Abstract
Compelling experimental evidence suggests the existence of new physics beyond the well-established and tested standard model of particle physics. Various current and upcoming experiments are searching for signatures of new physics. Despite the variety of approaches and theoretical models tested in these experiments, what they all have in common is the very large volume of complex data that they produce. This data challenge calls for powerful statistical methods. Machine learning has been in use in high-energy particle physics for well over a decade, but the rise of deep learning in the early 2010s has yielded a qualitative shift in terms of the scope and ambition of research. These modern machine learning developments are the focus of the present Review, which discusses methods and applications for new physics searches in the context of terrestrial high-energy physics experiments, including the Large Hadron Collider, rare event searches and neutrino experiments.
Key points
-
There have been large and sustained developments of deep learning in high-energy physics over the past several years.
-
Supervised machine learning methods are widely used to identify known particles and to design targeted searches for specific theories of new physics.
-
Less-than-supervised machine learning methods are used to carry out searches that depend less on a specific signal model.
-
Experiments such as those at the Large Hadron Collider, neutrino detectors and rare event searches for dark matter, despite having different technical requirements, also share similarities, and there is ground for cooperation to develop machine learning methods.
-
Combining physics and new ideas from statistical learning will be crucial to analysing the large volumes of data to potentially uncover the fundamental structure of nature.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Aad, G. et al. Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012).
Chatrchyan, S. et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012).
Zyla, P. et al. Review of particle physics. Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
Fukuda, Y. et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998).
Ahmad, Q. et al. Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002).
Canetti, L., Drewes, M. & Shaposhnikov, M. Matter and antimatter in the Universe. New J. Phys. 14, 095012 (2012).
Abel, C. et al. Measurement of the permanent electric dipole moment of the neutron. Phys. Rev. Lett. 124, 081803 (2020).
Hocker, A. et al. TMVA — toolkit for multivariate data analysis. Preprint at arXiv https://arxiv.org/abs/physics/0703039 (2007).
Deiana, A. M. et al. Applications and techniques for fast machine learning in science. Preprint at arXiv https://arxiv.org/abs/2110.13041 (2021).
Radovic, A. et al. Machine learning at the energy and intensity frontiers of particle physics. Nature 560, 41–48 (2018).
Feickert, M. & Nachman, B. A living review of machine learning for particle physics. Preprint at arXiv https://arxiv.org/abs/2102.02770 (2021).
Bellagente, M., Butter, A., Kasieczka, G., Plehn, T. & Winterhalder, R. How to GAN away detector effects. SciPost Phys. 8, 070 (2020).
Komiske, P., McCormack, W. P. & Nachman, B. Preserving new physics while simultaneously unfolding all observables. Preprint at arXiv https://arxiv.org/abs/2105.09923 (2021).
Brehmer, J., Kling, F., Espejo, I. & Cranmer, K. MadMiner: machine learning-based inference for particle physics. Comput. Softw. Big Sci. 4, 3 (2020).
Brehmer, J., Louppe, G., Pavez, J. & Cranmer, K. Mining gold from implicit models to improve likelihood-free inference. Proc. Natl Acad. Sci. USA 117, 5242–5249 (2020).
Brehmer, J., Cranmer, K., Louppe, G. & Pavez, J. Constraining effective field theories with machine learning. Phys. Rev. Lett. 121, 111801 (2018).
Brehmer, J., Cranmer, K., Louppe, G. & Pavez, J. A guide to constraining effective field theories with machine learning. Phys. Rev. D 98, 052004 (2018).
Grojean, C., Paul, A. & Qian, Z. Resurrecting \(b\bar{b}h\) with kinematic shapes. Preprint at arXiv https://arxiv.org/abs/2011.13945 (2020).
Chatterjee, S., Frohner, N., Lechner, L., Schöfbeck, R. & Schwarz, D. Tree boosting for learning EFT parameters. Preprint at arXiv https://arxiv.org/abs/2107.10859 (2021).
Chen, S., Glioti, A., Panico, G. & Wulzer, A. Parametrized classifiers for optimal EFT sensitivity. J. High Energy Phys. 05, 247 (2021).
Erbin, H. & Krippendorf, S. GANs for generating EFT models. Phys. Lett. B 810, 135798 (2020).
Caron, S., Kim, J. S., Rolbiecki, K., Ruiz de Austri, R. & Stienen, B. The BSM-AI project: SUSY-AI – generalizing LHC limits on supersymmetry with machine learning. Eur. Phys. J. C 77, 257 (2017).
Bertone, G. et al. Accelerating the BSM interpretation of LHC data with machine learning. Phys. Dark Univ. 24, 100293 (2019).
Kronheim, B. S., Kuchera, M. P., Prosper, H. B. & Karbo, A. Bayesian neural networks for fast SUSY predictions. Phys. Lett. B 813, 136041 (2021).
Fukushima, K. & Miyake, S. in Competition and Cooperation in Neural Nets (eds Amari, S. & Arbib, M. A.) 267–285 (Springer, 1982).
LeCun, Y. et al. Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 2, 396–404 (1989).
de Oliveira, L., Kagan, M., Mackey, L., Nachman, B. & Schwartzman, A. Jet-images — deep learning edition. J. High Energy Phys. 07, 069 (2016).
Baldi, P., Bauer, K., Eng, C., Sadowski, P. & Whiteson, D. Jet substructure classification in high-energy physics with deep neural networks. Phys. Rev. D 93, 094034 (2016).
Aurisano, A. et al. A convolutional neural network neutrino event classifier. J. Instrum. 11, P09001 (2016).
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–80 (1997).
Guest, D. et al. Jet flavor classification in high-energy physics with deep neural networks. Phys. Rev. D 94, 112002 (2016).
Louppe, G., Cho, K., Becot, C. & Cranmer, K. QCD-aware recursive neural networks for jet physics. J. High Energy Phys. 01, 057 (2019).
Dolan, M. J. & Ore, A. Equivariant energy flow networks for jet tagging. Phys. Rev. D 103, 074022 (2021).
Serviansky, H. et al. Set2graph: learning graphs from sets. Preprint at arXiv https://arxiv.org/abs/2002.08772 (2020).
