Abstract
Polariton lasers emit coherent monochromatic light through a spontaneous emission process. As a rare example of a system in which Bose–Einstein condensation and superfluidity are reported at room temperature, polariton lasers are interesting for fundamental research and offer potential for applications in classical and quantum information technologies. In the past 10 years, new material systems have emerged for polariton lasers, such as organic molecules, transition metal dichalcogenides, perovskites and liquid-crystal microcavities. In this Review, we discuss these emerging platforms in the context of applications in topological lasing, classical neuromorphic computing and quantum information processing.
Key points
-
Polariton lasers are coherent light emitters based on bosonic condensates of half-light, half-matter quasiparticles: exciton–polaritons.
-
Nowadays, polariton lasers with either optical or electronic injection are realized in a wide variety of organic, hybrid and inorganic systems, including two-dimensional crystals.
-
Engineering of spin–orbit coupling in polariton condensates led to the development of polariton topological insulators and lasers.
-
Phase locking in arrays of polariton condensates in planar microcavities may be used for the realization of ultrafast simulators.
-
Multistability of quasiresonantly pumped polariton condensates allows for realization of polariton neurons that pass information by means of the motion of domain walls.
-
Polariton qubits based on superposition of polariton superfluids with different orbital momenta are promising because of their high scalability and optical control.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Change history
23 May 2022
A Correction to this paper has been published: https://doi.org/10.1038/s42254-022-00479-7
References
Askitopoulos, A. et al. Robust platform for engineering pure-quantum-state transitions in polariton condensates. Phys. Rev. B 92, 035305 (2015).
Ballarini, D. et al. Polaritonic neuromorphic computing outperforms linear classifiers. Nano Lett. 20, 3506–3512 (2020).
Imamoğlu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: exciton–polariton lasers. Phys. Rev. A 53, 4250–4253 (1996).
Richard, M. et al. Experimental evidence for nonequilibrium Bose condensation of exciton polaritons. Phys. Rev. B 72, 201301 (2005).
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).
Dang, L. S., Heger, D., André, R., Bœuf, F. & Romestain, R. Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett. 81, 3920–3923 (1998).
Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).
Deng, H., Solomon, G., Hey, R., Ploog, K. & Yamamoto, Y. Spatial coherence of a polariton condensate. Phys. Rev. Lett. 99, 126403 (2007).
Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).
Lai, C. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (2007).
Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).
Tassone, F., Piermarocchi, C., Savona, V., Quattropani, A. & Schwendimann, P. Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B 56, 7554–7563 (1997).
Maragkou, M., Grundy, A., Ostatnický, T. & Lagoudakis, P. Longitudinal optical phonon assisted polariton laser. Appl. Phys. Lett. 97, 111110 (2010).
Porras, D., Ciuti, C., Baumberg, J. J. & Tejedor, C. Polariton dynamics and Bose–Einstein condensation in semiconductor microcavities. Phys. Rev. B 66, 085304 (2002).
Liew, T. C. H., Flayac, H., Poletti, D., Savenko, I. G. & Laussy, F. P. Kinetic Monte Carlo approach to nonequilibrium bosonic systems. Phys. Rev. B 96, 125423 (2017).
Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).
Daskalakis, K. S. et al. All-dielectric GaN microcavity: strong coupling and lasing at room temperature. Appl. Phys. Lett. 102, 101113 (2013).
Bajoni, D. et al. Polariton laser using single micropillar GaAs−GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008).
Azzini, S. et al. Ultra-low threshold polariton lasing in photonic crystal cavities. Appl. Phys. Lett. 99, 111106 (2011).
Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).
Christmann, G., Butté, R., Feltin, E., Carlin, J. & Grandjean, N. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).
Xie, W. et al. Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate. Phys. Rev. Lett. 108, 166401 (2012).
Duan, Q. et al. Polariton lasing of quasi-whispering gallery modes in a ZnO microwire. Appl. Phys. Lett. 103, 022103 (2013).
Li, F. et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys. Rev. Lett. 110, 196406 (2013).
Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photon. 4, 371–375 (2010).
Plumhof, J., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nat. Mater. 13, 247–252 (2014).
Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982–3988 (2017).
Su, R. et al. Direct measurement of a non-Hermitian topological invariant in a hybrid light–matter system. Sci. Adv. 7, eabj8905 (2021).
Shan, H. et al. Spatial coherence of room-temperature monolayer WSe2 exciton–polaritons in a trap. Nat. Commun. 12, 6406 (2021).
Zhao, J. et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature. Nano Lett. 21, 3331–3339 (2021).
Daskalakis, K., Maier, S., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).
Christmann, G. et al. Impact of disorder on high quality factor III–V nitride microcavities. Appl. Phys. Lett. 89, 261101 (2006).
Tischler, J., Bradley, M., Bulović, V., Song, J. & Nurmikko, A. Strong coupling in a microcavity LED. Phys. Rev. Lett. 95, 036401 (2005).
Khalifa, A. A., Love, A. P. D., Krizhanovskii, D., Skolnick, M. S. & Roberts, J. S. Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities. Appl. Phys. Lett. 92, 061107 (2008).
Tsintzos, S. I., Pelekanos, N. T., Konstantinidis, G., Hatzopoulos, Z. & Savvidis, P. G. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008).
Bajoni, D. et al. Polariton light-emitting diode in a GaAs-based microcavity. Phys. Rev. B 77, 113303 (2008).
Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).
Bhattacharya, P., Xiao, B., Das, A., Bhowmick, S. & Heo, J. Solid state electrically injected exciton–polariton laser. Phys. Rev. Lett. 110, 206403 (2013).
Suchomel, H. et al. Spatio-temporal coherence in vertically emitting GaAs-based electrically driven polariton lasers. Appl. Phys. Lett. 116, 171103 (2020).
Bhattacharya, P. et al. Room temperature electrically injected polariton laser. Phys. Rev. Lett. 112, 236802 (2014).
Schneider, C. et al. Exciton–polariton trapping and potential landscape engineering. Rep. Prog. Phys. 80, 016503 (2016).
Amthor, M. et al. Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity. Opt. Express 22, 31146–31153 (2014).
Tsotsis, P. et al. Tuning the energy of a polariton condensate via bias-controlled rabi splitting. Phys. Rev. Appl. 2, 014002 (2014).
Brodbeck, S. et al. Impact of lateral carrier confinement on electro-optical tuning properties of polariton condensates. Appl. Phys. Lett. 107, 041108 (2015).
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).
Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).
Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).
Dufferwiel, S. et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015).
Lundt, N. et al. Room-temperature Tamm-plasmon exciton–polaritons with a WSe2 monolayer. Nat. Commun. 7, 13328 (2016).
Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton–polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018).
Liu, W. et al. Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice. Nano Lett. 16, 1262–1269 (2016).
Schneider, C., Glazov, M. M., Korn, T., Höfling, S. & Urbaszek, B. Two-dimensional semiconductors in the regime of strong light–matter coupling. Nat. Commun. 9, 2695 (2018).
Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2021).
Gu, J., Chakraborty, B., Khatoniar, M. & Menon, V. M. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat. Nanotechnol. 14, 1024–1028 (2019).
Mak, K. F., Xiao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nat. Photon. 12, 451–460 (2018).
Lundt, N. et al. Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion–polaritons with a MoSe2 monolayer. 2D Mater. 4, 025096 (2017).
Dufferwiel, S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photon. 11, 497–501 (2017).
Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photon. 11, 491–496 (2017).
Chen, Y.-J., Cain, J. D., Stanev, T. K., Dravid, V. P. & Stern, N. P. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photon. 11, 431–435 (2017).
Lundt, N. et al. Optical valley Hall effect for highly valley-coherent exciton–polaritons in an atomically thin semiconductor. Nat. Nanotechnol. 14, 770–775 (2019).
Kavokin, A., Malpuech, G. & Glazov, M. Optical spin Hall effect. Phys. Rev. Lett. 95, 136601 (2005).
Onga, M., Zhang, Y., Ideue, T. & Iwasa, Y. Exciton Hall effect in monolayer MoS2. Nat. Mater. 16, 1193–1197 (2017).
Wurdack, M. et al. Motional narrowing, ballistic transport, and trapping of room-temperature exciton polaritons in an atomically-thin semiconductor. Nat. Commun. 12, 5366 (2021).
Shahnazaryan, V., Iorsh, I., Shelykh, I. A. & Kyriienko, O. Exciton-exciton interaction in transition-metal dichalcogenide monolayers. Phys. Rev. B 96, 115409 (2017).
Stepanov, P. et al. Exciton-exciton interaction beyond the hydrogenic picture in a MoSe2 monolayer in the strong light-matter coupling regime. Phys. Rev. Lett. 126, 167401 (2021).
Gu, J. et al. Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2. Nat. Commun. 12, 2269 (2021).
Emmanuele, R. P. A. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).
