Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rashba-like physics in condensed matter

Abstract

Spin–orbit coupling induces a unique form of Zeeman interaction in momentum space in materials that lack inversion symmetry: the electron’s spin is locked on an effective magnetic field that is odd in momentum. The resulting interconnection between the electron’s momentum and its spin leads to various effects such as electric dipole spin resonance, anisotropic spin relaxation and the Aharonov–Casher effect, but also to electrically driven and optically driven spin galvanic effects. Over the past 15 years, the emergence of topological materials has widened this research field by introducing complex forms of spin textures and orbital hybridization. The vast field of Rashba-like physics is now blooming, with great attention paid to non-equilibrium mechanisms such as spin-to-charge conversion, but also to nonlinear transport effects. This Review aims to offer an overview of recent progress in the development of condensed matter research that exploits the unique properties of spin–orbit coupling in non-centrosymmetric heterostructures.

Key points

  • The Rashba effect is a mechanism that locks the spin of a charge carrier to its momentum and stems from the coexistence of inversion symmetry breaking and spin–orbit coupling.

  • The Rashba effect is ubiquitous in condensed matter and exists in a wide variety of systems and heterostructures, including semiconductors, metals, superconductors and correlated materials.

  • The physics of the Rashba effect is at the origin of several important phenomena in condensed matter, including spin-to-charge interconversion, non-reciprocal magnetoelectric and magnetoptical response, and anomalous nonlinear effects.

  • Depending on the crystal and magnetic symmetries of the system under consideration, complex forms of spin–momentum locking and dispersion can be obtained, leading to a rich zoo of phenomena.

  • The impact of the Rashba effect extends far beyond spin transport and is at the basis of several key concepts in topological insulators, semimetals and superconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrostatic and geometric symmetry breaking giving rise to k-antisymmetric orbital momentum and Rashba-like spin–orbit coupling.
Fig. 2: Schematics of the interplay between inversion symmetry breaking and spin–orbit coupling.
Fig. 3: Spin and orbital textures in momentum space.
Fig. 4: Cubic Rashba effect and emergence of 2D ferromagnetism at iridium silicide surface of valence-fluctuating EuIr2Si2.
Fig. 5: Spin–charge interconversion using the Rashba effect.

Similar content being viewed by others

References

  1. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    ADS  Google Scholar 

  2. Bihlmayer, G., Rader, O. & Winkler, R. Focus on the Rashba effect. New J. Phys. 17, 050202 (2015).

    ADS  Google Scholar 

  3. Yeom, H. W. & Grioni, M. Special issue on electron spectroscopy for Rashba spin–orbit interaction. J. Electron Spectros. Relat. Phenomena 201, 1–126 (2015).

    Google Scholar 

  4. LaShell, S., McDougall, B. A. & Jensen, E. Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 77, 3419–3422 (1996).

    ADS  Google Scholar 

  5. Hoesch, M. et al. Spin structure of the Shockley surface state on Au(111). Phys. Rev. B 69, 241401 (2004).

    ADS  Google Scholar 

  6. Yaji, K. et al. Rashba spin splitting of L-gap surface states on Ag(111) and Cu(111). Phys. Rev. B 98, 041404 (2018).

    ADS  Google Scholar 

  7. Mackintosh, A. R. & Andersen, O. K. Electrons at the Fermi Surface (ed. Springford, M.) 149 (Cambridge Univ. Press, 1980).

  8. Petersen, L. & Hedegård, P. A simple tight-binding model of spin–orbit splitting of sp-derived surface states. Surf. Sci. 459, 49–56 (2000).

    ADS  Google Scholar 

  9. Bihlmayer, G., Koroteev, Y. M., Echenique, P. M., Chulkov, E. V. & Blügel, S. The Rashba-effect at metallic surfaces. Surf. Sci. 600, 3888–3891 (2006).

    ADS  Google Scholar 

  10. Ishida, H. Rashba spin splitting of Shockley surface states on semi-infinite crystals. Phys. Rev. B 90, 235422 (2014).

    ADS  Google Scholar 

  11. Winkler, R. Rashba spin splitting in two-dimensional electron and hole systems. Phys. Rev. B 62, 4245–4248 (2000).

    ADS  Google Scholar 

  12. Ast, C. R. et al. Giant spin splitting through surface alloying. Phys. Rev. Lett. 98, 186807 (2007).

    ADS  Google Scholar 

  13. Schirone, S. et al. Spin-flip and element-sensitive electron scattering in the BiAg2 surface alloy. Phys. Rev. Lett. 114, 166801 (2015).

    ADS  Google Scholar 

  14. Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011).

    ADS  Google Scholar 

  15. Liebmann, M. et al. Giant Rashba-type spin splitting in ferroelectric GeTe(111). Adv. Mater. 28, 560–565 (2016).

    Google Scholar 

  16. Rinaldi, C. et al. Ferroelectric control of the spin texture in GeTe. Nano Lett. 18, 2751–2758 (2018).

    ADS  Google Scholar 

  17. Sunko, V. et al. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. Nature 549, 492–496 (2017).

    ADS  Google Scholar 

  18. Mera Acosta, C., Ogoshi, E., Fazzio, A., Dalpian, G. M. & Zunger, A. The Rashba scale: emergence of band anti-crossing as a design principle for materials with large Rashba coefficient. Matter 3, 145–165 (2020).