Bogatskiy, A. et al. Lorentz group equivariant neural network for particle physics. Preprint at arXiv https://arxiv.org/abs/2006.04780 (2020).
Shimmin, C. Particle convolution for high energy physics. Preprint at arXiv https://arxiv.org/abs/2107.02908 (2021).
Zaheer, M. et al. Deep sets. Adv. Neural Inf. Process. Syst. 30, 3391–3401 (2017).
Komiske, P. T., Metodiev, E. M. & Thaler, J. Energy flow networks: deep sets for particle jets. J. High Energy Phys. 01, 121 (2019).
Henrion, I. et al. Neural message passing for jet physics. in Proc. Workshop Deep Learning Physical Sciences (NIPS, 2017).
Choma, N. et al. Graph neural networks for IceCube signal classification. Preprint at arXiv https://arxiv.org/abs/1809.06166 (2018).
Abdughani, M., Ren, J., Wu, L. & Yang, J. M. Probing stop pair production at the LHC with graph neural networks. J. High Energy Phys. 08, 055 (2019).
Arjona Martínez, J., Cerri, O., Pierini, M., Spiropulu, M. & Vlimant, J.-R. Pileup mitigation at the Large Hadron Collider with graph neural networks. Eur. Phys. J. Plus 134, 333 (2019).
Qu, H. & Gouskos, L. ParticleNet: jet tagging via particle clouds. Phys. Rev. D 101, 056019 (2020).
Moreno, E. A. et al. JEDI-net: a jet identification algorithm based on interaction networks. Eur. Phys. J. C 80, 58 (2020).
Moreno, E. A. et al. Interaction networks for the identification of boosted \(H\to b\overline{b}\) decays. Phys. Rev. D 102, 012010 (2020).
Shlomi, J., Battaglia, P. & Vlimant, J.-R. Graph neural networks in particle physics. Mach. Learn. Sci. Technol. 2, 021001 (2021).
Cheong, S., Cukierman, A., Nachman, B., Safdari, M. & Schwartzman, A. Parametrizing the detector response with neural networks. J. Instrum. 15, P01030 (2020).
Goodfellow, I. J. et al. in Proc. 27th Int. Conf. Neural Inform. Process. Syst. Vol. 2 (eds Ghahramani, Z. et al.) 2672–2680 (MIT Press, 2014).
Creswell, A. et al. Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35, 53 (2018).
Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at arXiv https://arxiv.org/abs/1312.6114 (2014).
Kingma, D. P. & Welling, M. An introduction to variational autoencoders. Found. Trends Mach. Learn. 12, 307 (2019).
Rezende, D. J. & Mohamed, S. Variational inference with normalizing flows. Proc. Mach. Learn. Res. 37, 1530–1538 (2015).
Kobyzev, I., Prince, S. & Brubaker, M. Normalizing flows: an introduction and review of current methods. IEEE Trans. Pattern Anal. Mach. Intel. 43, 3964–3979 (2021).
de Oliveira, L., Paganini, M. & Nachman, B. Learning particle physics by example: location-aware generative adversarial networks for physics synthesis. Comput. Softw. Big Sci. 1, 4 (2017).
Mustafa, M. et al. CosmoGAN: creating high-fidelity weak lensing convergence maps using generative adversarial networks. Comput. Astrophys. Cosmol. 6, 1 (2019).
ATLAS collaboration. Deep generative models for fast shower simulation in ATLAS. Report ATL-SOFT-PUB-2018-001 (CERN, 2018).
Hajer, J., Li, Y.-Y., Liu, T. & Wang, H. Novelty detection meets collider physics. Phys. Rev. D 101, 076015 (2020).
Farina, M., Nakai, Y. & Shih, D. Searching for new physics with deep autoencoders. Phys. Rev. D 101, 075021 (2020).
Heimel, T., Kasieczka, G., Plehn, T. & Thompson, J. M. QCD or what? SciPost Phys. 6, 030 (2019).
Albergo, M. S., Kanwar, G. & Shanahan, P. E. Flow-based generative models for Markov chain Monte Carlo in lattice field theory. Phys. Rev. D 100, 034515 (2019).
Gao, C., Höche, S., Isaacson, J., Krause, C. & Schulz, H. Event generation with normalizing flows. Phys. Rev. D 101, 076002 (2020).
Gao, C., Isaacson, J. & Krause, C. i-flow: high-dimensional integration and sampling with normalizing flows. Mach. Learn. Sci. Tech. 1, 045023 (2020).
Bothmann, E., Janßen, T., Knobbe, M., Schmale, T. & Schumann, S. Exploring phase space with neural importance sampling. SciPost Phys. 8, 069 (2020).
Nachman, B. & Shih, D. Anomaly detection with density estimation. Phys. Rev. D 101, 075042 (2020).
Zhou, Z.-H. A brief introduction to weakly supervised learning. Natl Sci. Rev. 5, 44–53 (2017).
Dery, L. M., Nachman, B., Rubbo, F. & Schwartzman, A. Weakly supervised classification in high energy physics. J. High Energy Phys. 05, 145 (2017).
Metodiev, E. M., Nachman, B. & Thaler, J. Classification without labels: learning from mixed samples in high energy physics. J. High Energy Phys. 10, 174 (2017).
Cohen, T., Freytsis, M. & Ostdiek, B. (Machine) learning to do more with less. J. High Energy Phys. 02, 034 (2018).
Komiske, P. T., Metodiev, E. M., Nachman, B. & Schwartz, M. D. Learning to classify from impure samples with high-dimensional data. Phys. Rev. D 98, 011502 (2018).
Knuteson, B. A Quasi-Model-Independent Search for New High pT Physics at D0. Thesis, Univ. California Berkeley (2000).
Abbott, B. et al. Search for new physics in eμX data at DØ using Sherlock: a quasi model independent search strategy for new physics. Phys. Rev. D 62, 092004 (2000).
Abazov, V. M. et al. A quasi model independent search for new physics at large transverse momentum. Phys. Rev. D 64, 012004 (2001).
Abbott, B. et al. A quasi-model-independent search for new high pT physics at DØ. Phys. Rev. Lett. 86, 3712–3717 (2001).
