. Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhou, H., Lee, J. Y., Liu, S. & Zhen, B. Exceptional surfaces in PT-symmetric non-Hermitian photonic systems. Optica 6, 190–193 (2019).

    Article  Google Scholar 

  69. Zhang, X., Ding, K., Zhou, X., Xu, J. & Jin, D. Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons. Phys. Rev. Lett. 123, 237202 (2019).

    Article  Google Scholar 

  70. Rui, W. B., Hirschmann, M. M. & Schnyder, A. P. PT-symmetric non-Hermitian Dirac semimetals. Phys. Rev. B 100, 245116 (2019).

    Article  Google Scholar 

  71. Szameit, A., Rechtsman, M. C., Bahat-Treidel, O. & Segev, M. PT-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806 (2011).

    Article  Google Scholar 

  72. Cerjan, A., Raman, A. & Fan, S. Exceptional contours and band structure design in parity-time symmetric photonic crystals. Phys. Rev. Lett. 116, 203902 (2016).

    Article  Google Scholar 

  73. Cerjan, A. et al. Experimental realization of a Weyl exceptional ring. Nat. Photon. 13, 623–628 (2019).

    Article  Google Scholar 

  74. Yang, Z., Chiu, C.-K., Fang, C. & Hu, J. Jones polynomial and knot transitions in Hermitian and non-Hermitian topological semimetals. Phys. Rev. Lett. 124, 186402 (2020).

    Article  MathSciNet  Google Scholar 

  75. Carlström, J. & Bergholtz, E. J. Exceptional links and twisted Fermi ribbons in non-Hermitian systems. Phys. Rev. A 98, 042114 (2018).

    Article  Google Scholar 

  76. Yang, Z. & Hu, J. Non-Hermitian Hopf-link exceptional line semimetals. Phys. Rev. B 99, 081102 (2019).

    Article  Google Scholar 

  77. Cui, X., Zhang, R.-Y., Chen, W.-J., Zhang, Z.-Q. & Chan, C. T. Symmetry-protected topological exceptional chains in non-Hermitian crystals. Preprint at https://arxiv.org/abs/2204.08052 (2022).

  78. Ghorashi, S. A. A., Li, T., Sato, M. & Hughes, T. L. Non-Hermitian higher-order Dirac semimetals. Phys. Rev. B 104, L161116 (2021).

    Article  Google Scholar 

  79. Ghorashi, S. A. A., Li, T. & Sato, M. Non-Hermitian higher-order Weyl semimetals. Phys. Rev. B 104, L161117 (2021).

    Article  Google Scholar 

  80. Liu, T., He, J. J., Yang, Z. & Nori, F. Higher-order Weyl-exceptional-ring semimetals. Phys. Rev. Lett. 127, 196801 (2021).

    Article  MathSciNet  Google Scholar 

  81. Zhong, Q. et al. Sensing with exceptional surfaces in order to combine sensitivity with robustness. Phys. Rev. Lett. 122, 153902 (2019).

    Article  Google Scholar 

  82. Qin, G. et al. Experimental realization of sensitivity enhancement and suppression with exceptional surfaces. Laser Photonics Rev. 15, 2000569 (2021).

    Article  Google Scholar 

  83. Soleymani, S. et al. Chiral and degenerate perfect absorption on exceptional surfaces. Nat. Commun. 13, 599 (2022).

    Article  Google Scholar 

  84. Tiwari, A. & Bzdušek, T. Non-Abelian topology of nodal-line rings in PT-symmetric systems. Phys. Rev. B 101, 195130 (2020).

    Article  Google Scholar 

  85. Xue, H., Wang, Q., Zhang, B. & Chong, Y. D. Non-Hermitian Dirac cones. Phys. Rev. Lett. 124, 236403 (2020).

    Article  MathSciNet  Google Scholar 

  86. Sayyad, S., Stalhammar, M., Rodland, L. & Kunst, F. K. Symmetry-protected exceptional and nodal points in non-Hermitian systems. Preprint at http://arxiv.org/abs/2204.13945 (2022).

  87. Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).

    Article  Google Scholar 

  88. Fang, X. et al. Observation of higher-order exceptional points in a non-local acoustic metagrating. Commun. Phys. 4, 271 (2021).

    Article  Google Scholar 

  89. Wang, S. et al. Arbitrary order exceptional point induced by photonic spin–orbit interaction in coupled resonators. Nat. Commun. 10, 832 (2019).