    Google Scholar 

  19. Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys Rev. 100, 580–586 (1955).

    ADS  MATH  Google Scholar 

  20. Bernevig, B. A., Orenstein, J. & Zhang, S.-C. Exact SU(2) symmetry and persistent spin helix in a spin–orbit coupled system. Phys. Rev. Lett. 97, 236601 (2006).

    ADS  Google Scholar 

  21. Zhao, H. J. et al. Purely cubic spin splittings with persistent spin textures. Phys. Rev. Lett. 125, 216405 (2020).

    ADS  Google Scholar 

  22. Rashba, E. I. & Sheka, V. I. Symmetry of energy bands in crystals of wurtzite type: II. Symmetry of bands including spin-orbit interaction. Fiz. Tverd. Tela Collected Papers 2, 162–176 (1959).

    Google Scholar 

  23. Usachov, D. Y. et al. Spin structure of spin–orbit split surface states in a magnetic material revealed by spin-integrated photoemission. Phys. Rev. B 101, 245140 (2020).

    ADS  Google Scholar 

  24. Usachov, D. Y. et al. Cubic Rashba effect in the surface spin structure of rare-earth ternary materials. Phys. Rev. Lett. 124, 237202 (2020).

    ADS  Google Scholar 

  25. Friedrich, R., Caciuc, V., Bihlmayer, G., Atodiresei, N. & Blügel, S. Designing the Rashba spin texture by adsorption of inorganic molecules. New J. Phys. 19, 043017 (2017).

    ADS  Google Scholar 

  26. Wang, F. et al. Switchable Rashba anisotropy in layered hybrid organic–inorganic perovskite by hybrid improper ferroelectricity. Npj Comput. Mater. 6, 183 (2020).

    ADS  Google Scholar 

  27. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Google Scholar 

  28. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    ADS  Google Scholar 

  29. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    ADS  Google Scholar 

  30. Du, K. Z. et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10, 1738–1743 (2016).

    Google Scholar 

  31. Cheng, Y. C., Zhu, Z. Y., Tahir, M. & Schwingenschlögl, U. Spin–orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. Europhys. Lett. 102, 57001 (2013).

    ADS  Google Scholar 

  32. Lu, A.-y. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).

    Google Scholar 

  33. Zhang, J. et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017).

    Google Scholar 

  34. Zhang, L., Yang, Z., Gong, T., Pan, R. & Wang, H. Recent advances in emerging Janus two-dimensional materials: from fundamental physics. J. Mater. Chem. A 8, 8813–8830 (2020).

    Google Scholar 

  35. Zhang, X., Liu, Q., Luo, J.-W., Freeman, A. J. & Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nat. Phys. 10, 387–393 (2014).

    Google Scholar 

  36. Riley, J. M. et al. Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nat. Phys. 10, 835–839 (2014).

    Google Scholar 

  37. Gotlieb, K. et al. Revealing hidden spin–momentum locking in a high-temperature cuprate superconductor. Science 362, 1271–1275 (2018).

    ADS  Google Scholar 

  38. Zelezny, J. et al. Relativistic Neel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

    ADS  Google Scholar 

  39. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    ADS  Google Scholar 

  40. Bodnar, S. Y. et al. Writing and reading antiferromagnetic Mn2Au by Neél spin–orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018).

    ADS  Google Scholar 

  41. Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).

    Google Scholar 

  42. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    ADS  MathSciNet  Google Scholar 

  43. Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Phys. Rev. B 77, 165117 (2008).

    ADS  Google Scholar 

  44. Park, S. R., Kim, C. H., Yu, J., Han, J. H. & Kim, C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 107, 156803 (2011).

    ADS  Google Scholar 

  45. Go, D. et al. Toward surface orbitronics: giant orbital magnetism from the orbital Rashba effect at the surface of sp-metals. Sci. Rep. 7, 46742 (2017).

    ADS  Google Scholar 

  46. Jo, D., Go, D. & Lee, H.-w Gigantic intrinsic orbital Hall effects in weakly spin–orbit coupled metals. Phys. Rev. B 98, 214405 (2018).

    ADS  Google Scholar 

  47. Yoda, T., Yokoyama, T. & Murakami, S. Orbital Edelstein effect as a condensed-matter analog of solenoids. Nano Lett. 18, 916–920 (2018).

    ADS  Google Scholar 

  48. Go, D. et al. Orbital Rashba effect in surface oxidized Cu film. Phys. Rev. B 103, L121113 (2021).

    ADS  Google Scholar 

  49. Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jap. 88, 123702 (2019).

    ADS  Google Scholar 

  50. Yuan, L.-d, Wang, Z., Luo, J.-w, Rashba, E. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).

    ADS  Google Scholar 

  51. Yuan, L. D., Wang, Z., Luo, J. W. & Zunger, A. Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin–orbit coupling. Phys. Rev. Mater. 5, 014409 (2021).

    Google Scholar 

  52. Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    ADS  Google Scholar 

  53. González-Hernández, R. et al. Efficient electrical spin-splitter based on non-relativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).

    ADS  Google Scholar 

  54. Manchon, A. & Zelezný, J. Spin polarization without net magnetization. Physics 13, 112 (2020).

    Google Scholar 

  55. Zelezný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    ADS  Google Scholar 

  56. Hayami, S., Yanagi, Y. & Kusunose, H. Spontaneous antisymmetric spin splitting in noncollinear antiferromagnets without spin–orbit coupling. Phys. Rev. B 101, 220403 (2020).

    ADS  Google Scholar 

  57. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  Google Scholar 

  58. Hasan, M. et al. Weyl, Dirac and high-fold chiral fermions in topological quantum matter. Nat. Rev. Mater. 6, 784–803 (2021).

    ADS  Google Scholar 

  59. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    ADS  Google Scholar 

  60. Lutchyn, R., Sau, J. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 77001 (2010).

    ADS  Google Scholar 

  61. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    ADS  Google Scholar 

  62. Vaitiekėnas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367, eaav3392 (2020).

    Google Scholar 

  63. Xu, J.-P. et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).

    ADS  Google Scholar 

  64. Wang, Z. et al. Evidence for dispersing 1D Majorana channels in an iron-based superconductor. Science 367, 104–108 (2020).

    ADS  Google Scholar 

  65. Qiao, Z. et al. Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys. Rev. Lett. 112, 116404 (2014).

    ADS  Google Scholar 

  66. Lado, J. L. & Fernández-Rossier, J. Quantum anomalous Hall effect in graphene coupled to skyrmions. Phys. Rev. B 92, 115433 (2015).

    ADS  Google Scholar 

  67. Zanolli, Z. et al. Hybrid quantum anomalous Hall effect at graphene-oxide interfaces. Phys. Rev. B 98, 155404 (2018).

    ADS  Google Scholar 

  68. Kohno, H. Spintronics with Weyl semimetal. JPSJ News Comments 18, 13 (2021).

    ADS  Google Scholar 

  69. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    ADS  Google Scholar 

  70. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306(R) (2007).

    ADS  Google Scholar 

  71. Bansil, A., Lin, H. & Das., T. Colloquium: topological band theory. Rev. Mod. Phys. 88, 021004 (2016).

    ADS  Google Scholar 

  72. Eremeev, S. V., Koroteev, Y. M. & Chulkov, E. V. Effect of the atomic composition of the surface on the electron surface states in topological insulators A2B3. JETP Lett. 91, 387–391 (2010).

    ADS  Google Scholar 

  73. Fu, L. Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. Phys. Rev. Lett. 103, 266801 (2009).

    ADS  Google Scholar 

  74. Basak, S. et al. Spin texture on the warped Dirac-cone surface states in topological insulators. Phys. Rev. B. 84, 121401(R) (2011).

    ADS  Google Scholar 

  75. Henk, J. et al. Complex spin texture in the pure and Mn-doped topological insulator Bi2Te3. Phys. Rev. Lett. 108, 206801 (2012).

    ADS  Google Scholar 

  76. Johansson, A., Henk, J. & Mertig, I. Edelstein effect in Weyl semimetals. Phys. Rev. B 97, 085417 (2018).

    ADS  Google Scholar 

  77. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    ADS  Google Scholar 

  78. Deng, H. et al. High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice. Nat. Phys. 17, 36–42 (2021).

    Google Scholar 

  79. Henk, J. et al. Topological character and magnetism of the Dirac state in Mn doped Bi2Te3. Phys. Rev. Lett. 109, 076801 (2012).

    ADS  Google Scholar 

  80. Petrov, E. K. et al. Domain wall induced spin-polarized flat bands in antiferromagnetic topological insulators. Phys. Rev. B 103, 235142 (2021).

    ADS  Google Scholar 

  81. Rusinov, I. P., Men’shov, V. N. & Chulkov, E. V. Spectral features of magnetic domain walls on the surface of three-dimensional topological insulators. Phys. Rev. B 104, 035411 (2021).

    ADS  Google Scholar 

  82. Liu, Q., Liu, C.-X., Xu, C., Qi, X. & Zhang, S. C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009).

    ADS  Google Scholar 

  83. Polyakov, A. et al. Surface alloying and iron selenide formation in Fe/Bi2Se3(0001) observed by X-ray absorption fine structure experiments. Phys. Rev. B 92, 045423 (2015).

    ADS  Google Scholar 

  84. Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    ADS  Google Scholar 

  85. Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3. Proc. Natl Acad. Sci. USA 112, 1316–1321 (2015).

    ADS  Google Scholar 

  86. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS  Google Scholar 

  87. Mogi, M. et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 107, 182401 (2015).

    ADS  Google Scholar 

  88. Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    ADS  Google Scholar 

  89. Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).

    ADS  Google Scholar 

  90. Otrokov, M. M. et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater. 4, 025082 (2017).

    Google Scholar 

  91. Hirahara, T. et al. Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer. Nano Lett. 17, 3493–3500 (2017).

    ADS  Google Scholar 

  92. Otrokov, M. M. et al. Magnetic extension as an efficient method for realizing the quantum anomalous Hall state in topological insulators. JETP Lett. 105, 297–302 (2017).

    ADS  Google Scholar 

  93. Hagmann, J. A. et al. Molecular beam epitaxy growth and structure of self-assembled Bi2Se3/Bi2MnSe4 multilayer heterostructures. New J. Phys. 19, 085002 (2017).