Aaron, F. D. et al. A general search for new phenomena at HERA. Phys. Lett. B 674, 257–268 (2009).
Aktas, A. et al. A general search for new phenomena in ep scattering at HERA. Phys. Lett. B 602, 14–30 (2004).
Cranmer, K. S. Searching for New Physics: Contributions to LEP and the LHC. Thesis, Wisconsin Univ. Madison (2005).
Aaltonen, T. et al. (CDF Collaboration). Model-independent and quasi-model-independent search for new physics at CDF. Phys. Rev. D 78, 012002 (2008).
Aaltonen, T. et al. (CDF Collaboration). Model-independent global search for new high-pT physics at CDF. Preprint at arXiv https://arxiv.org/abs/0712.2534 (2007).
Aaltonen, T. et al. (CDF Collaboration). Global search for new physics with 2.0 fb−1 at CDF. Phys. Rev. D 79, 011101 (2009).
CMS Collaboration. MUSiC, a model unspecific search for new physics, in pp collisions at \(\sqrt{s}=8\) TeV. Technical Report CMS-PAS-EXO-14-016 (CERN, 2017).
CMS Collaboration. Model unspecific search for new physics in pp collisions at \(\sqrt{s}=7\) TeV. Technical Report CMS-PAS-EXO-10-021 (CERN, 2011).
CMS Collaboration. MUSiC, a model unspecific search for new physics, in pp collisions at \(\sqrt{s}=13\) TeV. Technical Report CMS-PAS-EXO-19-008 (CERN, 2020).
Sirunyan, A. M. et al. MUSiC: a model-unspecific search for new physics in proton–proton collisions at \(\sqrt{s}=13\) TeV. Eur. Phys. J. C 81, 629 (2021).
Aaboud, M. et al. A strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experiment. Eur. Phys. J. C 79, 120 (2019).
A general search for new phenomena with the ATLAS detector in pp collisions at \(\sqrt{s}=8\) TeV. Report ATLAS-CONF-2014-006 (CERN, 2014).
A general search for new phenomena with the ATLAS detector in pp collisions at \(\sqrt{s}=7\) TeV. Report ATLAS-CONF-2012-107 (CERN, 2012).
Butter, A. et al. The machine learning landscape of top taggers. SciPost Phys. 7, 014 (2019).
Abratenko, P. et al. Convolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamber. Phys. Rev. D 103, 092003 (2021).
Baldi, P., Sadowski, P. & Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5, 4308 (2014).
Bhimji, W. et al. Deep neural networks for physics analysis on low-level whole-detector data at the LHC. J. Phys. Conf. Ser. 1085, 042034 (2018).
Wunsch, S., Jörger, S., Wolf, R. & Quast, G. Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters. Comput. Softw. Big Sci. 5, 4 (2021).
Elwood, A., Krücker, D. & Shchedrolosiev, M. Direct optimization of the discovery significance in machine learning for new physics searches in particle colliders. J. Phys. Conf. Ser. 1525, 012110 (2020).
Xia, L.-G. QBDT, a new boosting decision tree method with systematical uncertainties into training for high energy physics. Nucl. Instrum. Meth A 930, 15–26 (2019).
De Castro, P. & Dorigo, T. INFERNO: inference-aware neural optimisation. Comput. Phys. Commun. 244, 170–179 (2019).
Charnock, T., Lavaux, G. & Wandelt, B. D. Automatic physical inference with information maximizing neural networks. Phys. Rev. D 97, 083004 (2018).
Alsing, J. & Wandelt, B. Nuisance hardened data compression for fast likelihood-free inference. Mon. Not. R. Astron. Soc. 488, 5093–5103 (2019).
Heinrich, L. & Simpson, N. pyhf/neos: initial zenodo release. zenodo https://doi.org/10.5281/zenodo.3697981 (2020).
Dorigo, T. & de Castro, P. Dealing with nuisance parameters using machine learning in high energy physics: a review. Preprint at arXiv https://arxiv.org/abs/2007.09121 (2020).
Kasieczka, G., Luchmann, M., Otterpohl, F. & Plehn, T. Per-object systematics using deep-learned calibration. SciPost Phys. 9, 089 (2020).
Bollweg, S. et al. Deep-learning jets with uncertainties and more. SciPost Phys. 8, 006 (2020).
Araz, J. Y. & Spannowsky, M. Combine and conquer: event reconstruction with Bayesian ensemble neural networks. J. High Energy Phys. 04, 296 (2021).
Bellagente, M., Haußmann, M., Luchmann, M. & Plehn, T. Understanding event-generation networks via uncertainties. Preprint at arXiv https://arxiv.org/abs/2104.04543 (2021).
Nachman, B. A guide for deploying deep learning in LHC searches: how to achieve optimality and account for uncertainty. SciPost Phys. 8, 090 (2020).
Ghosh, A., Nachman, B. & Whiteson, D. Uncertainty aware learning for high energy physics. Preprint at arXiv https://arxiv.org/abs/2105.08742 (2021).
Rogozhnikov, A. Reweighting with boosted decision trees. Proc. Int. Workshop Adv. Comput. Anal. Tech. Phys. Res. 762, 012036 (2016).
Andreassen, A. & Nachman, B. Neural networks for full phase-space reweighting and parameter tuning. Phys. Rev. D 101, 091901 (2020).
Cranmer, K., Pavez, J. & Louppe, G. Approximating likelihood ratios with calibrated discriminative classifiers. Preprint at arXiv https://arxiv.org/abs/1506.02169 (2015).
Diefenbacher, S. et al. DCTRGAN: improving the precision of generative models with reweighting. J. Instrum. 15, P11004 (2020).
Nachman, B. & Thaler, J. Neural conditional reweighting. Preprint at arXiv https://arxiv.org/abs/2107.08979 (2021).
Clavijo, J. M., Glaysher, P. & Katzy, J. M. Adversarial domain adaptation to reduce sample bias of a high energy physics classifier. Preprint at arXiv https://arxiv.org/abs/2005.00568 (2020).
Perdue, G. N. et al. Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment. J. Instrum. 13, P11020 (2018).
Lin, J., Bhimji, W. & Nachman, B. Machine learning templates for QCD factorization in the search for physics beyond the standard model. J. High Energy Phys. 05, 181 (2019).