    Article  Google Scholar 

  90. Bian, Z. et al. Conserved quantities in parity-time symmetric systems. Phys. Rev. Res. 2, 022039 (2020).

    Article  Google Scholar 

  91. Xiao, Z., Li, H., Kottos, T. & Alù, A. Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Phys. Rev. Lett. 123, 213901 (2019).

    Article  Google Scholar 

  92. Teimourpour, M. H., El-Ganainy, R., Eisfeld, A., Szameit, A. & Christodoulides, D. N. Light transport in PT-invariant photonic structures with hidden symmetries. Phys. Rev. A 90, 053817 (2014).

    Article  Google Scholar 

  93. Zhang, X. Z., Jin, L. & Song, Z. Perfect state transfer in PT-symmetric non-Hermitian networks. Phys. Rev. A 85, 012106 (2012).

    Article  Google Scholar 

  94. Zhang, S. M., Zhang, X. Z., Jin, L. & Song, Z. High-order exceptional points in supersymmetric arrays. Phys. Rev. A 101, 033820 (2020).

    Article  MathSciNet  Google Scholar 

  95. Heiss, W. D. Chirality of wavefunctions for three coalescing levels. J. Phys. Math. Theor. 41, 244010 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  96. Demange, G. & Graefe, E.-M. Signatures of three coalescing eigenfunctions. J. Phys. Math. Theor. 45, 025303 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  97. Mandal, I. & Bergholtz, E. J. Symmetry and higher-order exceptional points. Phys. Rev. Lett. 127, 186601 (2021).

    Article  Google Scholar 

  98. Delplace, P., Yoshida, T. & Hatsugai, Y. Symmetry-protected multifold exceptional points and their topological characterization. Phys. Rev. Lett. 127, 186602 (2021).

    Article  Google Scholar 

  99. Sayyad, S. & Kunst, F. K. Realizing exceptional points of any order in the presence of symmetry. Phys. Rev. Res. 4, 023130 (2022).

    Article  Google Scholar 

  100. Tang, W. et al. Exceptional nexus with a hybrid topological invariant. Science 370, 1077–1080 (2020). This study experimentally verified that multiple VWNs can exist for a single higher-order EP.

    Article  MathSciNet  MATH  Google Scholar 

  101. Schindler, S. T. & Bender, C. M. Winding in non-Hermitian systems. J. Phys. Math. Theor. 51, 055201 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  102. Zhong, Q., Khajavikhan, M., Christodoulides, D. N. & El-Ganainy, R. Winding around non-Hermitian singularities. Nat. Commun. 9, 4808 (2018). A study on the permutation of non-Hermitian eigenstates when driven around EPs.

    Article  Google Scholar 

  103. Tang, W., Ding, K. & Ma, G. Experimental realization of non-Abelian permutations in a three-state non-Hermitian system. Natl. Sci. Rev. https://doi.org/10.1093/nsr/nwac010 (2022). An experimental verification of non-Abelian state permutations in a three-state non-Hermitian system.

    Article  Google Scholar 

  104. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  Google Scholar 

  105. Xu, Y., Wang, S.-T. & Duan, L.-M. Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett. 118, 045701 (2017).

    Article  Google Scholar 

  106. Martinez Alvarez, V. M., Barrios Vargas, J. E. & Foa Torres, L. E. F. Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B 97, 121401 (2018).

    Article  Google Scholar 

  107. Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018). This seminal paper studies NHSEs and their effects on bulk–boundary correspondence.

    Article  Google Scholar 

  108. McDonald, A., Pereg-Barnea, T. & Clerk, A. A. Phase-dependent chiral transport and effective non-Hermitian dynamics in a bosonic Kitaev-Majorana chain. Phys. Rev. X 8, 041031 (2018).

    Google Scholar 

  109. Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121, 026808 (2018). A seminal paper on NHSEs that proposed the idea of biorthogonal polarization to correctly identify the topological transition point in the presence of NHSEs.

    Article  Google Scholar 

  110. Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020). Experimental demonstration of NHSEs in optics.

    Article  MathSciNet  MATH  Google Scholar 

  111. Helbig, T. et al. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

    Article  Google Scholar 

  112. Hofmann, T. et al. Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res. 2, 023265 (2020).

    Article  Google Scholar 

  113. Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    Article  Google Scholar 

  114. Liang, Q. et al. Dynamic signatures of non-Hermitian skin effect and topology in ultracold atoms. Phys. Rev. Lett. 129, 070401 (2022).