    ADS  Google Scholar 

  94. Hirahara, T. et al. Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone. Nat. Commun. 11, 4821 (2020).

    ADS  Google Scholar 

  95. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    ADS  Google Scholar 

  96. Klimovskikh, I. I. et al. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulators family. npj Quantum Mater. 5, 54 (2020).

    ADS  Google Scholar 

  97. Eremeev, S. V. et al. Topological magnetic materials of the (MnSb2Te4)  (Sb2Te3)n van der Waals compounds family. J. Phys. Chem. Lett. 12, 4268 (2021).

    MathSciNet  Google Scholar 

  98. Wimmer, S. et al. Mn-rich MnSb2Te4: a topological insulator with magnetic gap closing at high Curie temperatures of 45–50 K. Adv. Mater. https://doi.org/10.1002/adma.202102935 (2021).

    Article  Google Scholar 

  99. Wang, Z. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016).

    ADS  Google Scholar 

  100. Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).

    ADS  Google Scholar 

  101. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS  Google Scholar 

  102. Chen, T. et al. Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge. Nat. Commun. 12, 572 (2021).

    ADS  Google Scholar 

  103. Li, Y. et al. Correlated magnetic Weyl semimetal state in strained Pr2Ir2O7. Adv. Mater. 33, 2008528 (2021).

    Google Scholar 

  104. Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984).

    ADS  Google Scholar 

  105. Stewart, G. R. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 73, 797–855 (2001).

    ADS  Google Scholar 

  106. Khanh, N. D. et al. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet. Nat. Nanotechnol. 15, 444–449 (2020).

    ADS  Google Scholar 

  107. Ernst Bauer, E. & Sigrist, M. Non-Centrosymmetric Superconductors: Introduction and Overview https://doi.org/10.1007/978-3-642-24624-1 (Springer, 2012).

  108. Generalov, A. et al. Strong spin–orbit coupling in the noncentrosymmetric Kondo lattice. Phys. Rev. B 98, 115157 (2018).

    ADS  Google Scholar 

  109. Generalov, A. et al. Spin orientation of two-dimensional electrons driven by temperature-tunable competition of spin–orbit and exchange magnetic interactions. Nano Lett. 17, 811–820 (2017).

    ADS  Google Scholar 

  110. Schulz, S. et al. Emerging 2D-ferromagnetism and strong spin–orbit coupling at the surface of valence-fluctuating EuIr2Si2. npj Quant. Mat. 4, 26 (2019).

    ADS  Google Scholar 

  111. Schulz, S. et al. Classical and cubic Rashba effect in the presence of in-plane 4f magnetism at the iridium silicide surface of the antiferromagnet GdIr2Si2. Phys. Rev. B 103, 035123 (2021).

    ADS  Google Scholar 

  112. Michishita, Y. & Peters, R. Impact of the Rashba spin–orbit coupling on f-electron materials. Phys. Rev. B 99, 155141 (2019).

    ADS  Google Scholar 

  113. Peters, R. & Yanas, Y. Strong enhancement of the Edelstein effect in f -electron system. Phys. Rev. B 97, 115128 (2018).

    ADS  Google Scholar 

  114. Usachov, D. Y. et al. Photoelectron diffraction for probing valency and magnetism of 4f-based materials: a view on valence-fluctuating EuIr2Si2. Phys. Rev. B 102, 205102 (2020).

    ADS  Google Scholar 

  115. Güttler, M. et al. Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet GdRh2Si2. Sci. Rep. 6, 24254 (2016).

    ADS  Google Scholar 

  116. Mende, M. et al. Strong Rashba effect and different fd hybridization phenomena at the surface of the heavy-fermion superconductor CeIrIn5. Adv. Electron. Mater. https://doi.org/10.1002/aelm.202100768 (2021).

    Article  Google Scholar 

  117. Goh, S. K. et al. Anomalous upper critical field in CeCoIn5/YbCoIn5 superlattices with a Rashba-type heavy fermion interface. Phys. Rev. Lett. 109, 157006 (2012).

    ADS  Google Scholar 

  118. Shimozawa, M. et al. Controllable Rashba spin–orbit interaction in artificially engineered superlattices involving the heavy-fermion superconductor CeCoIn5. Phys. Rev. Lett. 112, 156404 (2014).

    ADS  Google Scholar 

  119. Yang, H., Yang, S.-H., Takahashi, S., Maekawa, S. & Parkin, S. S. P. Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors. Nat. Mater. 9, 586–593 (2010).

    ADS  Google Scholar 

  120. Linder, J. & Robinson, W. A. J. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    Google Scholar 

  121. He, W.-Y. & Law, K. T. Magnetoelectric effects in gyrotropic superconductors. Phys. Rev. Res. 2, 012073 (2020).

    Google Scholar 

  122. Ikeda, Y. & Yanase, Y. Giant surface edelstein effect in d-wave superconductors. Phys. Rev. B 102, 214510 (2020).

    ADS  Google Scholar 

  123. Guang, Y., Ciccarelli, C. & Robinson, W. A. J. Boosting spintronics with superconductivity. APL Mater. 9, 050703 (2021).

    Google Scholar 

  124. Gor’kov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin degeneracy: mixed singlet–triplet state. Phys. Rev. Lett. 87, 37004 (2001).

    ADS  Google Scholar 

  125. Shang, T. & Shiroka, T. Time-reversal symmetry breaking in Re-based superconductors: recent developments. Front. Phys. 9, 651163 (2021).

    Google Scholar 

  126. Yip, S. Noncentrosymmetric superconductors. Annu. Rev. Condens. Matter Phys. 5, 15–33 (2014).

    ADS  Google Scholar 

  127. Khim, S. et al. Field-induced transition within the superconducting state of CeRh2As2. Science 373, 1012–1016 (2021).

    ADS  Google Scholar 

  128. Nichele, F. et al. Scaling of Majorana zero-bias conductance peaks. Phys. Rev. Lett. 119, 136803 (2017).

    ADS  Google Scholar 

  129. Zhang, H., Liu, D. E., Wimmer, M. & Kouwenhoven, L. P. Next steps of quantum transport in Majorana nanowire devices. Nat. Commun. 10, 5128 (2019).

    ADS  Google Scholar 

  130. Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    ADS  Google Scholar 

  131. Mihai Miron, I. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).

    ADS  Google Scholar 

  132. Manchon, A. et al. Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    ADS  MathSciNet  Google Scholar 

  133. Pham, V. T. et al. Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures. Nat. Electron. 3, 309–315 (2020).

    Google Scholar 

  134. Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics 10, 483–488 (2016).

    ADS  Google Scholar 

  135. Ivchenko, E. L. & Pikus, G. E. New photogalvanic effect in gyrotropic crystals. Pis’ma Zh. Eksp. Teor. Fiz. 27, 604 (1978).

    Google Scholar 

  136. Vorob’ev, L. E. et al. Optical activity in tellurium induced by a current. JETP Lett. 29, 441 (1979).

    ADS  Google Scholar 

  137. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    ADS  Google Scholar 

  138. Kato, Y. K., Myers, R., Gossard, A. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

    ADS  Google Scholar 

  139. Ivchenko, E. L., Lyanda-Geller, Y. B. & Pikus, G. E. Circular magnetophotocurrent and spin splitting of band states in optically-inactive crystals. Solid State Commun. 69, 663–665 (1989).

    ADS  Google Scholar 

  140. Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).

    ADS  Google Scholar 

  141. Ghosh, S. & Manchon, A. Spin–orbit torque in a three-dimensional topological insulator–ferromagnet heterostructure: crossover between bulk and surface transport. Phys. Rev. B 97, 134402 (2018).

    ADS  Google Scholar 

  142. Li, P. et al. Spin–momentum locking and spin–orbit torques in magnetic nano-heterojunctions composed of Weyl semimetal WTe2. Nat. Commun. 9, 3990 (2018).

    ADS  Google Scholar 

  143. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effect. Rev. Mod. Phys. 87, 1213 (2015).

    ADS  Google Scholar 

  144. Du, Y. et al. Disentanglement of spin–orbit torques in Co/Pt bilayers with the presence of spin Hall effect and Rashba–Edelstein effect. Phys. Rev. Appl. 13, 054014 (2020).

    ADS  Google Scholar 

  145. Rojas-Sánchez, J.-C. & Fert, A. Compared efficiencies of conversions between charge and spin current by spin–orbit interactions in two- and three-dimensional systems. Phys. Rev. Appl. 11, 054049 (2019).

    ADS  Google Scholar 

  146. Sánchez, J. C. R. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-agnetic materials. Nat. Commun. 4, 2944 (2013).

    ADS  Google Scholar 

  147. Zhang, H. J. et al. Charge-to-spin conversion and spin diffusion in Bi/Ag bilayers observed by spin-polarized positron beam. Phys. Rev. Lett. 114, 166602 (2015).

    ADS  Google Scholar 

  148. Jungfleisch, M. B. et al. Interface-driven spin-torque ferromagnetic resonance by Rashba coupling at the interface between nonmagnetic materials. Phys. Rev. B 93, 224419 (2016).

    ADS  Google Scholar 

  149. Nakayama, H. et al. Rashba–Edelstein magnetoresistance in metallic heterostructures. Phys. Rev. Lett. 117, 116602 (2016).

    ADS  Google Scholar 

  150. Jungfleisch, M. B. et al. Control of terahertz emission by ultrafast spin-charge current conversion at Rashba interfaces. Phys. Rev. Lett. 120, 207207 (2018).

    ADS  Google Scholar 

  151. Zhang, W., Jungfleisch, M. B., Jiang, W., Pearson, J. E. & Hoffmann, A. Spin pumping and inverse Rashba–Edelstein effect in NiFe/Ag/Bi and NiFe/Ag/Sb. J. Appl. Phys. 117, 17C727 (2015).

    Google Scholar 

  152. Karube, S., Kondou, K. & Otani, Y. Experimental observation of spin-to-charge current conversion at non-magnetic metal/Bi2O3 interfaces. Appl. Phys. Express 9, 033001 (2016).

    ADS  Google Scholar 

  153. Sangiao, S. et al. Control of the spin to charge conversion using the inverse Rashba–Edelstein effect. Appl. Phys. Lett. 106, 172403 (2015).