Kasieczka, G., Nachman, B., Schwartz, M. D. & Shih, D. Automating the ABCD method with machine learning. Phys. Rev. D 103, 035021 (2021).
Mikuni, V., Nachman, B. & Shih, D. Online-compatible unsupervised non-resonant anomaly detection. Preprint at arXiv https://arxiv.org/abs/2111.06417 (2021).
Blance, A., Spannowsky, M. & Waite, P. Adversarially-trained autoencoders for robust unsupervised new physics searches. J. High Energy Phys. 10, 047 (2019).
Englert, C., Galler, P., Harris, P. & Spannowsky, M. Machine learning uncertainties with adversarial neural networks. Eur. Phys. J. C 79, 4 (2019).
Louppe, G., Kagan, M. & Cranmer, K. Learning to pivot with adversarial networks. Adv. Neural Inf. Process. Syst. 30, 981–990 (2017).
Dolen, J., Harris, P., Marzani, S., Rappoccio, S. & Tran, N. Thinking outside the ROCs: designing decorrelated taggers (DDT) for jet substructure. J. High Energy Phys. 05, 156 (2016).
Moult, I., Nachman, B. & Neill, D. Convolved substructure: analytically decorrelating jet substructure observables. J. High Energy Phys. 05, 002 (2018).
Stevens, J. & Williams, M. uBoost: a boosting method for producing uniform selection efficiencies from multivariate classifiers. J. Instrum. 8, P12013 (2013).
Shimmin, C. et al. Decorrelated jet substructure tagging using adversarial neural networks. Phys. Rev. D 96, 074034 (2017).
Bradshaw, L., Mishra, R. K., Mitridate, A. & Ostdiek, B. Mass agnostic jet taggers. SciPost Phys. 8, 011 (2020).
ATLAS collaboration. Performance of mass-decorrelated jet substructure observables for hadronic two-body decay tagging in ATLAS. Report ATL-PHYS-PUB-2018-014 (CERN, 2018).
Kasieczka, G. & Shih, D. Robust jet classifiers through distance correlation. Phys. Rev. Lett. 125, 122001 (2020).
Wunsch, S., Jörger, S., Wolf, R. & Quast, G. Reducing the dependence of the neural network function to systematic uncertainties in the input space. Comput. Softw. Big Sci. 4, 5 (2020).
Rogozhnikov, A., Bukva, A., Gligorov, V. V., Ustyuzhanin, A. & Williams, M. New approaches for boosting to uniformity. J. Instrum. 10, T03002 (2015).
CMS Collaboration. A deep neural network to search for new long-lived particles decaying to jets. Mach. Learn. Sci. Technol. 1, 035012 (2020).
Kitouni, O., Nachman, B., Weisser, C. & Williams, M. Enhancing searches for resonances with machine learning and moment decomposition. Preprint at arXiv https://arxiv.org/abs/2010.09745 (2020).
Estrade, V., Germain, C., Guyon, I. & Rousseau, D. Systematic aware learning — a case study in high energy physics. EPJ Web Conf. 214, 06024 (2019).
Aguilar-Saavedra, J. A., Collins, J. H. & Mishra, R. K. A generic anti-QCD jet tagger. J. High Energy Phys. 11, 163 (2017).
Aguilar-Saavedra, J. A., Joaquim, F. R. & Seabra, J. F. Mass unspecific supervised tagging (MUST) for boosted jets. J. High Energy Phys. 03, 012 (2021).
Ghosh, A. & Nachman, B. A cautionary tale of decorrelating theory uncertainties. Preprint at arXiv https://arxiv.org/abs/2109.08159 (2021).
Chouldechova, A. & Roth, A. The frontiers of fairness in machine learning. Preprint at arXiv https://arxiv.org/abs/1810.08810 (2018).
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K. & Galstyan, A. A survey on bias and fairness in machine learning. Preprint at arXiv https://arxiv.org/abs/1908.09635 (2019).
Frate, M., Cranmer, K., Kalia, S., Vandenberg-Rodes, A. & Whiteson, D. Modeling smooth backgrounds and generic localized signals with Gaussian processes. Preprint at arXiv https://arxiv.org/abs/1709.05681 (2017).
Di Sipio, R., Faucci Giannelli, M., Ketabchi Haghighat, S. & Palazzo, S. DijetGAN: a generative-adversarial network approach for the simulation of QCD dijet events at the LHC. J. High Energy Phys. 08, 110 (2019).
Chisholm, A. et al. Non-parametric data-driven background modelling using conditional probabilities. Preprint at arXiv https://arxiv.org/abs/2112.00650 (2021).
Neyman, J. & Pearson, E. S. On the problem of the most efficient tests of statistical hypotheses. Phil. Trans. R. Soc. Lond. A 231, 289 (1933).
Kasieczka, G. et al. The LHC Olympics 2020: a community challenge for anomaly detection in high energy physics. Preprint at arXiv https://arxiv.org/abs/2101.08320 (2021).
Aarrestad, T. et al. The Dark Machines anomaly score challenge: benchmark data and model independent event classification for the Large Hadron Collider. Preprint at arXiv https://arxiv.org/abs/2105.14027 (2021).
Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).
Finke, T., Krämer, M., Morandini, A., Mück, A. & Oleksiyuk, I. Autoencoders for unsupervised anomaly detection in high energy physics. Preprint at arXiv https://arxiv.org/abs/2104.09051 (2021).
Dillon, B. M., Plehn, T., Sauer, C. & Sorrenson, P. Better latent spaces for better autoencoders. Preprint at arXiv https://arxiv.org/abs/2104.08291 (2021).
Batson, J., Haaf, C. G., Kahn, Y. & Roberts, D. A. Topological obstructions to autoencoding. Preprint at arXiv https://arxiv.org/abs/2102.08380 (2021).
Fraser, K., Homiller, S., Mishra, R. K., Ostdiek, B. & Schwartz, M. D. Challenges for unsupervised anomaly detection in particle physics. Preprint at arXiv https://arxiv.org/abs/2110.06948 (2021).