Tan, L. B. et al. Interacting polaron-polaritons. Phys. Rev. X 10, 021011 (2020).
Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).
Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).
Fang, H. H. et al. Control of the exciton radiative lifetime in van der Waals heterostructures. Phys. Rev. Lett. 123, 067401 (2019).
Waldherr, M. et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity. Nat. Commun. 9, 3286 (2018).
Anton-Solanas, C. et al. Bosonic condensation of exciton–polaritons in an atomically thin crystal. Nat. Mater. 20, 1233–1239 (2021).
Lidzey, D. G. et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature 395, 53–55 (1998).
Wenus, J. et al. Optical strong coupling in microcavities containing J-aggregates absorbing in near-infrared spectral range. Org. Electron. 8, 120–126 (2007).
Gambino, S. et al. Exploring light–matter interaction phenomena under ultrastrong coupling regime. ACS Photonics 1, 1042–1048 (2014).
Dietrich, C. P. et al. An exciton–polariton laser based on biologically produced fluorescent protein. Sci. Adv. 2, e1600666 (2016).
Betzold, S. et al. Coherence and interaction in confined room-temperature polariton condensates with Frenkel excitons. ACS Photonics 7, 384–392 (2019).
Dusel, M. et al. Room temperature organic exciton–polariton condensate in a lattice. Nat. Commun. 11, 2863 (2020).
Dusel, M. et al. Room-temperature topological polariton laser in an organic lattice. Nano Lett. 21, 6398–6405 (2021).
Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon. 13, 378–383 (2019).
Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021).
Brehier, A., Parashkov, R., Lauret, J.-S. & Deleporte, E. Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors. Appl. Phys. Lett. 89, 171110 (2006).
Lanty, G. et al. Hybrid cavity polaritons in a ZnO-perovskite microcavity. Phys. Rev. B 84, 195449 (2011).
Evans, T. J. et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater. 6, 1700982 (2018).
Du, W. et al. Strong exciton–photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics 5, 2051–2059 (2018).
Wang, J. et al. Lasing from lead halide perovskite semiconductor microcavity system. Nanoscale 10, 10371–10376 (2018).
Park, K. et al. Light–matter interactions in cesium lead halide perovskite nanowire lasers. J. Phys. Chem. Lett. 7, 3703–3710 (2016).
Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).
Shang, Q. et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett. 18, 3335–3343 (2018).
Wang, J. et al. Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities. Light Sci. Appl. 10, 45 (2021).
Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).
Bouteyre, P. et al. Room-temperature cavity polaritons with 3D hybrid perovskite: toward large-surface polaritonic devices. ACS Photonics 6, 1804–1811 (2019).
Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019).
Wu, J. et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett. 21, 3120–3126 (2021).
Wu, J. et al. Perovskite polariton parametric oscillator. Adv. Photon. 3, 055003 (2021).
Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H. & Park, N.-G. High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020).
Lekenta, K. et al. Tunable optical spin Hall effect in a liquid crystal microcavity. Light Sci. Appl. 7, 74 (2018).
Rechcińska, K. et al. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019).
Król, M. et al. Observation of second-order meron polarization textures in optical microcavities. Optica 8, 255–261 (2021).
Król, M. et al. Realizing optical persistent spin helix and Stern-Gerlach deflection in an anisotropic liquid crystal microcavity. Phys. Rev. Lett. 127, 190401 (2021).
Kokhanchik, P., Sigurdsson, H., Piętka, B., Szczytko, J. & Lagoudakis, P. G. Photonic Berry curvature in double liquid crystal microcavities with broken inversion symmetry. Phys. Rev. B 103, L081406 (2021).
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).
Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).
König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).
Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).
Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Ota, Y. et al. Active topological photonics. Nanophotonics 9, 547–567 (2020).
Karzig, T., Bardyn, C.-E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015).
Bardyn, C.-E., Karzig, T., Refael, G. & Liew, T. C. H. Topological polaritons and excitons in garden-variety systems. Phys. Rev. B 91, 161413 (2015).
Nalitov, A. V., Solnyshkov, D. D. & Malpuech, G. Polariton \({\mathbb{Z}}\) topological insulator. Phys. Rev. Lett. 114, 116401 (2015).
Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).
Amo, A. & Bloch, J. Exciton–polaritons in lattices: a non-linear photonic simulator. C. R. Phys. 17, 934–945 (2016).
Suchomel, H. et al. Platform for electrically pumped polariton simulators and topological lasers. Phys. Rev. Lett. 121, 257402 (2018).