    ADS  Google Scholar 

  154. Zhou, C. et al. Broadband terahertz generation via the interface inverse Rashba–Edelstein effect. Phys. Rev. Lett. 121, 086801 (2018).

    ADS  Google Scholar 

  155. Matsushima, M. et al. Quantitative investigation of the inverse Rashba–Edelstein effect in Bi/Ag and Ag/Bi on YIG. Appl. Phys. Lett. 110, 072404 (2017).

    ADS  Google Scholar 

  156. Shen, J. et al. Spin-to-charge conversion in Ag/Bi bilayer revisited. Phys. Rev. Lett. 126, 197201 (2021).

    ADS  Google Scholar 

  157. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    ADS  Google Scholar 

  158. Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    ADS  Google Scholar 

  159. Wang, Y. et al. Topological surface states originated spin–orbit torques in Bi2Se3. Phys. Rev. Lett. 114, 257202 (2015).

    ADS  MathSciNet  Google Scholar 

  160. Han, J. et al. Room-temperature spin–orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017).

    ADS  Google Scholar 

  161. Dc, M. et al. Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1−x) films. Nat. Mater. 17, 800–807 (2018).

    ADS  Google Scholar 

  162. Bonell, F. et al. Control of spin–orbit torques by interface engineering in topological insulator heterostructures. Nano Lett. 20, 5893–5899 (2020).

    ADS  Google Scholar 

  163. Han, J. & Liu, L. Topological insulators for efficient spin–orbit torques. APL Mater. 9, 060901 (2021).

    ADS  Google Scholar 

  164. Shiomi, Y. et al. Spin-electricity conversion induced by spin injection into topological insulators. Phys. Rev. Lett. 113, 196601 (2014).

    ADS  Google Scholar 

  165. Wang, H. et al. Surface-state-dominated spin-charge current conversion in topological-insulator–ferromagnetic-insulator heterostructures. Phys. Rev. Lett. 117, 076601 (2016).

    ADS  Google Scholar 

  166. Mendes, J. B. S. et al. Unveiling the spin-to-charge current conversion signal in the topological insulator Bi2Se3 by means of spin pumping experiments. Phys. Rev. Mater. 5, 024206 (2021).

    Google Scholar 

  167. Rojas-Sánchez, J.-C. et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 116, 096602 (2016).

    ADS  Google Scholar 

  168. Zhang, S. & Fert, A. Conversion between spin and charge currents with topological insulators. Phys. Rev. B 94, 184423 (2016).

    ADS  Google Scholar 

  169. Isshiki, H., Muduli, P., Kim, J., Kondou, K. & Otani, Y. Phenomenological model for the direct and inverse Edelstein effects. Phys. Rev. B 102, 184411 (2020).

    ADS  Google Scholar 

  170. Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

    ADS  Google Scholar 

  171. Vaz, D. C. et al. Mapping spin-charge conversion to the band structure in a topological oxide two-dimensional electron gas. Nat. Mater. 18, 1187–1193 (2019).

    ADS  Google Scholar 

  172. Ohya, S. et al. Efficient intrinsic spin-to-charge current conversion in an all-epitaxial single-crystal perovskite-oxide heterostructure of La0.67Sr0.33MnO3/LaAlO3/SrTiO3. Phys. Rev. Res. 2, 012014 (2020).

    Google Scholar 

  173. Vaz, D. C. et al. Determining the Rashba parameter from the bilinear magnetoresistance response in a two-dimensional electron gas. Phys. Rev. Mater. 4, 071001 (2020).

    Google Scholar 

  174. Noël, P. et al. Non-volatile electric control of spin-charge conversion in a SrTiO3 Rashba system. Nature 580, 483–486 (2020).

    ADS  Google Scholar 

  175. Varotto, S. et al. Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride. Nat. Electronics 4, 740–747 (2021).

    Google Scholar 

  176. Zhu, L., Ralph, D. C. & Buhrman, R. A. Highly efficient spin-current generation by the spin Hall effect in Au1−xPtx. Phys. Rev. Appl. 10, 031001 (2018).

    ADS  Google Scholar 

  177. Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).

    ADS  Google Scholar 

  178. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    ADS  Google Scholar 

  179. Wang, X. et al. Ultrafast spin-to-charge conversion at the surface of topological insulator thin films. Adv. Mater. 30, 1802356 (2018).

    Google Scholar 

  180. Rikken, G. L. & Wyder, P. Magnetoelectric anisotropy in diffusive transport. Phys. Rev. Lett. 94, 016601 (2005).

    ADS  Google Scholar 

  181. Pop, F., Auban-Senzier, P., Canadell, E., Rikken, G. L. & Avarvari, N. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nat. Commun. 5, 3757 (2014).

    ADS  Google Scholar 

  182. Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    Google Scholar 

  183. Guillet, T. et al. Observation of large unidirectional Rashba magnetoresistance in Ge(111). Phys. Rev. Lett. 124, 027201 (2020).

    ADS  MathSciNet  Google Scholar 

  184. Choe, D. et al. Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces. Nat. Commun. 10, 4510 (2019).

    ADS  Google Scholar 

  185. He, P. et al. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states. Nat. Phys. 14, 495–499 (2018).

    Google Scholar 

  186. He, P. et al. Nonlinear magnetotransport shaped by Fermi surface topology and convexity. Nat. Commun. 10, 1290 (2019).

    ADS  Google Scholar 

  187. Yasuda, K. et al. Nonreciprocal charge transport at topological insulator/superconductor interface. Nat. Commun. 10, 2734 (2019).

    ADS  Google Scholar 

  188. Ideue, T., Koshikawa, S., Namiki, H., Sasagawa, T. & Iwasa, Y. Giant nonreciprocal magnetotransport in bulk trigonal superconductor PbTaSe2. Phys. Rev. Res. 2, 042046(R) (2020).

    Google Scholar 

  189. Itahashi, Y. M. et al. Nonreciprocal transport in gate-induced polar superconductor SrTiO3. Sci. Adv. 6, eaay9120 (2020).

    ADS  Google Scholar 

  190. He, P. et al. Nonlinear planar Hall effect. Phys. Rev. Lett. 123, 016801 (2019).

    ADS  Google Scholar 

  191. Olejník, K., Novák, V., Wunderlich, J. & Jungwirth, T. Electrical detection of magnetization reversal without auxiliary magnets. Phys. Rev. B 91, 180402(R) (2015).

    ADS  Google Scholar 

  192. Železný, J. et al. Unidirectional magnetoresistance and spin–orbit torque in NiMnSb. Phys. Rev. B 104, 054429 (2021).

    ADS  Google Scholar 

  193. Avci, C. O. et al. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nat. Phys. 11, 570–575 (2015).

    Google Scholar 

  194. Yasuda, K. et al. Large unidirectional magnetoresistance in a magnetic topological insulator. Phys. Rev. Lett. 117, 127202 (2016).

    ADS  Google Scholar 

  195. Lv, Y. et al. Unidirectional spin-Hall and Rashba–Edelstein magnetoresistance in topological insulator-ferromagnet layer heterostructures. Nat. Commun. 9, 111 (2018).

    ADS  Google Scholar 

  196. Avci, C. O., Mendil, J., Beach, G. S. D. & Gambardella, P. Origins of the unidirectional spin Hall magnetoresistance in metallic bilayers. Phys. Rev. Lett. 121, 087207 (2018).

    ADS  Google Scholar 

  197. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    ADS  Google Scholar 

  198. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    ADS  Google Scholar 

  199. Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    ADS  Google Scholar 

  200. Dzsaber, S. et al. Giant spontaneous Hall effect in a nonmagnetic Weyl–Kondo semimetal. Proc. Natl Acad. Sci. USA 118, e2013386118 (2021).

    Google Scholar 

  201. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    ADS  Google Scholar 

  202. Du, Z. Z., Wang, C. M., Sun, H. P., Lu, H. Z. & Xie, X. C. Quantum theory of the nonlinear Hall effect. Nat. Commun. 12, 5038 (2021).

    ADS  Google Scholar 

  203. Zhang, Y. & Fu, L. Terahertz detection based on nonlinear Hall effect without magnetic field. Proc. Natl Acad. Sci. USA 118, e2100736118 (2021).

    MathSciNet  Google Scholar 

  204. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    ADS  Google Scholar 

  205. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    ADS  Google Scholar 

  206. Côté, D., Laman, N. & van Driel, H. M. Rectification and shift currents in GaAs. Appl. Phys. Lett. 80, 905 (2002).

    ADS  Google Scholar 

  207. Grinberg, I. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

    ADS  Google Scholar 

  208. Nakamura, M. et al. Shift current photovoltaic effect in a ferroelectric charge-transfer complex. Nat. Commun. 8, 281 (2017).

    ADS  Google Scholar 

  209. McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2012).

    ADS  Google Scholar 

  210. Jozwiak, C. et al. Photoelectron spin-flipping and texture manipulation in a topological insulator. Nat. Phys. 9, 293–298 (2013).

    Google Scholar 

  211. Braun, L. et al. Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3. Nat. Commun. 7, 13259 (2016).

    ADS  Google Scholar 

  212. Zheng, F., Tan, L. Z., Liu, S. & Rappe, A. M. Rashba spin–orbit coupling enhanced carrier lifetime in CH3NH3PbI3. Nano Lett. 15, 7794 (2015).

    ADS  Google Scholar 

  213. Wang, J. et al. Spin-optoelectronic devices based on hybrid organic–inorganic trihalide perovskites. Nat. Commun. 10, 129 (2019).

    ADS  Google Scholar 

  214. Niesner, D. et al. Giant Rashba splitting in CH3NH3PbBr3 organic–inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

    ADS  Google Scholar 

  215. Kepenekian, M. et al. Rashba and Dresselhaus effects in hybrid organic–inorganic perovskites: from basics to devices. ACS Nano 9, 11557–11567 (2015).

    Google Scholar 

  216. Etienne, T., Mosconi, E. & Angelis, F. D. Dynamical origin of the Rashba effect in organohalide lead perovskites: a key to suppressed carrier recombination in perovskite solar cells? J. Phys. Chem. Lett. 7, 1638–1645 (2016).

    Google Scholar 

  217. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted InGaAs/InAlAs hetrostructure. Phys. Rev. Lett. 78, 1335 (1997).