Cerri, O., Nguyen, T. Q., Pierini, M., Spiropulu, M. & Vlimant, J.-R. Variational autoencoders for new physics mining at the Large Hadron Collider. J. High Energy Phys. 05, 036 (2019).
Govorkova, E. et al. Autoencoders on FPGAs for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider. Preprint at arXiv https://arxiv.org/abs/2108.03986 (2021).
Crispim Romão, M., Castro, N. F. & Pedro, R. Finding new physics without learning about it: anomaly detection as a tool for searches at colliders. Eur. Phys. J. C 81, 27 (2021).
Dillon, B. M., Faroughy, D. A. & Kamenik, J. F. Uncovering latent jet substructure. Phys. Rev D. 100, 056002 (2019).
Caron, S., Hendriks, L. & Verheyen, R. Rare and different: anomaly scores from a combination of likelihood and out-of-distribution models to detect new physics at the LHC. Preprint at arXiv https://arxiv.org/abs/2106.10164 (2021).
Mikuni, V. & Canelli, F. Unsupervised clustering for collider physics. Preprint at arXiv https://arxiv.org/abs/2010.07106v3 (2020).
Knapp, O. et al. Adversarially learned anomaly detection on CMS open data: re-discovering the top quark. Eur. Phys. J. Plus 136, 236 (2021).
Amram, O. & Suarez, C. M. Tag N’ Train: a technique to train improved classifiers on unlabeled data. J. High Energy Phys. 01, 153 (2021).
Collins, J. H., Martín-Ramiro, P., Nachman, B. & Shih, D. Comparing weak- and unsupervised methods for resonant anomaly detection. Eur. Phys. J. C 81, 617 (2021).
Collins, J. H., Howe, K. & Nachman, B. Anomaly detection for resonant new physics with machine learning. Phys. Rev. Lett. 121, 241803 (2018).
Collins, J. H., Howe, K. & Nachman, B. Extending the search for new resonances with machine learning. Phys. Rev. D 99, 014038 (2019).
D’Agnolo, R. T. & Wulzer, A. Learning new physics from a machine. Phys. Rev. D 99, 015014 (2019).
D’Agnolo, R. T., Grosso, G., Pierini, M., Wulzer, A. & Zanetti, M. Learning multivariate new physics. Eur. Phys. J. C 81, 89 (2021).
d’Agnolo, R. T., Grosso, G., Pierini, M., Wulzer, A. & Zanetti, M. Learning new physics from an imperfect machine. Preprint at arXiv https://arxiv.org/abs/2111.13633 (2021).
Andreassen, A., Nachman, B. & Shih, D. Simulation assisted likelihood-free anomaly detection. Phys. Rev. D 101, 095004 (2020).
Benkendorfer, K., Pottier, L. L. & Nachman, B. Simulation-assisted decorrelation for resonant anomaly detection. Phys. Rev. D 104, 035003 (2021).
Park, S. E., Rankin, D., Udrescu, S.-M., Yunus, M. & Harris, P. Quasi anomalous knowledge: searching for new physics with embedded knowledge. J. High Energy Phys. 21, 030 (2020).
Khosa, C. K. & Sanz, V. Anomaly awareness. Preprint at arXiv https://arxiv.org/abs/2007.14462 (2020).
Stein, G., Seljak, U. & Dai, B. Unsupervised in-distribution anomaly detection of new physics through conditional density estimation. Preprint at arXiv https://arxiv.org/abs/2012.11638 (2020).
Hallin, A. et al. Classifying Anomalies THrough Outer Density Estimation (CATHODE). Preprint at arXiv https://arxiv.org/abs/2109.00546 (2021).
Low, J. F. et al. Boosted decision trees in the CMS level-1 endcap muon trigger. Proc. Sci. 2017, 143 (2017).
Gligorov, V. V. & Williams, M. Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree. J. Instrum. 8, P02013 (2013).
Aaij, R. et al. The LHCb trigger and its performance in 2011. J. Instrum. 8, P04022 (2013).
Duarte, J. et al. Fast inference of deep neural networks in FPGAs for particle physics. J. Instrum. 13, P07027 (2018).
Nottbeck, N., Schmitt, C. & Büscher, V. Implementation of high-performance, sub-microsecond deep neural networks on FPGAs for trigger applications. J. Instrum. 14, P09014 (2019).
Zabi, A., Berryhill, J. W., Perez, E. & Tapper, A. D. The phase-2 upgrade of the CMS level-1 trigger. Interim Technical Design Report CMS-TDR-017 (CERN, 2020).
Summers, S. et al. Fast inference of boosted decision trees in FPGAs for particle physics. J. Instrum. 15, P05026 (2020).
Aarrestad, T. et al. Fast convolutional neural networks on FPGAs with hls4ml. Mach. Learn. Sci. Tech. 2, 045015 (2021).
Hong, T. M. et al. Nanosecond machine learning event classification with boosted decision trees in FPGA for high energy physics. J. Instrum. 16, P08016 (2021).
LHCb Collaboration. LHCb upgrade GPU high level trigger technical design report. CERN-LHCC-2020-006 LHCB-TDR-021 (CERN, 2020).
Aaij, R. et al. Allen: a high level trigger on GPUs for LHCb. Comput. Softw. Big Sci. 4, 7 (2020).
Chekalina, V. et al. Generative models for fast calorimeter simulation: the LHCb case. EPJ Web Conf. 214, 02034 (2019).
ATLAS collaboration. Fast simulation of the ATLAS calorimeter system with generative adversarial networks. Report ATL-SOFT-PUB-2020-006 (CERN, 2020).
Aad, G. et al. AtlFast3: the next generation of fast simulation in ATLAS. Preprint at arXiv https://arxiv.org/abs/2109.02551 (2021).
Aad, G. et al. ATLAS b-jet identification performance and efficiency measurement with \(t\bar{t}\) events in pp collisions at \(\sqrt{s}=13\) TeV. Eur. Phys. J. C 79, 970 (2019).
Bols, E., Kieseler, J., Verzetti, M., Stoye, M. & Stakia, A. Jet flavour classification using DeepJet. J. Instrum. 15, P12012 (2020).
ATLAS collaboration. Deep sets based neural networks for impact parameter flavour tagging in ATLAS. Report ATL-PHYS-PUB-2020-014 (CERN, 2020).