Solnyshkov, D. D., Nalitov, A. V. & Malpuech, G. Kibble–Zurek mechanism in topologically nontrivial zigzag chains of polariton micropillars. Phys. Rev. Lett. 116, 046402 (2016).
Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750 (1989).
Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).
St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).
Harder, T. H. et al. Coherent topological polariton laser. ACS Photonics 8, 1377–1384 (2021).
Yi, K. & Karzig, T. Topological polaritons from photonic Dirac cones coupled to excitons in a magnetic field. Phys. Rev. B 93, 104303 (2016).
Zhang, Y., Kartashov, Y. V., Zhang, Y., Torner, L. & Skryabin, D. V. Inhibition of tunneling and edge state control in polariton topological insulators. APL Photonics 3, 120801 (2018).
Li, C. et al. Lieb polariton topological insulators. Phys. Rev. B 97, 081103 (2018).
Sun, M., Ko, D., Leykam, D., Kovalev, V. M. & Savenko, I. G. Exciton–polariton topological insulator with an array of magnetic dots. Phys. Rev. Appl. 12, 064028 (2019).
Hofmann, D. & Sentef, M. A. Resonant laser excitation and time-domain imaging of chiral topological polariton edge states. Phys. Rev. Res. 2, 033386 (2020).
Klembt, S. et al. Exciton–polariton topological insulator. Nature 562, 552–556 (2018).
Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).
Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
Dikopoltsev, A. et al. Topological insulator vertical-cavity laser array. Science 373, 1514–1517 (2021).
Amelio, I. & Carusotto, I. Theory of the coherence of topological lasers. Phys. Rev. X 10, 041060 (2020).
Kartashov, Y. V. & Skryabin, D. V. Two-dimensional topological polariton laser. Phys. Rev. Lett. 122, 083902 (2019).
Kartashov, Y. V. & Skryabin, D. V. Modulational instability and solitary waves in polariton topological insulators. Optica 3, 1228–1236 (2016).
Gulevich, D. R., Yudin, D., Skryabin, D. V., Iorsh, I. V. & Shelykh, I. A. Exploring nonlinear topological states of matter with exciton–polaritons: edge solitons in kagome lattice. Sci. Rep. 7, 1780 (2017).
Bardyn, C.-E., Karzig, T., Refael, G. & Liew, T. C. H. Chiral Bogoliubov excitations in nonlinear bosonic systems. Phys. Rev. B 93, 020502 (2016).
Mandal, S., Ge, R. & Liew, T. C. H. Antichiral edge states in an exciton polariton strip. Phys. Rev. B 99, 115423 (2019).
Banerjee, R., Mandal, S. & Liew, T. C. H. Optically induced topological spin-valley Hall effect for exciton polaritons. Phys. Rev. B 103, L201406 (2021).
Sigurdsson, H., Li, G. & Liew, T. C. H. Spontaneous and superfluid chiral edge states in exciton–polariton condensates. Phys. Rev. B 96, 115453 (2017).
Banerjee, R., Mandal, S. & Liew, T. C. H. Coupling between exciton–polariton corner modes through edge states. Phys. Rev. Lett. 124, 063901 (2020).
Liu, W. et al. Generation of helical topological exciton–polaritons. Science 370, 600–604 (2020).
Wu, L.-H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).
Li, M. et al. Experimental observation of topological Z2 exciton–polaritons in transition metal dichalcogenide monolayers. Nat. Commun. 12, 4425 (2021).
Lackner, L. et al. Tunable exciton–polaritons emerging from WS2 monolayer excitons in a photonic lattice at room temperature. Nat. Commun. 12, 4933 (2021).
Pickup, L., Sigurdsson, H., Ruostekoski, J. & Lagoudakis, P. G. Synthetic band-structure engineering in polariton crystals with non-Hermitian topological phases. Nat. Commun. 11, 4431 (2020).
Pieczarka, M. et al. Topological phase transition in an all-optical exciton–polariton lattice. Optica 8, 1084–1091 (2021).
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).
Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton–polariton billiard. Nature 526, 554–558 (2015).
Gao, W., Li, X., Bamba, M. & Kono, J. Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons. Nat. Photon. 12, 362–367 (2018).
Khurgin, J. B. Exceptional points in polaritonic cavities and subthreshold Fabry–Perot lasers. Optica 7, 1015–1023 (2020).
Comaron, P., Shahnazaryan, V., Brzezicki, W., Hyart, T. & Matuszewski, M. Non-Hermitian topological end-mode lasing in polariton systems. Phys. Rev. Res. 2, 022051 (2020).
Mandal, S., Banerjee, R., Ostrovskaya, E. A. & Liew, T. C. H. Nonreciprocal transport of exciton polaritons in a non-Hermitian chain. Phys. Rev. Lett. 125, 123902 (2020).
Hatano, N. & Nelson, D. R. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 77, 570–573 (1996).
Xu, X. et al. Interaction-induced double-sided skin effect in an exciton–polariton system. Phys. Rev. B 103, 235306 (2021).
Sich, M. et al. Observation of bright polariton solitons in a semiconductor microcavity. Nat. Photon. 6, 50–55 (2012).
Tanese, D. et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential. Nat. Commun. 4, 1749 (2013).
Cristofolini, P. et al. Optical superfluid phase transitions and trapping of polariton condensates. Phys. Rev. Lett. 110, 186403 (2013).
Sich, M. et al. Effects of spin-dependent interactions on polarization of bright polariton solitons. Phys. Rev. Lett. 112, 046403 (2014).
Pinsker, F. & Flayac, H. On-demand dark soliton train manipulation in a spinor polariton condensate. Phys. Rev. Lett. 112, 140405 (2014).
De Giorgi, M. et al. Control and ultrafast dynamics of a two-fluid polariton switch. Phys. Rev. Lett. 109, 266407 (2012).
Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).
Cerna, R. et al. Ultrafast tristable spin memory of a coherent polariton gas. Nat. Commun. 4, 2008 (2013).
Mirek, R. et al. Neuromorphic binarized polariton networks. Nano Lett. 21, 3715–3720 (2021).
Dreismann, A. et al. A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates. Nat. Mater. 15, 1074–1078 (2016).
Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon. 13, 378–383 (2019).
Wertz, E. et al. Propagation and amplification dynamics of 1D polariton condensates. Phys. Rev. Lett. 109, 216404 (2012).
Liao, L. et al. Propagation of a polariton condensate in a one-dimensional microwire at room temperature. Appl. Phys. Express 12, 052009 (2019).
Lerario, G. et al. High-speed flow of interacting organic polaritons. Light Sci. Appl. 6, e16212 (2017).
Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).
Zhu, J., Zhang, T., Yang, Y. & Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 7, 011312 (2020).
Song, S. et al. Recent progress of optoelectronic and all-optical neuromorphic devices: a comprehensive review of device structures, materials, and applications. Adv. Intell. Syst. 3, 2000119 (2021).
Schuman, C. D. et al. A survey of neuromorphic computing and neural networks in hardware. Preprint at https://arxiv.org/abs/1705.06963 (2017).
Liew, T. C. H., Kavokin, A. V. & Shelykh, I. A. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 101, 016402 (2008).
Baas, A., Karr, J. P., Eleuch, H. & Giacobino, E. Optical bistability in semiconductor microcavities. Phys. Rev. A 69, 023809 (2004).
Whittaker, D. M. Effects of polariton-energy renormalization in the microcavity optical parametric oscillator. Phys. Rev. B 71, 115301 (2005).
Espinosa-Ortega, T. & Liew, T. C. H. Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities. Phys. Rev. B 87, 195305 (2013).
Koniakhin, S. V. et al. Stationary quantum vortex street in a driven-dissipative quantum fluid of light. Phys. Rev. Lett. 123, 215301 (2019).
Lerario, G. et al. Parallel dark-soliton pair in a bistable two-dimensional exciton–polariton superfluid. Phys. Rev. Res. 2, 042041 (2020).
Espinosa-Ortega, T., Liew, T. C. H. & Shelykh, I. A. Optical diode based on exciton–polaritons. Appl. Phys. Lett. 103, 191110 (2013).
Banerjee, R. & Liew, T. C. H. Artificial life in an exciton–polariton lattice. New J. Phys. 22, 103062 (2020).
Byrnes, T., Koyama, S., Yan, K. & Yamamoto, Y. Neural networks using two-component Bose-Einstein condensates. Sci. Rep. 3, 2531 (2013).
Espinosa-Ortega, T. & Liew, T. C. H. Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials. Phys. Rev. Lett. 114, 118101 (2015).
Montavon, G., Orr, G. & Müller, K.-R. Neural Networks: Tricks of the Trade (Springer, 2012).
Kudithipudi, D., Saleh, Q., Merkel, C., Thesing, J. & Wysocki, B. Design and analysis of a neuromemristive reservoir computing architecture for biosignal processing. Front. Neurosci. 9, 502 (2016).
Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).
Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014).
Duport, F., Schneider, B., Smerieri, A., Haelterman, M. & Massar, S. All-optical reservoir computing. Opt. Express 20, 22783–22795 (2012).
Paquot, Y. et al. Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012).
Larger, L. et al. Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing. Opt. Express 20, 3241–3249 (2012).
Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013).
Larger, L. et al. High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7, 011015 (2017).
Opala, A., Ghosh, S., Liew, T. C. & Matuszewski, M. Neuromorphic computing in Ginzburg–Landau polariton-lattice systems. Phys. Rev. Appl. 11, 064029 (2019).
Matuszewski, M. et al. Energy-efficient neural network inference with microcavity exciton polaritons. Phys. Rev. Appl. 16, 024045 (2021).
Fujii, K. & Nakajima, K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 8, 024030 (2017).
Negoro, M., Mitarai, K., Fujii, K., Nakajima, K. & Kitagawa, M. Machine learning with controllable quantum dynamics of a nuclear spin ensemble in a solid. Preprint at https://arxiv.org/abs/1806.10910 (2018).
Delteil, A. et al. Towards polariton blockade of confined exciton–polaritons. Nat. Mater. 18, 219–222 (2019).
Muñoz-Matutano, G. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 18, 213–218 (2019).
Ghosh, S., Nakajima, K., Krisnanda, T., Fujii, K. & Liew, T. C. H. Quantum neuromorphic computing with reservoir computing networks. Adv. Quantum Technol. 4, 2100053 (2021).
Bloch, J. et al. Strong-coupling regime in pillar semiconductor microcavities. Superlattices Microstruct. 22, 371–374 (1997).
Kaitouni, R. I. et al. Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B 74, 155311 (2006).
Cerda-Méndez, E. A. et al. Polariton condensation in dynamic acoustic lattices. Phys. Rev. Lett. 105, 116402 (2010).
Masumoto, N. et al. Exciton–polariton condensates with flat bands in a two-dimensional kagome lattice. New J. Phys. 14, 065002 (2012).
Kim, N. Y. et al. Exciton–polariton condensates near the Dirac point in a triangular lattice. New J. Phys. 15, 035032 (2013).
Kusudo, K. et al. Stochastic formation of polariton condensates in two degenerate orbital states. Phys. Rev. B 87, 214503 (2013).
Cerda-Méndez, E. A. et al. Exciton–polariton gap solitons in two-dimensional lattices. Phys. Rev. Lett. 111, 146401 (2013).
Milićević, M. et al. Edge states in polariton honeycomb lattices. 2D Mater. 2, 034012 (2015).
Tanese, D. et al. Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential. Phys. Rev. Lett. 112, 146404 (2014).
Baboux, F. et al. Measuring topological invariants from generalized edge states in polaritonic quasicrystals. Phys. Rev. B 95, 161114 (2017).
Baboux, F. et al. Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett. 116, 066402 (2016).
Winkler, K. et al. Collective state transitions of exciton–polaritons loaded into a periodic potential. Phys. Rev. B 93, 121303 (2016).
Sala, V. G. et al. Spin-orbit coupling for photons and polaritons in microstructures. Phys. Rev. X 5, 011034 (2015).
Goblot, V. et al. Nonlinear polariton fluids in a flatband reveal discrete gap solitons. Phys. Rev. Lett. 123, 113901 (2019).
Zhang, L. et al. Weak lasing in one-dimensional polariton superlattices. Proc. Natl Acad. Sci. USA 112, E1516–E1519 (2015).
Rodriguez, S. R. K. et al. Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities. Nat. Commun. 7, 11887 (2016).
Saito, H., Aioi, T. & Kadokura, T. Order-disorder oscillations in exciton–polariton superfluids. Phys. Rev. Lett. 110, 026401 (2013).
Kovalev, V. M., Savenko, I. G. & Iorsh, I. V. Ultrafast exciton–polariton scattering towards the Dirac points. J. Phys. Cond. Matt. 28, 105301 (2016).
Ozawa, T., Amo, A., Bloch, J. & Carusotto, I. Klein tunneling in driven-dissipative photonic graphene. Phys. Rev. A 96, 013813 (2017).
Nalitov, A. V., Liew, T. C. H., Kavokin, A. V., Altshuler, B. L. & Rubo, Y. G. Spontaneous polariton currents in periodic lateral chains. Phys. Rev. Lett. 119, 067406 (2017).
Askitopoulos, A. et al. Polariton condensation in an optically induced two-dimensional potential. Phys. Rev. B 88, 041308 (2013).
Ohadi, H. et al. Spontaneous spin bifurcations and ferromagnetic phase transitions in a spinor exciton–polariton condensate. Phys. Rev. X 5, 031002 (2015).
Ohadi, H. et al. Nontrivial phase coupling in polariton multiplets. Phys. Rev. X 6, 031032 (2016).
Ohadi, H. et al. Spin order and phase transitions in chains of polariton condensates. Phys. Rev. Lett. 119, 067401 (2017).
Sigurdsson, H. et al. Driven-dissipative spin chain model based on exciton–polariton condensates. Phys. Rev. B 96, 155403 (2017).
Ohadi, H. et al. Synchronization crossover of polariton condensates in weakly disordered lattices. Phys. Rev. B 97, 195109 (2018).
Berloff, N. G. et al. Realizing the classical xy Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017).
De las Cuevas, G. & Cubitt, T. S. Simple universal models capture all classical spin physics. Science 351, 1180–1183 (2016).
Lagoudakis, P. G. & Berloff, N. G. A polariton graph simulator. New J. Phys. 19, 125008 (2017).
Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photon. 8, 937–942 (2014).
Kalinin, K. P. & Berloff, N. G. Networks of non-equilibrium condensates for global optimization. New J. Phys. 20, 113023 (2018).
Kalinin, K. P. & Berloff, N. G. Global optimization of spin Hamiltonians with gain-dissipative systems. Sci. Rep. 8, 17791 (2018).
Kalinin, K. P. & Berloff, N. G. Polaritonic network as a paradigm for dynamics of coupled oscillators. Phys. Rev. B 100, 245306 (2019).
Kalinin, K. P. & Berloff, N. G. Simulating Ising and n-state planar Potts models and external fields with nonequilibrium condensates. Phys. Rev. Lett. 121, 235302 (2018).
Kalinin, K. P., Amo, A., Bloch, J. & Berloff, N. G. Polaritonic xy-Ising machine. Nanophotonics 9, 4127–4138 (2020).
Kyriienko, O., Sigurdsson, H. & Liew, T. C. H. Probabilistic solving of NP-hard problems with bistable nonlinear optical networks. Phys. Rev. B 99, 195301 (2019).
Xue, Y. et al. Split-ring polariton condensates as macroscopic two-level quantum systems. Phys. Rev. Res. 3, 013099 (2021).
Sedov, E. S., Lukoshkin, V. A., Kalevich, V. K., Savvidis, P. G. & Kavokin, A. V. Circular polariton currents with integer and fractional orbital angular momenta. Phys. Rev. Res. 3, 013072 (2021).
Ma, X. et al. Realization of all-optical vortex switching in exciton–polariton condensates. Nat. Commun. 11, 897 (2020).
Berger, B., Kahlert, M., Schmidt, D. & Assmann, M. Spectroscopy of fractional orbital angular momentum states. Opt. Express 26, 32248–32258 (2018).
Leblanc, C., Malpuech, G. & Solnyshkov, D. D. High-frequency exciton–polariton clock generator. Phys. Rev. B 101, 115418 (2020).
Byrnes, T., Wen, K. & Yamamoto, Y. Macroscopic quantum computation using Bose–Einstein condensates. Phys. Rev. A 85, 040306 (2012).
Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).
Ghosh, S. & Liew, T. C. H. Quantum computing with exciton–polariton condensates. npj Quantum Inf. 6, 16 (2020).
Kyriienko, O. & Liew, T. C. H. Triggered single-photon emitters based on stimulated parametric scattering in weakly nonlinear systems. Phys. Rev. A 90, 063805 (2014).
Kyriienko, O. & Liew, T. C. H. Exciton–polariton quantum gates based on continuous variables. Phys. Rev. B 93, 035301 (2016).
Liew, T. C. H. & Rubo, Y. G. Quantum exciton–polariton networks through inverse four-wave mixing. Phys. Rev. B 97, 041302 (2018).
Einstein, A. Strahlungs-Emission und Absorption nach der Quantentheorie. Verh. Deutsch. Phys. Gesell. 18, 318–323 (1916).
Klaas, M. et al. Evolution of temporal coherence in confined exciton–polariton condensates. Phys. Rev. Lett. 120, 017401 (2018).
Kim, S. et al. Coherent polariton laser. Phys. Rev. X 6, 011026 (2016).
Coldren, L. & Corzine, S. Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
Bloch, I., Hänsch, T. W. & Esslinger, T. Atom laser with a cw output coupler. Phys. Rev. Lett. 82, 3008–3011 (1999).