    Article  Google Scholar 

  115. Brandenbourger, M., Locsin, X., Lerner, E. & Coulais, C. Non-reciprocal robotic metamaterials. Nat. Commun. 10, 4608 (2019).

    Article  Google Scholar 

  116. Ghatak, A., Brandenbourger, M., van Wezel, J. & Coulais, C. Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561–29568 (2020).

    Article  Google Scholar 

  117. Zhang, L. et al. Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun. 12, 6297 (2021).

    Article  Google Scholar 

  118. Yokomizo, K. & Murakami, S. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett. 123, 066404 (2019). Another seminal paper on NHSEs and GBZs.

    Article  MathSciNet  Google Scholar 

  119. Böttcher, A. & Grudsky, S. M. Spectral Properties of Banded Toeplitz Matrices (SIAM, 2005).

  120. Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

    Article  MathSciNet  Google Scholar 

  121. Zhang, K., Yang, Z. & Fang, C. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402 (2020). References 120 and 121 unveil the relation between the emergence of NHSEs and the spectral topology of the bands.

    Article  MathSciNet  Google Scholar 

  122. Zhang, K., Yang, Z. & Fang, C. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun. 13, 2496 (2022).

    Article  Google Scholar 

  123. Song, F., Yao, S. & Wang, Z. Non-Hermitian topological invariants in real space. Phys. Rev. Lett. 123, 246801 (2019).

    Article  MathSciNet  Google Scholar 

  124. Longhi, S. Probing non-Hermitian skin effect and non-Bloch phase transitions. Phys. Rev. Res. 1, 023013 (2019).

    Article  Google Scholar 

  125. Yao, S., Song, F. & Wang, Z. Non-Hermitian Chern bands. Phys. Rev. Lett. 121, 136802 (2018).

    Article  Google Scholar 

  126. Yang, Z., Zhang, K., Fang, C. & Hu, J. Non-Hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett. 125, 226402 (2020).

    Article  MathSciNet  Google Scholar 

  127. Lee, C. H., Li, L., Thomale, R. & Gong, J. Unraveling non-Hermitian pumping: emergent spectral singularities and anomalous responses. Phys. Rev. B 102, 085151 (2020).

    Article  Google Scholar 

  128. Edvardsson, E., Kunst, F. K., Yoshida, T. & Bergholtz, E. J. Phase transitions and generalized biorthogonal polarization in non-Hermitian systems. Phys. Rev. Res. 2, 043046 (2020).

    Article  Google Scholar 

  129. Borgnia, D. S., Kruchkov, A. J. & Slager, R.-J. Non-Hermitian boundary modes and topology. Phys. Rev. Lett. 124, 056802 (2020).

    Article  MathSciNet  Google Scholar 

  130. Lee, C. H. & Thomale, R. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B 99, 201103 (2019).

    Article  Google Scholar 

  131. Jin, L. & Song, Z. Bulk-boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry. Phys. Rev. B 99, 081103 (2019).

    Article  Google Scholar 

  132. Lv, C., Zhang, R., Zhai, Z. & Zhou, Q. Curving the space by non-Hermiticity. Nat. Commun. 13, 2184 (2022).

    Article  Google Scholar 

  133. Xiao, Y.-X. & Chan, C. T. Topology in non-Hermitian Chern insulators with skin effect. Phys. Rev. B 105, 075128 (2022).

    Article  Google Scholar 

  134. Lee, C. H., Li, L. & Gong, J. Hybrid higher-order skin-topological modes in nonreciprocal systems. Phys. Rev. Lett. 123, 016805 (2019).

    Article  Google Scholar 

  135. Zou, D. et al. Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun. 12, 7201 (2021).

    Article  Google Scholar 

  136. Zhang, X., Tian, Y., Jiang, J.-H., Lu, M.-H. & Chen, Y.-F. Observation of higher-order non-Hermitian skin effect. Nat. Commun. 12, 5377 (2021).

    Article  Google Scholar 

  137. Zhang, K., Yang, Z. & Fang, C. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun. 13, 2496 (2022).

    Article  Google Scholar 

  138. Gao, P., Willatzen, M. & Christensen, J. Anomalous topological edge states in non-Hermitian piezophononic media. Phys. Rev. Lett. 125, 206402 (2020).

    Article  Google Scholar 

  139. Zhu, W., Teo, W. X., Li, L. & Gong, J. Delocalization of topological edge states. Phys. Rev. B 103, 195414 (2021).

    Article  Google Scholar 

  140. Teo, W. X., Zhu, W. & Gong, J. Tunable two-dimensional laser arrays with zero-phase locking. Phys. Rev. B 105, L201402 (2022).

    Article  Google Scholar 

  141. Wang, W., Wang, X. & Ma, G. Non-Hermitian morphing of topological modes. Nature 608, 50–55 (2022).

    Article  Google Scholar 

  142. Kawabata, K. Higher-order non-Hermitian skin effect. Phys. Rev. B 102, 205118 (2020).

    Article  Google Scholar 

  143. Li, L., Lee, C. H., Mu, S. & Gong, J. Critical non-Hermitian skin effect. Nat. Commun. 11, 5491 (2020).

    Article  Google Scholar 

  144. Longhi, S. Self-healing of non-Hermitian topological skin modes. Phys. Rev. Lett. 128, 157601 (2022).

    Article  MathSciNet  Google Scholar 

  145. Xue, W.-T., Hu, Y.-M., Song, F. & Wang, Z. Non-Hermitian edge burst. Phys. Rev. Lett. 128, 120401 (2022).

    Article  MathSciNet  Google Scholar 

  146. Lee, C. H. & Longhi, S. Ultrafast and anharmonic Rabi oscillations between non-Bloch bands. Commun. Phys. 3, 147 (2020).

    Article  Google Scholar 

  147. Li, L., Mu, S., Lee, C. H. & Gong, J. Quantized classical response from spectral winding topology. Nat. Commun. 12, 5294 (2021).

    Article  Google Scholar 

  148. Yang, R. et al. Designing non-Hermitian real spectra through electrostatics. Sci. Bull. https://doi.org/10.1016/j.scib.2022.08.005 (2022).

    Article  Google Scholar 

  149. Wegner, F. Inverse participation ratio in 2+ε dimensions. Z. Phys. B 36, 209–214 (1980).

    Article  Google Scholar 

  150. Wang, P., Jin, L. & Song, Z. Non-Hermitian phase transition and eigenstate localization induced by asymmetric coupling. Phys. Rev. A 99, 062112 (2019).

    Article  Google Scholar 

  151. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019). An in-depth study on symmetries in non-Hermitian systems and their roles in the classification of non-Hermitian band topology.

    Google Scholar 

  152. Kitaev, A., Lebedev, V. & Feigel’man, M. Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22 (2009).

    Article  MATH  Google Scholar 

  153. Ryu, S., Schnyder, A. P., Furusaki, A. & Ludwig, A. W. W. Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010).

    Article  Google Scholar 

  154. Altland, A. & Zirnbauer, M. R. Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997).

    Article  Google Scholar 

  155. Kawabata, K., Higashikawa, S., Gong, Z., Ashida, Y. & Ueda, M. Topological unification of time-reversal and particle-hole symmetries in non-Hermitian physics. Nat. Commun. 10, 297 (2019).

    Article  Google Scholar 

  156. Zhou, H. & Lee, J. Y. Periodic table for topological bands with non-Hermitian symmetries. Phys. Rev. B 99, 235112 (2019).

    Article  Google Scholar 

  157. Li, X., Liu, Y., Lin, Z., Ng, J. & Chan, C. T. Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters. Nat. Commun. 12, 6597 (2021).

    Article  Google Scholar 

  158. Chong, Y. D., Ge, L. & Stone, A. D. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011).

    Article  Google Scholar 

  159. Song, Q., Odeh, M., Zúñiga-Pérez, J., Kanté, B. & Genevet, P. Plasmonic topological metasurface by encircling an exceptional point. Science 373, 1133–1137 (2021).

    Article  Google Scholar 

  160. Uzdin, R., Mailybaev, A. & Moiseyev, N. On the observability and asymmetry of adiabatic state flips generated by exceptional points. J. Phys. Math. Theor. 44, 435302 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  161. Berry, M. V. & Uzdin, R. Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon. J. Phys. Math. Theor. 44, 435303 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  162. Milburn, T. J. et al. General description of quasiadiabatic dynamical phenomena near exceptional points. Phys. Rev. A 92, 052124 (2015).

    Article  Google Scholar 

  163. Hassan, A. U. et al. Chiral state conversion without encircling an exceptional point. Phys. Rev. A 96, 052129 (2017).