Larkoski, A. J., Moult, I. & Nachman, B. Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning. Phys. Rep. 841, 1–63 (2020).
Kogler, R. et al. Jet substructure at the Large Hadron Collider: experimental review. Rev. Mod. Phys. 91, 045003 (2019).
Sirunyan, A. M. et al. Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques. J. Instrum. 15, P06005 (2020).
Sirunyan, A. M. et al. Search for dark matter particles produced in association with a Higgs boson in proton–proton collisions at \(\sqrt{{\rm{s}}}\) = 13 TeV. J. High Energy Phys. 03, 025 (2020).
CMS Collaboration. Search for resonant Higgs boson pair production in four b quark final state using large-area jets in proton–proton collisions at \(\sqrt{s}=13\,{\rm{TeV}}\). Technical Report CMS-PAS-B2G-20-004 (CERN, 2021).
CMS Collaboration. Search for heavy resonances decaying to a pair of boosted Higgs bosons in final states with leptons and a bottom quark–antiquark pair at \(\sqrt{s}=13\) TeV. Technical Report CMS-PAS-B2G-20-007 (CERN, 2021).
CMS Collaboration. Search for Higgs boson pair production via vector boson fusion with highly Lorentz-boosted Higgs bosons in the four b quark final state at \(\sqrt{s}=13\) TeV. Technical Report CMS-PAS-B2G-21-001 (CERN, 2021).
Sirunyan, A. M. et al. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV. J. Instrum. 13, P05011 (2018).
Sirunyan, A. M. et al. Search for W′ bosons decaying to a top and a bottom quark at √s = 13 TeV in the hadronic final state. Phys. Lett. B 820, 136535 (2021).
ATLAS collaboration. Efficiency corrections for a tagger for boosted \(H\to b\bar{b}\) decays in pp collisions at \(\sqrt{s}=13\) TeV with the ATLAS detector. Technical Report ATL-PHYS-PUB-2021-035 (2021).
Sirunyan, A. M. et al. A deep neural network to search for new long-lived particles decaying to jets. Mach. Learn. Sci. Tech. 1, 035012 (2020).
CMS Collaboration. Identification of highly Lorentz-boosted heavy particles using graph neural networks and new mass decorrelation techniques. Report CMS-DP-2020-002 (CERN, 2020).
Tumasyan, A. et al. Search for new particles in events with energetic jets and large missing transverse momentum in proton–proton collisions at \(\sqrt{s}=\) 13 TeV. Preprint at arXiv https://arxiv.org/abs/2107.13021 (2021).
Aaij, R. et al. Search for heavy neutral leptons in W+ → μ+μ±jet decays. Eur. Phys. J. C 81, 248 (2021).
Aad, G. et al. Dijet resonance search with weak supervision using \(\sqrt{s}=13\) TeV pp collisions in the ATLAS detector. Phys. Rev. Lett. 125, 131801 (2020).
Aaboud, M. et al. Search for pair production of higgsinos in final states with at least three b-tagged jets in \(\sqrt{s}=13\) TeV pp collisions using the ATLAS detector. Phys. Rev. D 98, 092002 (2018).
Aad, G. et al. Search for Higgs boson decays into two new low-mass spin-0 particles in the 4b channel with the ATLAS detector using pp collisions at \(\sqrt{s}=13\) TeV. Phys. Rev. D 105, 012006 (2022).
Aad, G. et al. Search for heavy resonances decaying into a pair of Z bosons in the \({\ell }^{+}{\ell }^{-}{\ell {}^{{\prime} }}^{+}{\ell {}^{{\prime} }}^{-}\) and \({\ell }^{+}{\ell }^{-}{\ell {}^{{\prime} }}^{+}{\ell {}^{{\prime} }}^{-}\) final states using 139 fb−1 of proton–proton collisions at \({\ell }^{+}{\ell }^{-}{\ell {}^{{\prime} }}^{+}{\ell {}^{{\prime} }}^{-}\)TeV with the ATLAS detector. Eur. Phys. J. C 81, 332 (2021).
Tumasyan, A. et al. Search for a heavy Higgs boson decaying into two lighter Higgs bosons in the ττbb final state at 13 TeV. Preprint at arXiv https://arxiv.org/abs/2106.10361 (2021).
Aad, G. et al. Search for Higgs boson decays into a Z boson and a light hadronically decaying resonance using 13 TeV pp collision data from the ATLAS detector. Phys. Rev. Lett. 125, 221802 (2020).
Aad, G. et al. Search for dark matter in events with missing transverse momentum and a Higgs boson decaying into two photons in pp collisions at \(\sqrt{s}=13\) TeV with the ATLAS detector. Preprint at arXiv https://arxiv.org/abs/2104.13240 (2021).
Chen, T. & Guestrin, C. in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining 785–794 (ACM, 2016).
Bertacchi, V. et al. Track finding at Belle II. Comput. Phys. Commun. 259, 107610 (2021).
Abazajian, K. N. et al. Light sterile neutrinos: a white paper. Preprint at arXiv https://arxiv.org/abs/1204.5379 (2012).
Dentler, M. et al. Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos. J. High Energy Phys. 08, 010 (2018).
Bertuzzo, E., Jana, S., Machado, P. A. N. & Zukanovich Funchal, R. Dark neutrino portal to explain MiniBooNE excess. Phys. Rev. Lett. 121, 241801 (2018).
Ballett, P., Pascoli, S. & Ross-Lonergan, M. U(1)′ mediated decays of heavy sterile neutrinos in MiniBooNE. Phys. Rev. D 99, 071701 (2019).
Adamson, P. et al. Constraints on large extra dimensions from the MINOS experiment. Phys. Rev. D 94, 111101 (2016).
Kostelecky, V. A. & Mewes, M. Lorentz and CPT violation in neutrinos. Phys. Rev. D 69, 016005 (2004).
Miranda, O. G. & Nunokawa, H. Non standard neutrino interactions: current status and future prospects. New J. Phys. 17, 095002 (2015).
de Gouvêa, A. & Kelly, K. J. Non-standard neutrino interactions at DUNE. Nucl. Phys. B 908, 318–335 (2016).
Jwa, Y.-J., Guglielmo, G. D., Carloni, L. P. & Karagiorgi, G. in 2019 New York Sci. Data Summit (IEEE, 2019).
Acciarri, R. et al. A deep-learning based raw waveform region-of-interest finder for the liquid argon time projection chamber. Preprint at arXiv https://arxiv.org/abs/2103.06391 (2021).
Uboldi, L. et al. Extracting low energy signals from raw LArTPC waveforms using deep learning techniques–a proof of concept. Preprint at arXiv https://arxiv.org/abs/2106.09911 (2021).
Anker, A. et al. A novel trigger based on neural networks for radio neutrino detectors. Proc. Sci. 395, 1074 (2021).
Acero, M. A. et al. Search for active-sterile antineutrino mixing using neutral-current interactions with the NOvA experiment. Phys. Rev. Lett. 127, 201801 (2021).
Abratenko, P. et al. Search for an anomalous excess of charged-current quasi-elastic νe interactions with the MicroBooNE experiment using deep-learning-based reconstruction. Preprint at arXiv https://arxiv.org/abs/2110.14080 (2021).
Baldi, P., Bian, J., Hertel, L. & Li, L. Improved energy reconstruction in NOvA with regression convolutional neural networks. Phys. Rev. D 99, 012011 (2019).
Abratenko, P. et al. Wire-cell 3D pattern recognition techniques for neutrino event reconstruction in large LArTPCs: algorithm description and quantitative evaluation with MicroBooNE simulation. Preprint at arXiv https://arxiv.org/abs/2110.13961 (2021).
Aiello, S. et al. Event reconstruction for KM3NeT/ORCA using convolutional neural networks. J. Instrum. 15, P10005 (2020).
Ayres, D. S. et al. The NOvA technical design report. FERMILAB-DESIGN-2007-01 (OSTI, 2007).
Psihas, F., Groh, M., Tunnell, C. & Warburton, K. A review on machine learning for neutrino experiments. Int. J. Mod. Phys. A 35, 2043005 (2020).
Abi, B. et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report Vol. I: Introduction to DUNE. J. Instrum. 15, T08008 (2020).
Acciarri, R. et al. Design and construction of the MicroBooNE detector. J. Instrum. 12, P02017 (2017).
Antonello, M. et al. A proposal for a three detector short-baseline neutrino oscillation program in the Fermilab Booster Neutrino Beam. Preprint at arXiv https://arxiv.org/abs/1503.01520 (2015).
Abi, B. et al. Neutrino interaction classification with a convolutional neural network in the DUNE far detector. Phys. Rev. D 102, 092003 (2020).
Liu, J. et al. Deep-learning-based kinematic reconstruction for DUNE. Preprint at arXiv https://arxiv.org/abs/2012.06181 (2020).
Acciarri, R. et al. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber. J. Instrum. 12, P03011 (2017).
Adams, C. et al. Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber. Phys. Rev. D 99, 092001 (2019).
Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. Preprint at arXiv https://arxiv.org/abs/1505.04597 (2015).
Abratenko, P. et al. Semantic segmentation with a sparse convolutional neural network for event reconstruction in MicroBooNE. Phys. Rev. D 103, 052012 (2021).
Dominé, L. & Terao, K. Scalable deep convolutional neural networks for sparse, locally dense liquid argon time projection chamber data. Phys. Rev. D 102, 012005 (2020).
Acciarri, R. et al. Cosmic background removal with deep neural networks in SBND. Preprint at arXiv https://arxiv.org/abs/2012.01301 (2020).
Drielsma, F., Terao, K., Dominé, L. & Koh, D. H. Scalable, end-to-end, deep-learning-based data reconstruction chain for particle imaging detectors. Preprint at arXiv https://arxiv.org/abs/2102.01033 (2021).
Dominé, L. & Terao, K. Point proposal network for reconstructing 3D particle positions with sub-pixel precision in liquid argon time projection chambers. Preprint at arXiv https://arxiv.org/abs/2006.14745 (2020).
Koh, D. H. et al. Scalable, proposal-free instance segmentation network for 3d pixel clustering and particle trajectory reconstruction in liquid argon time projection chambers. Preprint at arXiv https://arxiv.org/abs/2007.03083 (2020).
Drielsma, F. et al. Clustering of electromagnetic showers and particle interactions with graph neural networks in liquid argon time projection chambers. Phys. Rev. D 104, 072004 (2021).
Adams, C., Terao, K. & Wongjirad, T. PILArNet: public dataset for particle imaging liquid argon detectors in high energy physics. Preprint at arXiv https://arxiv.org/abs/2006.01993 (2020).
Psihas, F. The convolutional visual network for identification and reconstruction of NOvA events. J. Phys. Conf. Ser. 898, 072053 (2017).
Gando, A. et al. Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 117, 082503 (2016); addendum 117, 109903 (2016).
Racah, E. et al. Revealing fundamental physics from the Daya Bay neutrino experiment using deep neural networks. Preprint at arXiv https://arxiv.org/abs/1601.07621 (2016).
Choma, N. et al. Graph neural networks for IceCube signal classification. Preprint at arXiv https://arxiv.org/abs/1809.06166 (2018).
Abbasi, R. et al. Reconstruction of neutrino events in IceCube using graph neural networks. Proc. Sci. 395, 1044 (2021).
Abi, B. et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Vol. III: DUNE far detector technical coordination. J. Instrum. 15, T08009 (2020).
Wang, M. et al. GPU-accelerated machine learning inference as a service for computing in neutrino experiments. Front. Big Data 3, 604083 (2021).
Akerib, D. S. et al. Improving sensitivity to low-mass dark matter in LUX using a novel electrode background mitigation technique. Phys. Rev. D 104, 012011 (2021).
Akerib, D. S. et al. Constraints on effective field theory couplings using 311.2 days of LUX data. Preprint at arXiv https://arxiv.org/abs/2102.06998 (2021).
Rossiter, P. Background Mitigation in Dual Phase Xenon Time Projection Chambers. Thesis, Sheffield Univ. (2021).
Aprile, E. et al. Search for coherent elastic scattering of solar 8B neutrinos in the XENON1T dark matter experiment. Phys. Rev. Lett. 126, 091301 (2021).
Agnese, R. et al. Search for low-mass dark matter with CDMSlite using a profile likelihood fit. Phys. Rev. D 99, 062001 (2019).
Adhikari, G. et al. Lowering the energy threshold in COSINE-100 dark matter searches. Astropart. Phys. 130, 102581 (2021).
Albert, J. B. et al. Search for 2νββ decay of 136Xe to the 0\({}_{1}^{+}\) excited state of 136Ba with EXO-200. Phys. Rev. C 93, 035501 (2016).
Albert, J. B. et al. Search for neutrinoless double-beta decay with the upgraded EXO-200 detector. Phys. Rev. Lett. 120, 072701 (2018).
Anton, G. et al. Search for neutrinoless double-β decay with the complete EXO-200 dataset. Phys. Rev. Lett. 123, 161802 (2019).
Yu, T. C. Template-free pulse height estimation of microcalorimeter responses with PCA. Preprint at arXiv https://arxiv.org/abs/1910.14261 (2019).
Wagner, F. Machine Learning Methods for the Raw Data Analysis of Cryogenic Dark Matter Experiments. Thesis, TU Wien (2020).
Holl, P. et al. Deep learning based pulse shape discrimination for germanium detectors. Eur. Phys. J. C 79, 450 (2019).
Matusch, B. et al. Developing a bubble chamber particle discriminator using semi-supervised learning. Preprint at arXiv https://arxiv.org/abs/1811.11308 (2018).
Matusch, B. & Cao, G. Particle identification using semi-supervised learning in the PICO-60 dark matter detector. J. Phys. Conf. Ser. 1525, 012085 (2020).
Mühlmann, C. Pulse-Shape Discrimination with Deep Learning in CRESST. Thesis, TU Wien (2019).
Ai, P., Wang, D., Huang, G. & Sun, X. Three-dimensional convolutional neural networks for neutrinoless double-beta decay signal/background discrimination in high-pressure gaseous time projection chamber. J. Instrum. 13, P08015 (2018).
Renner, J. et al. Background rejection in NEXT using deep neural networks. J. Instrum. 12, T01004 (2017).
Kekic, M. et al. Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment. J. High Energy Phys. 01, 189 (2021).
Li, Z. et al. Simulation of charge readout with segmented tiles in nEXO. J. Instrum. 14, P09020 (2019).
Adhikari, G. et al. nEXO: neutrinoless double beta decay search beyond 1028 year half-life sensitivity. Preprint at arXiv https://arxiv.org/abs/2106.16243 (2021).
Qiao, H. et al. Signal-background discrimination with convolutional neural networks in the PandaX-III experiment using MC simulation. Sci. China Phys. Mech. Astron. 61, 101007 (2018).
Li, A., Elagin, A., Fraker, S., Grant, C. & Winslow, L. Suppression of cosmic muon spallation backgrounds in liquid scintillator detectors using convolutional neural networks. Nucl. Instrum. Meth. A 947, 162604 (2019).
Golovatiuk, A., Ustyuzhanin, A., Alexandrov, A. & De Lellis, G. Deep learning for direct dark matter search with nuclear emulsions. Preprint at arXiv https://arxiv.org/abs/2106.11995 (2021).
Simola, U., Pelssers, B., Barge, D., Conrad, J. & Corander, J. Machine learning accelerated likelihood-free event reconstruction in dark matter direct detection. J. Instrum. 14, P03004 (2019).
Delaquis, S. et al. Deep neural networks for energy and position reconstruction in EXO-200. J. Instrum. 13, P08023 (2018).
Aprile, E. et al. XENON1T dark matter data analysis: signal reconstruction, calibration and event selection. Phys. Rev. D 100, 052014 (2019).
Goicoechea-Casanueva, V., Kish, A. & Maricic, J. Event vertex reconstruction with deep neural networks for the DarkSide-20k experiment. EPJ Web Conf. 251, 03029 (2021).
Grobov, A. & Ilyasov, A. Convolutional neural network approach to event position reconstruction in DarkSide-50 experiment. J. Phys. Conf. Ser. 1690, 012013 (2020).
Ashtari Esfahani, A. et al. Cyclotron radiation emission spectroscopy signal classification with machine learning in Project 8. New J. Phys. 22, 033004 (2020).
Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous systems. Preprint at arXiv https://arxiv.org/abs/1603.04467 (2016).
Paszke, A. et al. Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8024–8035 (2019).
Lindegren, L. et al. Gaia Data Release 2. The astrometric solution. Astron. Astrophys. 616, A2 (2018).
Abbott, B. P. et al. LIGO: the Laser Interferometer Gravitational-wave Observatory. Rep. Prog. Phys. 72, 076901 (2009).
Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).
Weltman, A. et al. Fundamental physics with the Square Kilometre Array. Publ. Astron. Soc. Aust. 37, e002 (2020).
Stein, G. georgestein/ml-in-cosmology: machine learning in cosmology. zenodo https://doi.org/10.5281/zenodo.4024768 (2020).
Acknowledgements
S.K. and B.N. are supported by the US Department of Energy (DOE) Office of Science under contract DE-AC02-05CH11231. G. Kasieczka acknowledges the support of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy — EXC 2121 ‘Quantum Universe’ — 390833306. The work of D.S. was supported by DOE grant DOE-SC0010008. G. Karagiorgi is supported by the US National Science Foundation under grant no. PHY-1753228.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Karagiorgi, G., Kasieczka, G., Kravitz, S. et al. Machine learning in the search for new fundamental physics. Nat Rev Phys 4, 399–412 (2022). https://doi.org/10.1038/s42254-022-00455-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-022-00455-1
This article is cited by
-
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations
Nature Machine Intelligence (2024)
-
Cluster Scanning: a novel approach to resonance searches
Journal of High Energy Physics (2024)
-
Using the fuzzy integrals for the ensemble-based segmentation of asphalt cracks
Industrial Artificial Intelligence (2023)
-
Riemannian data preprocessing in machine learning to focus on QCD color structure
Journal of the Korean Physical Society (2023)
-
Machine learning in nuclear physics at low and intermediate energies
Science China Physics, Mechanics & Astronomy (2023)