Kavokin, A., Liew, T. C. H., Schneider, C. & Höfling, S. Bosonic lasers: The state of the art (Review Article). Low Temp. Phys. 42, 323 (2016).
Acknowledgements
A.K. acknowledges the Rosatom Road Map for Quantum Computing programme. T.C.H.L. was supported by the Ministry of Education (Singapore) Tier 2 project MOE2019-T2-1-004. C.S. acknowledges funding provided by the European Research Council (ERC project 679288, unlimit-2D) as well as the German Research Foundation (DFG) (Project SCHN1376 14.1). S.K. and S.H. acknowledge financial support from the German Research Foundation (DFG) through the Würzburg–Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter “ct.qmat” (EXC 2147, project ID 390858490). S.K. acknowledges funding provided by the German Research Foundation (DFG) (Project KL3124/3.1).
Author information
Authors and Affiliations
Contributions
The authors contributed to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Edgar Cerda-Mendez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Bragg mirror
-
A periodic dielectric structure that reflects light owing to the optical interference effect. Dielectric Bragg mirrors may provide higher reflectivities than metallic mirrors, which is why they are widely used in laser structures and microcavities.
- Microcavity
-
A thin layer of semiconductor or dielectric material sandwiched between two mirrors. In contrast to conventional optical cavities, microcavities confine a limited number of optical modes, frequently only one mode, which is why they are characterized by a very high finesse.
- Tamm-plasmon
-
An optical mode confined between a dielectric Bragg mirror and a metallic layer.
- Frenkel exciton
-
An elementary excitation in a molecular crystal. Frenkel excitons are characterized by relatively small Bohr radii (of the order of a lattice constant) and large binding energies (typically of the order of 1 eV).
- Wannier–Mott exciton
-
An elementary excitation in an inorganic semiconductor crystal. Wannier–Mott excitons are characterized by large Bohr radii (several tens of lattice constants) and relatively small binding energies (typically of the order of 10 meV).
- TE–TM splitting
-
The energy splitting between optical modes having their electric field (TE) or magnetic field (TM) vectors in the plane of the cavity, respectively. The splitting is defined by Maxwell boundary conditions at the boundaries of the cavity. It strongly affects the polarization dynamics of exciton–polaritons, creating a kind of effective magnetic field acting upon polariton pseudospin (Stokes vector).
- Su–Schrieffer–Heeger (SSH) model
-
This model predicts formation of spatially localized electronic states at the ends of molecular chains. It has generalizations for a large variety of one-dimensional systems.
- Zak-phase
-
A topological number that refers to the Berry’s phase picked up by a particle moving across the Brillouin zone in a one-dimensional crystal.
- Soliton
-
A solitary wave formed in a nonlinear system that preserves its shape when propagating. One can distinguish between bright and dark optical solitons characterized by a peak and a trough of intensity of the electromagnetic field. Bright solitons have been observed in polariton flows.
- Polariton blockade
-
A formation of a polariton state with a fixed number of particles due to the nonlinear absorption of pumping laser light. It is expected to occur in the case of quasiresonant optical excitation where the efficiency of absorption of the laser light becomes strongly dependent on the occupation number of a polariton mode.
- NP-hard problems
-
An important class of mathematical problems that are more complex than the most complex of NP problems, with NP standing for nondeterministic polynomial time. NP problems represent the set of decision problems solvable in polynomial time by a non-deterministic Turing machine.
- Polariton superfluid
-
A polariton condensate demonstrating features of a superfluid such as quantized vortices, persistent currents, solitons, lack of scattering and viscosity, and Bogolyubov-like linear dispersion of excitations.
Rights and permissions
About this article
Cite this article
Kavokin, A., Liew, T.C.H., Schneider, C. et al. Polariton condensates for classical and quantum computing. Nat Rev Phys 4, 435–451 (2022). https://doi.org/10.1038/s42254-022-00447-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-022-00447-1
This article is cited by
-
Non-reciprocal band structures in an exciton–polariton Floquet optical lattice
Nature Photonics (2024)
-
Topological valley Hall polariton condensation
Nature Nanotechnology (2024)
-
Raman scattering owing to magneto-polaron states in monolayer transition metal dichalcogenides
Scientific Reports (2024)
-
Observation of transition from superfluorescence to polariton condensation in CsPbBr3 quantum dots film
Light: Science & Applications (2024)
-
Ultrafast switching of trions in 2D materials by terahertz photons
Nature Photonics (2024)