    ADS  Google Scholar 

  218. Cheng, L. et al. Optical manipulation of Rashba spin–orbit coupling at SrTiO3-based oxide interfaces. Nano Lett. 17, 6534 (2017).

    ADS  Google Scholar 

  219. Michiardi, M. et al. Optical manipulation of Rashba-split 2-dimensional electron gas. Nat Commun. 13, 3096 (2022).

    ADS  Google Scholar 

  220. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    Google Scholar 

  221. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    ADS  Google Scholar 

  222. Mciver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    Google Scholar 

  223. Hernangómez-Pérez, D., Torres, J. D. & López, A. Photoinduced electronic and spin properties of two-dimensional electron gases with Rashba spin–orbit coupling under perpendicular magnetic fields. Phys. Rev. B 102, 165414 (2020).

    ADS  Google Scholar 

  224. King, P. D. C. et al. Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3. Phys. Rev. Lett. 107, 096802 (2011).

    ADS  Google Scholar 

  225. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

    ADS  Google Scholar 

  226. Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    ADS  Google Scholar 

  227. Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    ADS  Google Scholar 

  228. Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).

    ADS  Google Scholar 

  229. Xu, Y. et al. High-throughput calculations of magnetic topological materials. Nature 586, 702–707 (2020).

    ADS  Google Scholar 

  230. Schliemann, J., Egues, J. C. & Loss, D. Nonballistic spin-field-effect transistor. Phys. Rev. Lett. 90, 146801 (2003).

    ADS  Google Scholar 

  231. Lysne, M., Murakami, Y., Sch, M. & Werner, P. High-harmonic generation in spin–orbit coupled systems. Phys. Rev. B 102, 081121 (2020).

    ADS  Google Scholar 

  232. Ly, O. & Manchon, A. Spin–orbit coupling induced ultra-high harmonic generation from magnetic dynamics. Phys. Rev. B 105, L180415 (2022).

    ADS  Google Scholar 

  233. Shao, D.-f, Zhang, S.-h, Gurung, G., Yang, W. & Tsymbal, E. Y. Nonlinear anomalous Hall effect for Neel vector detection. Phys. Rev. Lett. 124, 67203 (2020).

    ADS  Google Scholar 

  234. Galitski, V. & Spielman, I. B. Spin–orbit coupling in quantum gases. Nature 494, 49–54 (2013).

    ADS  Google Scholar 

  235. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Google Scholar 

  236. Lee, C. H. et al. Topolectrical circuits. Commun. Phys. 1, 39 (2018).

    Google Scholar 

  237. Carbone, C. et al. Asymmetric band gaps in a Rashba film system. Phys. Rev. B 93, 125409 (2016).

    ADS  Google Scholar 

  238. Imamura, H., Bruno, P. & Utsumi, Y. Twisted exchange interaction between localized spins embedded in a one- or two-dimensional electron gas with Rashba spin–orbit coupling. Phys. Rev. B 69, 121303 (2004).

    ADS  Google Scholar 

  239. Kundu, A. & Zhang, S. Dzyaloshinskii–Moriya interaction mediated by spin-polarized band with Rashba spin–orbit coupling. Phys. Rev. B 92, 094434 (2015).

    ADS  Google Scholar 

  240. Barnes, S., Ieda, J. & Maekawa, S. Rashba spin–orbit anisotropy and the electric field control of magnetism. Sci. Rep. 4, 4105 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Nasr for her critical reading of the manuscript. P.N. acknowledges the support of the ETH Zurich Postdoctoral Fellowship Program 19-2 FEL-61. A.M. acknowledges support from the Excellence Initiative of Aix-Marseille Université–A*Midex, a French ‘Investissements d’Avenir’ program.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Aurélien Manchon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous referees for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Floquet engineering

Modification of the electronic band structure on shining off-resonant light on a material.

Bloch states

Solutions of the Schrödinger equation in the presence of a periodic potential, which characterize electrons in crystals.

Neumann’s principle

The physical properties of a crystal should possess at least the same symmetries as the crystal itself.

Orbital Hall effect

Generation of a pure orbital current transverse to an injected charge current.

Photogalvanic effect

Generation of a DC charge current on shining linearly or circularly polarized light on a material.

Quantum spin Hall effect

Transport mechanism associated with insulating bulk states and topologically protected spin-current carrying edges or surface states.

Quantum anomalous Hall effect

Transport mechanism associated with insulating bulk states and topologically protected charge-carrying edges or surface states.

Fermi arcs

Disconnected arcs in momentum space appearing at the surface of certain materials such as Weyl semimetals.

Topological magnetoelectric effect

Generation of a quantized contribution to the magnetization by applying an external electric field.

Pairing parity

Symmetry property describing the behaviour of the wavefunction of a Cooper pair under permutation of the paired electrons.

Non-reciprocal transport

Inequivalence of the conductivity of a material or a heterostructure upon changing the current polarity.

Nonlinear anomalous Hall effect

Charge current flowing transverse to the injected current in the absence of time-reversal symmetry breaking and at second order in the electric field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bihlmayer, G., Noël, P., Vyalikh, D.V. et al. Rashba-like physics in condensed matter. Nat Rev Phys 4, 642–659 (2022). https://doi.org/10.1038/s42254-022-00490-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00490-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing