Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Poincaré engineering of surface plasmon polaritons

Light–matter interactions are already used to induce new states in condensed-matter systems — such as in Floquet engineering. Combining these ideas with the vectorial properties of structured light promises to further expand the toolbox for optical control of quantum properties of matter.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The concept of Poincaré engineering.


  1. Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).

    Article  ADS  Google Scholar 

  2. de la Torre, A. et al. Colloquium: Nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).

    Article  ADS  Google Scholar 

  3. Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).

    Article  ADS  Google Scholar 

  4. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  ADS  Google Scholar 

  5. Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  6. Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  7. Du, L. P., Yang, A. P., Zayats, A. V. & Yuan, X. C. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019).

    Article  Google Scholar 

  8. Dai, Y. et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020).

    Article  ADS  Google Scholar 

  9. Dąbrowski, M., Dai, Y. & Petek, H. Ultrafast photoemission electron microscopy: Imaging plasmons in space and time. Chem. Rev. 120, 6247–6287 (2020).

    Article  Google Scholar 

  10. Dai, Y. et al. Ultrafast microscopy of a twisted plasmonic spin skyrmion. Appl. Phys. Rev. 9, 011420 (2022).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hrvoje Petek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Ghosh, A., Yang, S. et al. Poincaré engineering of surface plasmon polaritons. Nat Rev Phys 4, 562–564 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing