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In the past decade, a subfield of artificial 
intelligence (AI), namely, deep learning 
(DL) neural networks (or deep neural 
networks, DNNs), has enabled significant 
breakthroughs in many scientifically and 
commercially important applications1. 
Such neural networks are themselves a 
subset of a wide range of machine learning 
(ML) methods.

ML methods have been widely used for 
many years in several domains of science, 
but DNNs have been transformational 
and are gaining a lot of traction in many 
scientific communities2,3. Most of the 
national, international and big laboratories 
that host large- scale experimental facilities, 
as well as commercial entities capable of 
large- scale data processing (big tech), are 
now relying on DNN- based data analytic 
methods to extract insights from their 
increasingly large datasets. A recent success 
from industry is the use of DL to find 

Supervised learning is, therefore, possible 
only when there is a labelled subset of the 
data. Once trained, the learned model can 
be deployed for real- time usage, such as 
pattern classification or estimation — which 
is often referred to as ‘inference’. Because 
of the difficulty in generating labelled data 
for supervised learning, particularly for 
experimental datasets, it is often difficult 
to apply supervised learning directly. To 
circumvent this limitation, training is 
often performed on simulated data, which 
provides an opportunity to have relevant 
labels. However, the simulated data may 
not be representative of the real data and 
the model may, therefore, not perform 
satisfactorily when used for inferencing. 
The unsupervised learning technique, in 
contrast, does not rely on labels. A simple 
example of this technique is clustering, 
where the aim is to identify several groups 
of data points that have common features. 
Another example is identification of 
anomalies in data. Example algorithms 
include k- means clustering8, Support  
Vector Machines (SVMs)9 or neural- 
network-based autoencoders10. Finally, 
reinforcement learning relies on a 
trial-and-error approach to learn a given 
task, with the learning system being 
positively rewarded whenever it behaves 
correctly and penalized whenever it 
behaves incorrectly11. Each of these learning 
paradigms has a large number of algorithms, 
and modern developmental approaches are 
often hybrid and use one or more of these 
techniques together. This leaves many choices 
of ML algorithms for any given problem.

In practice, the selection of an ML 
algorithm for a given scientific problem is 
more complex than just selecting one of 
the ML technologies and any particular 
algorithm. The selection of the most 
effective ML algorithm is based on many 
factors, including the type, quantity and 
quality of the training data, the availability 
of labelled data, the type of problem being 
addressed (prediction, classification and so 
on), the overall accuracy and performance 
required, and the hardware systems 
available for training and inferencing. 
With such a multidimensional problem 
consisting of a choice of ML algorithms, 
hardware architectures and a range of 
scientific problems, selecting an optimal 

solutions to the protein folding problem4. 
Current developments point towards 
specializing these ML approaches to be more 
domain- specific and domain- aware5–7, and 
aiming to connect the apparent ‘black- box’ 
successes of DNNs with the well- understood 
approaches from science.

The overarching scope of ML in science 
is broad. A non- exhaustive list includes 
the identification of patterns, anomalies 
and trends from relevant scientific 
datasets, the classification and prediction 
of such patterns and the clustering of data. 
The data are not always experimental or 
observational but can also be synthetic data. 
There are three approaches for developing 
ML- based solutions, namely, supervised, 
unsupervised and reinforcement learning. 
In supervised learning, the ML model is 
trained with examples to perform a given 
task. In this case, the training data used 
must contain the ‘ground truth’ or labels. 
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Abstract | Deep learning has transformed the use of machine learning technologies 
for the analysis of large experimental datasets. In science, such datasets are 
typically generated by large- scale experimental facilities, and machine learning 
focuses on the identification of patterns, trends and anomalies to extract 
meaningful scientific insights from the data. In upcoming experimental facilities, 
such as the Extreme Photonics Application Centre (EPAC) in the UK or the 
international Square Kilometre Array (SKA), the rate of data generation and  
the scale of data volumes will increasingly require the use of more automated data 
analysis. However, at present, identifying the most appropriate machine learning 
algorithm for the analysis of any given scientific dataset is a challenge due to the 
potential applicability of many different machine learning frameworks, computer 
architectures and machine learning models. Historically, for modelling and 
simulation on high- performance computing systems, these issues have been 
addressed through benchmarking computer applications, algorithms and 
architectures. Extending such a benchmarking approach and identifying metrics 
for the application of machine learning methods to open, curated scientific 
datasets is a new challenge for both scientists and computer scientists. Here, we 
introduce the concept of machine learning benchmarks for science and review 
existing approaches. As an example, we describe the SciMLBench suite of scientific 
machine learning benchmarks.
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ML algorithm for a given task is not trivial. 
This constitutes a significant barrier for 
many scientists wishing to use modern ML 
methods in their scientific research.

In this Perspective, we discuss what 
are suitable scientific ML benchmarks 
and how to develop guidelines and best 
practices to assist the scientific community 
in successfully exploiting these methods. 
Developing such guidelines and best 
practices at the community level will not 
only benefit the science community but 
also highlight where further research into 
ML algorithms, computer architectures and 
software solutions for using ML in scientific 
applications is needed.

We refer to the development of guidelines 
and best practices as benchmarking. 
The applications used to demonstrate the 
guideline and best practices are referred to as 
benchmarks. The notion of benchmarking 
computer systems and applications has 
been a fundamental cornerstone of 
computer science, particularly for compiler, 
architectural and system development, 
with a key focus on using benchmarks for 
ranking systems, such as the TOP500 or 
Green500 (refs12–16). However, our notion 
of scientific ML benchmarking has a 
different focus and, in this Perspective, we 
restrict the term ‘benchmarking’ to ML 
techniques applied to scientific datasets. 
Firstly, these ML benchmarks can be 
considered as blueprints for use on a range 
of scientific problems, and, hence, are 
aimed at fostering the use of ML in science 
more generally. Secondly, by using these 
ML benchmarks, a number of aspects in 
an ML ecosystem can be compared and 
contrasted. For example, it is possible to 
rank different computer architectures for 
their performance or to rank different ML 
algorithms for their effectiveness. Thirdly, 
these ML benchmarks are accompanied 

by relevant scientific datasets on which the 
training and/or inference will be based. This 
is different to conventional benchmarks 
for high- performance computing (HPC), 
where there is little dependency on datasets. 
The establishment of a set of open, curated 
scientific datasets with associated ML 
benchmarks is, therefore, an important step 
for scientists to be able to effectively use 
ML methods in their research and also to 
identify further directions for ML research.

Machine learning benchmarks for 
science
In this section, we discuss the elements  
of a scientific benchmark and the focus of  
scientific benchmarking, along with relevant 
examples.

Elements of a benchmark for science. 
As discussed above, a scientific ML 
benchmark is underpinned by a scientific 
problem and should have two elements: 
first, the dataset on which this benchmark 
is trained or inferenced upon and, second, 
a reference implementation, which can be in 
any programming language (such as Python 
or C++). The scientific problem can be from 
any scientific domain. A collection of such 
benchmarks can make up a benchmark 
suite, as illustrated in fig. 1.

Focus of benchmarking. There are 
three separate aspects of scientific 
benchmarking that apply in the context 
of ML benchmarks for science, namely, 
scientific ML benchmarking, application 
benchmarking and system benchmarking. 
These are explained below.
•	 Scientific ML benchmarking. This is 

concerned with algorithmic improvements 
that help reach the scientific targets 
specified for a given dataset. In this 
situation, one wishes to test algorithms 

and their performance on fixed data 
assets, typically with the same underlying 
hardware and software environment. 
This type of benchmark is characterized 
by the dataset, together with some 
specific scientific objectives. The data are 
obtained from a scientific experiment 
and should be rich enough to allow 
different methods of analysis and 
exploration. Examples of metrics could 
include the F1 score for training accuracy, 
time to solution and any domain- specific 
metric(s). A more detailed discussion on 
metrics can be found in the next section.

•	Application benchmarking. This aspect 
of ML benchmarks is concerned 
with exploring the performance 
of the complete ML application 
(covering loading of inputs from files, 
pre- processing, application of ML, 
post- processing and writing outputs to 
files) on different hardware and software 
environments. This can also be referred 
to as an end- to- end ML application 
benchmark. A typical performance 
target for these types of benchmarks may 
include training time or even complete 
time to solution. Such application 
benchmarks can also be used to evaluate 
the performance of the overall system, 
as well as that of particular subsystems 
(hardware, software libraries, runtime 
environments, file systems and so 
on). For example, in the case of image 
classification, the relevant performance 
metric could be a throughput measure 
(for example, images per second) for 
training or inference, or the time to 
solution of the classification problem 
(including I/O, ML, and pre- processing 
and post- processing), or the scaling 
properties of the application.

•	 System benchmarking. This is concerned 
with investigating performance effects 
of the system hardware architecture 
on improving the scientific outcomes/
targets. These benchmarks have 
similarities with application benchmarks, 
but they are characterized by primarily 
focusing on a specific operation that 
exercises a particular part of the system, 
independent of the broader system 
environment. Suitable metrics could 
be time to solution, the number of 
floating- point operations per second 
achieved or aspects of network and data 
movement performance.

Examples of scientific machine learning 
benchmarks. Scientific ML benchmarks 
are ML applications that solve a particular 
scientific problem from a specific scientific 
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implementation
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Particle
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Life
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Integration
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Fig. 1 | The notion of a machine learning benchmark and a benchmark suite. a | Elements of  
a scientific machine learning (ML) benchmark. b | Building a scientific ML benchmark suite that  
integrates different scientific ML benchmarks from various scientific disciplines.
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domain. For example, this can be as 
simple as an application that classifies 
the experimental data in some way, or as 
complex as inferring the properties of a 
material from neutron scattering data. 
Some examples are given below.
•	 Inferring the structure of multiphase 

materials from X- ray diffuse multiple 
scattering data. Here, ML is used to 
automatically identify the phases 
of materials using classification2.

•	 Estimating the photometric red shifts of 
galaxies from survey data17. Here, ML is 
used for estimation.

•	Clustering of microcracks in a material 
using X- ray scattering data18. Here, ML 
uses an unsupervised learning technique.

•	Removing noise from microscope data to 
improve the quality of images. ML is used 
for its capability to perform high- quality 
regression of pixel values19.

More detailed examples are provided in 
later sections.

The benchmarking process
Although it is possible to provide a collection 
of ML- specific scientific applications (with 
relevant datasets) as benchmarks for any of 
the purposes mentioned above, the exact 
process of benchmarking requires the 
following elements, given below.
•	Metrics of choice. First, depending on the 

focus, the exact metric by which different 
benchmarks are compared may vary. 
For example, if science is the focus, then 
this metric may vary from benchmark 
to benchmark. However, if the focus is 
system- level benchmarking, it is possible  
to agree on a common set of metrics that 
can span across a range of applications. 
However, in the context of ML, owing to 
the uncertainty around the underlying 
ML model(s), dataset(s) and system 
hardware (for example mixed- precision 
systems), it may be more meaningful 
to ensure that uncertainties of the 
benchmark outputs are quantified 
and compared wherever necessary. 
Likewise, the level of explainability of 
methods (and, hence, outputs) can be 
a differentiator between different ML 
methods and, hence, of benchmarks. 
In this way, the explainability of 
different ML implementations for a 
given benchmark problem could be 
considered as a metric as well, provided 
this can be well quantified. Another axis 
could be around energy efficiency, such 
as the ability of an ML implementation 
to perform training or inference with 
minimum power or energy requirements. 

It is clearly essential to agree upon the 
appropriate figures of merit and metrics 
to be used for comparing different 
implementations of benchmarks.

•	 Framework. Providing just a collection 
of disparate applications without a 
coherent mechanism for evaluation 
requires users to perform a set of fairly 
complex benchmarking operations that 
are relevant to their specific goals. Ideally, 
the benchmark suite should, therefore, 
offer a framework that not only helps 
users to achieve their specific goals but 
also unifies aspects that are common 
to all applications in the suite, such as 
benchmark portability, flexibility and 
logging.

•	Reporting and compliance. Finally, how 
these results are reported is important. 
In many cases, a benchmark framework 
as discussed above addresses this 
concern. However, there are often some 
specific compliance aspects that must be 
followed to ensure that the benchmarking 
process is carried out fairly across 
different hardware platforms.

There are also a number of challenges 
that need to be addressed when dealing with 
the development of ML benchmarks; these 
are given below.
•	Data. In the previous section, we 

highlighted the significance of data 
when using ML for scientific problems. 
The availability of curated, large- scale, 
scientific datasets — which can be 
either experimental or simulated data 
— is the key to developing useful ML 
benchmarks for science. Although a lot 
of scientific data are openly available, the 
curation, maintenance and distribution 
of large- scale datasets for public 
consumption is a challenging process. 
A good benchmarking suite needs to 
provide a wide range of curated scientific 
datasets coupled with the relevant 
applications. Reliance on external 
datasets has the danger of not having full 
control or even access to those datasets.

•	Distribution. A scientific ML 
benchmark comprises a reference 
ML implementation together with a 
relevant dataset, and both of these must 
be available to the users. Since realistic 
dataset sizes can be in the terabytes range, 
the access and downloading of these 
datasets is not always straightforward.

•	Coverage. Benchmarking is a very broad 
topic and providing benchmarks to cover 
the different focus areas highlighted 
above, across a range of scientific 
disciplines, is not a trivial task. A good 

benchmark suite should provide a good 
coverage of methods and goals, and 
should be extensible.

•	 Extensibility. Although developing 
scientific ML benchmarks can be valuable 
for scientists, it can be time consuming 
to develop benchmarking- specific codes. 
If the original scientific application 
needs substantial refactoring to be 
converted into a benchmark, this will 
not be an attractive option for scientists. 
Any benchmarking framework should, 
therefore, try to minimize the amount of 
code refactoring required for conversion 
into a benchmark.

In addition to these challenges, ML 
benchmarks need to address a number 
of other issues, such as problems with 
overtraining and overfitting. In most cases, 
such issues can be covered by requiring 
compliance with some general rules for the 
benchmarks — such as specifying the set of 
hyperparameters that are open to tuning. 
Although one may consider these as aspects 
of scientific ML benchmarking, they are best 
handled through explicit specification of 
the rules of the benchmarking process. For 
example, the training and validation data, 
and cross- validation procedures, should aim 
to mitigate the dangers of overfitting.

Benchmarking initiatives
Comparing different ML techniques is 
not a new requirement and is increasingly 
becoming common in ML research. In fact, 
this approach has been fundamental for the 
development of various ML techniques. For 
example, the ImageNet20,21 dataset spurred 
a competition to improve computer image 
analysis and understanding, and has been 
widely recognized for driving innovation in 
DL. A recent example of an application and 
system benchmark is the High- Performance 
LINPACK for Accelerator Introspection 
(HPL- AI) benchmark22, which aims to 
drive AI innovation by focusing on the 
performance benefits of reduced (and 
mixed) precision computing. However, 
providing a blueprint of applications, 
guidelines and best practices in the context 
of scientific ML is a relatively new and 
unaddressed requirement. There have 
been a number of efforts on this aspect 
that address some of the challenges we 
highlighted above. In this brief overview of 
these benchmarking initiatives, we explicitly 
exclude conventional benchmarking 
activities in other areas of computer science, 
such as benchmarks for HPC systems, 
compilers and subsystems, such as memory, 
storage and networking12,23.
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Instead of giving an exhaustive technical 
review covering very- fine- grained aspects, 
we give a high- level overview of the various 
ML benchmark initiatives, focusing on the 
requirements discussed in the previous 
sections. We shall, therefore, cover the 
following aspects:
•	 Benchmark focus: science, application 

(end- to- end) and system.
•	 Benchmark process: metrics, framework, 

reporting and compliance.
•	 Benchmark challenges: data, distribution, 

coverage and extensibility.

In the context of ML benchmarking, 
there are several initiatives, such as 
Deep500 (ref.24), RLBench25, CORAL-2 
(ref.26), DAWNBench27, AIBench28, 
MLCommons29 and SciMLBench30, as well 
as specific community initiatives (such as 
the well- known community competitions 
organized by Kaggle31). We overview these 
initiatives below and note that a specific 
benchmarking initiative may or may not 
support all the aspects listed above or, in 
some cases, may only offer partial support.

Deep500. The Deep500 (ref.24) initiative 
proposes a customizable and modular 
software infrastructure to aid in comparing 
the wide range of DL frameworks, 
algorithms, libraries and techniques. The key 
idea behind Deep500 is its modular design, 
where DL is factorized into four distinct 
levels: operators, network processing, 
training and distributed training. Although 
this approach aims to be neutral and 
overarching, and also able to accommodate 
a wide variety of techniques and methods, 
the process of mapping a code to a new 
framework has impeded its adoption for 
new benchmark development. Furthermore, 
despite its key focus on DL, neural networks 
and a very customizable framework, 
benchmarks or applications are not included 
by default and are left for the end user 
to provide, as is support for reporting. 
The main limitation is the lack of a suite 
of representative benchmarks.

RLBench. RLBench25 is a benchmark and 
learning environment featuring hundreds 
of unique, hand- crafted tasks. The focus is 
on a set of tasks to evaluate new algorithmic 
developments around reinforcement learning, 
imitation learning, multitask learning, 
geometric computer vision and, in particular, 
few- shot learning. The tasks are very specific 
and can be considered as building blocks 
of large- scale applications. However, the 
environment currently lacks support for the 
classes of benchmarking discussed above.

CORAL-2. The CORAL-2 (ref.26) benchmarks 
are computational problems relevant to a 
scientific domain or to data science, and 
are typically backed by a community code. 
Vendors are then expected to evaluate  
and optimize these codes to demonstrate  
the value of their proposed hardware  
in accelerating computational science.  
This allows a vendor to rigorously 
demonstrate the performance capabilities 
and characteristics of a proposed machine 
on a benchmark suite that should be relevant 
for computational scientists. The ML and 
data science tools in CORAL-2 include a 
number of ML techniques across two suites, 
namely, the big data analytics (BDAS) and 
DL (DLS) suites. Whereas the BDAS suite 
covers conventional ML techniques, such 
as principal components analysis (PCA), 
k-means clustering and SVMs, the DLS suite 
relies on the ImageNet20,21 and CANDLE32 
benchmarks, which are primarily used 
for testing scalability aspects, rather than 
purely focusing on the science. Similarly, 
the BDAS suite aims to exercise the memory 
constraints (PCA), computing capabilities 
(SVMs) and/or both these aspects (k- means) 
and is also concerned with communication 
characteristics. Although these benchmarks 
are oriented at ML, the constraints and 
benchmark targets are narrowly specified 
and emphasize scalability capabilities. The 
overall coverage of science in the CORAL-2 
benchmark suite is quite broad, but the 
footprint of the ML techniques is limited  
to the BDAS and DLS suites, and there is 
little focus on scientific data distribution  
for algorithm improvement.

AIBench. The AIBench initiative is 
supported by the International Open 
Benchmark Council (BenchCouncil)28. 
The Council is a non- profit international 
organization that aims to promote 
standardizing, benchmarking, evaluating 
and incubating big data, AI and other 
emerging technologies. The scope of 
AIBench is very comprehensive and 
includes a broad range of internet services, 
including search engines, social networks 
and e- commerce. The underlying ML- 
specific tasks in these areas include image 
classification, image generation, translation 
(image- to- text, image- to- image, text- to- 
image, text- to- text), object detection, text 
summarization, advertising and natural 
language processing. The relevant datasets 
are open and the primary metric is system 
performance for a fixed target. One of the 
important components of the AIBench 
initiative is HPC AI500 (ref.33), a standalone 
benchmark suite for evaluating HPC systems 

running DL workloads. The suite covers a 
number of representative scientific problems 
from various domains, with each workload 
being a real- world scientific DL application, 
such as extreme weather analysis33. The 
suite includes reference implementations, 
datasets and other relevant software, along 
with relevant metrics. This HPC ML suite 
compares best to the SciMLBench work 
discussed below. The AIBench environment 
also enforces some level of compliance 
for reporting ranking information of 
hardware systems.

DAWNBench. DAWNBench27 is a 
benchmark suite for end- to- end DL training 
and inference. The end- to- end aspect is 
ideal for application- level and system- level 
benchmarking. Instead of focusing on model 
accuracy, DAWNBench provides common 
DL workloads for quantifying training 
time, training cost, inference latency and 
inference cost across different optimization 
strategies, model architectures, software 
frameworks, clouds and hardware. There are 
two key benchmarks in the suite — image 
classification (using the ImageNet and 
CIFAR-10 (ref.34) datasets) and natural- 
language- processing- based question 
answering35 (based on the Stanford Question 
Answering Dataset or SQuAD35) that covers 
both training and inference. DAWNBench 
does not offer the notion of a framework 
and does not have a focus on science. 
With key metrics around time and cost 
(for training and inference), DAWNBench is 
predominantly targeted towards end-to-end 
system and application performance. 
Although the datasets are public and open, 
no distribution mechanisms have been 
adopted by DAWNBench.

Benchmarks from the MLCommons working 
groups. MLCommons is an international 
initiative aimed at improving all aspects of 
the ML landscape and covers benchmarking, 
datasets and best practices. The consortium 
has several working groups with different 
foci for ML applications. Among these 
working groups, two are of interest here: 
HPC and Science. The MLCommons HPC 
benchmark29 suite focuses on scientific 
applications that use ML, and especially  
DL, at the HPC scale. The codes and data  
are specified in such a way that execution  
of the benchmarks on supercomputers  
will help understand detailed aspects 
of system performance. The focus is on 
performance characteristics particularly 
relevant to HPC applications, such as 
model–system interactions, optimization 
of the workload execution and reducing 
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execution and throughput bottlenecks. 
The HPC orientation also drives this 
effort towards exploration of benchmark 
scalability.

By contrast, the MLCommons Science 
benchmark36 suite focuses specifically on 
the application of ML methods to scientific 
applications and includes application 
examples from several scientific domains. 
The recently announced information on 
the science benchmarks at Supercomputing 
2021 will spur improvements in defining 
datasets for advancing ML for science. The 
suite currently lacks a supportive framework 
for running the benchmarks but, as with 
the rest of MLCommons, does enforce 
compliance for reporting of the results. 
The benchmarks cover the three areas of 
benchmarking — science, application and 
system.

SciMLBench. The Scientific Machine 
Learning Benchmark suite — or 
SciMLBench30 — is specifically focused 
on scientific ML and covers nearly every 
aspect of the cases discussed in the previous 
sections. A detailed description of the 
SciMLBench initiative is described in the 
next section.

Other community initiatives. In addition to 
various efforts mentioned above, there are 
other efforts towards AI benchmarking by 
specific research communities. Two examples 
are WeatherBench37 and MAELSTROM38 
from the weather and climate communities, 
both of which have specific goals and include 
relevant data and baseline techniques. 
However, these efforts are not full benchmark 
suites, and, instead, are engineered as 
individual benchmarks, ideally to be 
integrated as part of a suite.

Although community- based 
competitions, such as Kaggle31, can be 
seen as a benchmarking activity, these 
competitions do not have a coherent 
methodology or a controlled approach for 
developing benchmarks. In particular, the 
competitions do not provide a framework 
for running the benchmarks, nor do they 
consider data distribution methods. Each 
competition is individually constructed and 
relies on its own dataset, set of rules 
and compliance metrics. The competitions 
address concerns such as dataset curation, 
choice of metric, presentation of results  
and robustness against overfitting,  
for example. Although such challenge 
competitions can provide a blueprint for 
using ML technologies for specific research 
communities, the competitions are generally 
short lived and are, therefore, unlikely to 

deliver best practices or guidelines for the 
long term.

The SciMLBench approach
The SciMLBench approach has been 
developed by the authors of this article, 
members of the Scientific Machine 
Learning Group at the Rutherford 
Appleton Laboratory, in collaboration 
with researchers at Oak Ridge National 
Laboratory and at the University of Virginia. 
Among all the approaches reviewed above, 
only the SciMLBench benchmark suite 
attempts to address all of the concerns 
discussed previously. To the best of our 
knowledge, the SciMLBench approach is 
unique in its versatility compared with the 
other approaches and its key focus is on 
scientific ML.

Core components. SciMLBench has three 
components, given below.
•	 Benchmarks. The benchmarks are ML 

applications written in Python that 
perform a specific scientific task. These 
applications are included by default and 
users are not required to find or write 
their own applications. On the scale of 
micro- apps, mini- apps and apps, these 
codes are full- fledged applications. 
Each benchmark aims to solve a specific 
scientific problem (such as those 
discussed earlier). The set of benchmarks 
are organized into specific themes, 
including DL- focused benchmarks, 
training or inference- intensive 
benchmarks, benchmarks emphasizing 
uncertainty quantification, benchmarks 
focusing on specific scientific problems 
(such as denoising19, nonlinear dynamical 
systems5, and physics- informed neural 
networks5) and benchmarks focusing 
on surrogate modelling39. Although the 
current set of benchmarks and their 
relevant datasets are all image based, the 
design of SciMLBench allows for datasets 
that are multimodal or include mixed 
types of data.

•	Datasets. Each benchmark relies on one 
or more datasets that can be used, for 
example, for training and/or inferencing. 
These datasets are open, task or domain 
specific and compliant with respect to the 
FAIR guidelines (Findable, Accessible, 
Interoperable and Reusable40). Since 
most of these datasets are large, they are 
hosted separately on one of the laboratory 
servers (or mirrors) and are automatically 
or explicitly downloaded on demand.

•	 Framework. The framework serves 
two purposes. Firstly, at the user level, 
it facilitates an easier approach to the 

actual benchmarking, logging and 
reporting of the results. Secondly, at the 
developer level, it provides a coherent 
application programming interface 
(API) for unifying and simplifying the 
development of ML benchmarks.

The SciML framework is the basic fabric 
upon which the benchmarks are built. It is 
both extensible and customizable, and offers 
a set of APIs. These APIs enable easier 
development of benchmarks based on this 
framework and are defined with layers 
of abstractions. Example APIs (and their 
abstractions) are given below.
•	The entry point for the framework to 

run the benchmark in training mode, 
abstracted to all benchmark developers 
(scientists), requires the API to follow 
a specific signature. If defined, the 
benchmark can then be called to run in 
training mode. If this is undefined and 
the benchmark is invoked in training 
mode, it will fail.

•	The entry point for the framework to 
run the benchmark in inference mode, 
abstracted to all benchmark developers 
(scientists), requires the API to follow 
a specific signature. If defined, the 
benchmark can be called to run in 
inference mode. If this is undefined and 
the benchmark is invoked in inference 
mode, it will fail.

•	Control of logging. APIs for logging 
of details are available at different 
granularities. At the highest (abstraction) 
level, this can be simply the starting and 
stopping of logging. At the fine- grained 
level, it can be controlling what is 
specifically being logged.

•	Controlling the execution of benchmarks. 
These APIs are designed for advanced 
benchmark developers to control 
aspects around the actual execution of 
benchmarks and would be expected to be 
seldom used by scientists.

These APIs, in contrast to APIs from 
other frameworks, such as Deep500, are 
layered and are not fine grained. In other 
words, APIs from SciMLBench are 
abstracted enough for the benchmarking 
process to be automated as much as 
possible, instead of providing APIs for 
obtaining fine- grained measurements, 
such as runtime or I/O or communication 
times. In fact, SciMLBench retains these 
measurements and makes them available for 
detailed analysis, but the focus is on science 
rather than on performance. In addition, 
these APIs are totally independent of the 
application, whereas APIs in frameworks 

  volume 4 | June 2022 | 417nature reviews | PhySiCS

P e r s P e c t i v e s



0123456789();: 

like Deep500 are intended to reflect the 
operational semantics of the layers or 
operations of the neural networks.

The SciMLBench framework is 
independent of architecture, and the 
minimum system requirement is determined 
by the specific benchmark. There is a 
built- in logging mechanism that captures all 
potential system- level and benchmark- level 
outputs during execution, leaving end 
users or benchmark designers to decide 
the content and format of the report from 
these detailed logs. The central component 
that links benchmarks, datasets and the 
framework is the framework configuration 
tool. The most attractive part of the 
framework is the possibility of simply 
using existing codes as benchmarks, with 
only a few API calls necessary to register 
the benchmarks. Finally, the framework is 
designed with scalability in mind, so that 
benchmarks can be run on any computer, 
ranging from a single system to a large- scale 
supercomputer. This level of support is 
essential, even if the included benchmarks, 
in their own, are scalable.

Benchmarks and datasets. The currently 
released version of SciMLBench has three 
benchmarks with their associated datasets. 
The benchmarks from this release represent 
scientific problems drawn from material 
sciences and environmental sciences, 
listed below.

•	Diffuse multiple scattering (DMS_
Structure). This benchmark uses 
ML for classifying the structure of 
multiphase materials from X- ray 
scattering patterns. More specifically, 
the ML- based approach enables 
automatic identification of phases. 
This application is particularly useful 
for the materials science community, 
as diffuse multiple scattering allows 
investigation of multiphase materials 
from a single measurement — something 
that is not possible with standard X- ray 
experiments. However, manual analysis 
of the data can be extremely laborious, 
involving searching for patterns to 
identify important motifs (triple 
intersections) that allow for inference 
of information. This is a multilabel 
classification problem (as opposed to 
a binary classification problem, as in 
the cloud masking example discussed 
below). The benchmark relies on a 
simulated dataset of size 8.6 GB with 
three- channel images of resolution 
487 × 195 pixels.

•	Cloud masking (SLSTR_Cloud). Given 
a set of satellite images, the challenge for 
this benchmark is to classify each pixel 
of each satellite image as either cloud or 
non- cloud (clear sky). This problem is 
known as ‘cloud masking’ and is crucial 
for several important applications in 
earth observation. In a conventional, 

non- ML setting, this task is typically 
performed using either thresholding 
or Bayesian methods. The benchmark 
exercises DL and includes two datasets, 
DS1- Cloud and DS2- Cloud, with sizes 
of 180 GB and 1.2 TB, respectively. The 
datasets contain multispectral images 
with resolutions of 2,400 × 3,000 pixels 
and 1,200 × 1,500 pixels.

•	 Electron microscopy image denoising 
(EM_Denoise). This benchmark uses 
ML for removing noise from electron 
microscopy images. This improves 
the signal- to- noise ratio of the image 
and is often used as a precursor to 
more complex techniques, such as 
surface reconstruction or tomographic 
projections. Effective denoising can 
facilitate low- dose experiments in 
producing images with a quality 
comparable with that obtained in 
high- dose experiments. Likewise, greater 
time resolution can also be achieved 
with the aid of effective image denoising 
procedures. This benchmark exercises 
complex DL techniques on a simulated 
dataset of size 5 GB, consisting of 
256 × 256 images covering noised and 
denoised (ground truth) datasets.

The next release of the suite will include 
several more examples from various 
domains with large datasets, such as a 
scanning electron tomography benchmark 
from material sciences, a benchmark for 
quantifying damage to optical lenses in laser 
physics and another denoising benchmark 
for cryogenic electron microscopic images 
from the life sciences domain.

Benchmark focus. With the full- fledged 
capability of the framework to log all 
activities, and with a detailed set of metrics, 
it is possible for the framework to collect 
a wide range of performance details that 
can later be used for deciding the focus. 
For example, SciMLBench can be used for 
science benchmarking (to improve scientific 
results through different ML approaches), 
application- level benchmarking and 
system- level benchmarking (gathering 
end- to- end performance, including I/O 
and network performance). This is made 
possible thanks to the detailed logging 
mechanisms within the framework. These 
logging mechanisms rely on various 
low- level details for gathering system- 
specific aspects, such as memory, GPU 
or CPU usages. Furthermore, there are 
APIs available for logging all the way from 
the very simple request of starting and 
stopping the logging process to controlling 

Docker

Data

Code

Backup MirrorsCloud

Data (push) Data (pull)

Code (pull)

Object
storage

Fig. 2 | Moving the benchmark datasets to the evaluation point. A benchmark has two components: 
a code and the associated datasets. Whenever a user wants to use a benchmark, the code component 
can easily be directly downloaded from the server. The data component, however, requires careful 
delivery. The associated datasets are often too large for it to be possible to download them from the 
server through direct download. Instead, they are pushed to the object storage, where they are care-
fully curated and backed up. This curated dataset is then pulled on demand by the user when a bench-
mark that requires this dataset is to be used. Because the exact location of the dataset can lead to 
delays, these datasets are often mirrored and can also be made available as part of cloud environments. 
This way, the download location can be opted for by the user (or automatically selected by the down-
loading component). The dotted lines imply that the data can come from any of the locations and can 
be specified. The ‘pull’ aspect means that the data are downloaded on demand (pulled by the user). 
The ‘push’ component means that the dataset distribution is managed by a server or the framework.
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what is specifically being logged, such as 
science- specific outputs or domain- specific 
metrics. Since the logging process includes 
all relevant details (including the runtime 
or the power and energy usage, where 
permitted), the benchmark designer or 
developer is responsible for deciding on 
the appropriate metric, depending on the 
context. For example, it is possible for 
the developer to rely on a purely scientific 
metric or to specify a metric to quantify the 
energy efficiency of the benchmark.

Benchmarking process. With the framework 
handling most of the complexity of 
collecting performance data, there is the 
opportunity to cover a wide range of metrics 
(even retrospectively, after the benchmarks 
have been run) and have the ability to 
control the reporting and compliance 
through controlled runs. However, it is 
worth noting that, although the framework 
can support and collect a wide range of 
runtime and science performance aspects, 
the choice is left to the user to decide the 
ultimate metrics to be reported. For 
example, the performance data collected 
by the framework can be used to generate 
a final figure of merit to compare different 
ML models or hardware systems for the 
same problem. The benchmarks can be 
executed purely using the framework 
or using containerized environments, 
such as Docker or Singularity. Although 
running benchmarks natively using 
the framework is possible, native code 
execution on production systems is often 
challenging and ends up demanding various 
dependencies. For these reasons, executing 
these benchmarks on containerized 
environments is recommended on 
production, multinode clusters. We 
have found that the resulting container 
execution overheads are minimal.

Data curation and distribution. 
SciMLBench uses a carefully designed 
curation and distribution mechanism 
(a process illustrated in fig. 2), given below.
•	 Each benchmark has one or more 

associated datasets. These benchmark–
dataset associations are specified through 
a configuration tool that is not only 
framework friendly but also interpretable 
by scientists.

•	As the scientific datasets are usually large, 
they are not maintained along with the 
code. Instead, they are maintained in 
a separate object storage, whose exact 
locations are visible to the benchmarking 
framework and to users.

•	Users downloading benchmarks will only 
download the reference implementations 
(code) and not the data. This enables fast 
downloading of the benchmarks and the 
framework. Since not all datasets will 
be of interest to everyone, this approach 
prevents unnecessary downloading of 
large datasets.

•	The framework takes the responsibility 
for downloading datasets on demand 
or when the user launches the 
benchmarking process.

In addition to these basic operational 
aspects, the benchmark datasets are stored in 
an object storage to enable better resiliency 
and repair mechanisms compared with 
simple file storage. The datasets are also 
mirrored in several locations to enable the 
framework to choose the data source closest 
to the location of the user. The datasets are 
also regularly backed up, as they constitute 
valuable digital assets.

Extensibility and coverage. The overall 
design of SciMLBench supports several user 
scenarios: the ability to add new benchmarks 
with little knowledge of the framework, 

ease of use, platform interoperability and 
ease of customization. The design relies 
on two API calls, which are illustrated in 
the documentation with a number of toy 
examples, as well as some practical examples.

Conclusion
In this Perspective, we have highlighted 
the need for scientific ML benchmarks and 
explained how they differ from conventional 
benchmarking initiatives. We have outlined 
the challenges in developing a suite of useful 
scientific ML benchmarks. These challenges 
span a number of issues, ranging from the 
intended focus of the benchmarks and 
the benchmarking processes, to challenges 
around actually developing a useful ML 
benchmark suite. A useful scientific 
ML suite must, therefore, go beyond just 
providing a disparate collection of ML- based 
scientific applications. The critical aspect 
here is to provide support for end users 
not only to be able to effectively use the 
ML benchmarks but also to enable them to 
develop new benchmarks and extend the 
suite for their own purposes.

We overviewed a number of 
contemporary efforts for developing ML 
benchmarks, of which only a subset has 
a focus of ML for scientific applications. 
Almost none of these initiatives considers 
the problem of the efficient distribution 
of large datasets. The majority of the 
approaches rely on externally sourced 
datasets, with the implicit assumption that 
users will take care of the data issues. We 
discussed in more detail the SciMLBench 
initiative, which includes a benchmark 
framework that not only addresses the 
majority of these concerns but is also 
designed for easy extensibility.

The characteristics of these ML 
benchmark initiatives are summarized in 
Table 1, which shows that the benchmarking 

Table 1 | Overall assessment of various scientific machine learning benchmarking approaches

Benchmark Focus Process Challenges

Scientific Application System Metrics Framework Reporting Data Distribution Coverage Extensibility

Deep500 None None Partial Full Full Partial None None None Partial

RLBench None Partial Partial Full None Partial Partial Partial Partial Partial

CORAL-2 (DLS/BDAS) Partial Full Full Full Partial Partial None None Full None

AIBench + HPC AI500 Full Full Full Full None Full Partial Partial Partial Partial

DAWNBench None Full Full Full None Partial None None None None

MLCommons Science Full Full Partial Full None Partial Partial Partial Full Partial

SciMLBench Full Full Full Full Full Partial Full Full Full Full

Community 
competitions

Partial None None Partial None Partial Partial None Partial None

In qualitatively assessing how far each approach addresses the concerns, we have indicated whether they offer no support (none), partial or questionable support 
(partial) or fully support the concern (full).
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community has several issues to address 
to ensure that the scientific community 
is equipped with the right set of tools to 
become more efficient in leveraging the use 
of ML technologies in science.

Code availability statement
The relevant code for the benchmark suite 
can be found at https://github.com/stfc- sciml/
sciml- bench.
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