    Article  Google Scholar 

  164. Nasari, H. et al. Observation of chiral state transfer without encircling an exceptional point. Nature 605, 256–261 (2022).

    Article  Google Scholar 

  165. Gilary, I., Mailybaev, A. A. & Moiseyev, N. Time-asymmetric quantum-state-exchange mechanism. Phys. Rev. A 88, 010102 (2013).

    Article  Google Scholar 

  166. Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).

    Article  Google Scholar 

  167. Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).

    Article  Google Scholar 

  168. Hassan, A. U., Zhen, B., Soljačić, M., Khajavikhan, M. & Christodoulides, D. N. Dynamically encircling exceptional points: exact evolution and polarization state conversion. Phys. Rev. Lett. 118, 093002 (2017).

    Article  Google Scholar 

  169. Zhang, X.-L., Wang, S., Hou, B. & Chan, C. T. Dynamically encircling exceptional points: in situ control of encircling loops and the role of the starting point. Phys. Rev. X 8, 021066 (2018).

    Google Scholar 

  170. Zhang, X.-L. & Chan, C. T. Hybrid exceptional point and its dynamical encircling in a two-state system. Phys. Rev. A 98, 033810 (2018).

    Article  Google Scholar 

  171. Yoon, J. W. et al. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature 562, 86–90 (2018).

    Article  Google Scholar 

  172. Zhang, X.-L. & Chan, C. T. Dynamically encircling exceptional points in a three-mode waveguide system. Commun. Phys. 2, 63 (2019).

    Article  Google Scholar 

  173. Zhang, X.-L., Jiang, T. & Chan, C. T. Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes. Light Sci. Appl. 8, 88 (2019).

    Article  Google Scholar 

  174. Geng, L., Zhang, W., Zhang, X. & Zhou, X. Topological mode switching in modulated structures with dynamic encircling of an exceptional point. Proc. R. Soc. Math. Phys. Eng. Sci. 477, 20200766 (2021).

    Google Scholar 

  175. Yu, F., Zhang, X.-L., Tian, Z.-N., Chen, Q.-D. & Sun, H.-B. General rules governing the dynamical encircling of an arbitrary number of exceptional points. Phys. Rev. Lett. 127, 253901 (2021).

    Article  Google Scholar 

  176. Denner, M. M. et al. Exceptional topological insulators. Nat. Commun. 12, 5681 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

K.D. and G.M. thanks Zhen Li, Wei Wang and Mengying Hu for their help with preparing the figures and Ruo-Yang Zhang for discussions. C.F. thanks Zhesen Yang and Kai Zhang for discussions. G.M. is supported by the National Natural Science Foundation of China (11922416) and the Hong Kong Research Grants Council (RFS2223-2S01, 12302420, 12300419, 12301822). K.D. is supported by the National Natural Science Foundation of China (12174072) and the Natural Science Foundation of Shanghai (21ZR1403700). C.F. is supported by the Ministry of Science and Technology of China (2016YFA0302400) and the Chinese Academy of Sciences (XDB33000000).

Author information

Authors and Affiliations

Authors

Contributions

All authors surveyed the literature and prepared the manuscript.

Corresponding authors

Correspondence to Kun Ding, Chen Fang or Guancong Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Ching Hua Lee, Liang Jin and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Branch cut

A curve across which a multivalued complex function is discontinuous.

Defective matrix

A square matrix that does not have a complete basis of eigenvectors.

Jordan canonical form

A particular form of the upper triangular matrix, which is block-diagonalized filled with Jordan block matrices.

Fibre bundles

A mathematical structure composed of three topological spaces (total space, base space and fibres) and a projection map. The fibres adhere to the base space and their product space further gives the total space by the projection map, a continuous surjection satisfying a local triviality condition. In band theory, wavefunctions are considered as fibres and the momentum space is the base space, such that wavefunctions’ evolution in the momentum space is mathematically described by fibre bundles.

Antilinear symmetry

The symmetry defined by an antilinear operator, a map between two complex vector spaces that are additive but conjugate homogeneous.

Diabolic point

A parametric point at which a matrix has two degenerate eigenvalues and the eigenvectors still span the vector space.

Jordan block form

A matrix with zeroes everywhere except for the diagonal and with the superdiagonal being equal to 1.

Zak phase

The Berry phase defined for 1D Bloch states.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, K., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat Rev Phys 4, 745–760 (2022). https://doi.org/10.1038/s42254-022-00516-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00516-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing