Abstract
Gravitational-wave detectors have transformed the way we observe the Universe. Together with ground and space electromagnetic observatories, they have provided key insights into the long-standing question of how the heavy elements in the periodic table are synthesized. A few years into the new era of multi-messenger astronomy, following Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)’s, Virgo’s and Kagra’s third observation run, there is strong evidence for the detection of mergers of two neutron stars and of neutron stars and black holes. This Review reflects on recent observational surprises and speculates on their implications. It provides a preview of the open questions that these observations raise and on future opportunities for both theory and observations. These include insights into rapid neutron-capture (r-process) nucleosynthesis in neutron-star mergers and other astrophysical sites, such as collapsars and magnetorotational supernovae, with implications for nuclear (astro)physics more broadly, fundamental physics in compact astrophysical systems, as well as chemical evolution of galaxies.
Key points
-
The astrophysical origin of roughly half of the elements heavier than iron remains an open question.
-
Multi-messenger observations such as gravitational waves from neutron-star mergers combined with electromagnetic counterparts have transformed observational astronomy in the past 5 years and directly probe the synthesis of heavy elements (‘kilonovae’).
-
Based on recent observations, this Review conjectures that most of the heavy rapid neutron-capture (r-process) elements may be formed in winds from dense accretion discs, such as those that form in the aftermath of neutron-star mergers or in rare supernovae.
-
Many open questions exist regarding the contribution of mergers of neutron stars and black holes and rare types of supernovae (magnetorotational supernovae and collapsars) to the galactic r-process.
-
Important constraints on the astrophysical sites of r-process nucleosynthesis are derived from observations of chemical evolution of galaxies, in particular, from observed elemental abundance patterns of metal-poor stars.
-
Open questions, challenges, opportunities and new directions for multi-messenger astronomy and r-process nucleosynthesis are charted.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Origin of the elements
The Astronomy and Astrophysics Review Open Access 13 December 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Cyburt, R. H., Fields, B. D., Olive, K. A. & Yeh, T.-H. Big bang nucleosynthesis: present status. Rev. Mod. Phys. 88, 015004 (2016).
Pitrou, C., Coc, A., Uzan, J.-P. & Vangioni, E. Precision big bang nucleosynthesis with improved helium-4 predictions. Phys. Rep. 754, 1–66 (2018).
Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957).
Cameron, A. G. W. On the origin of the heavy elements. Astron. J. 62, 9–10 (1957).
Nomoto, K., Kobayashi, C. & Tominaga, N. Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457–509 (2013).
Prantzos, N. Production and evolution of Li, Be, and B isotopes in the Galaxy. Astron. Astrophys. 542, A67 (2012).
Woosley, S. E. & Hoffman, R. D. The alpha-process and the r-process. Astrophys. J. 395, 202–239 (1992).
Merrill, P. W. Spectroscopic observations of stars of class S. Astrophys. J. 116, 21 (1952).
Busso, M., Gallino, R. & Wasserburg, G. J. Nucleosynthesis in asymptotic giant branch stars: relevance for galactic enrichment and solar system formation. Annu. Rev. Astron. Astrophys. 37, 239–309 (1999).
Käppeler, F., Gallino, R., Bisterzo, S. & Aoki, W. The s process: nuclear physics, stellar models, and observations. Rev. Mod. Phys. 83, 157–193 (2011).
Karakas, A. I. & Lattanzio, J. C. The Dawes Review 2: nucleosynthesis and stellar yields of low- and intermediate-mass single stars. Publ. Astron. Soc. Aust. 31, e030 (2014).
Thielemann, F.-K. et al. What are the astrophysical sites for the r-process and the production of heavy elements? Prog. Part. Nucl. Phys. 66, 346–353 (2011).
Cowan, J. J. et al. Origin of the heaviest elements: the rapid neutron-capture process. Rev. Mod. Phys. 93, 015002 (2021).
Lattimer, J. M. & Schramm, D. N. Black-hole-neutron-star collisions. Astrophys. J. Lett. 192, L145–L147 (1974).
Symbalisty, E. & Schramm, D. N. Neutron star collisions and the r-process. Astrophys. Lett. 22, 143–145 (1982).
Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989).
Davies, M. B., Benz, W., Piran, T. & Thielemann, F. K. Merging neutron stars. I. Initial results for coalescence of noncorotating systems. Astrophys. J. 431, 742–753 (1994).
Ruffert, M., Janka, H.-T. & Schaefer, G. Coalescing neutron stars – a step towards physical models. I. Hydrodynamic evolution and gravitational-wave emission. Astron. Astrophys. 311, 532–566 (1996).
Rosswog, S. et al. Mass ejection in neutron star mergers. Astron. Astrophys. 341, 499–526 (1999).
Freiburghaus, C., Rosswog, S. & Thielemann, F.-K. r-Process in neutron star mergers. Astrophys. J. 525, L121–L124 (1999).
Burbidge, G. R., Hoyle, F., Burbidge, E. M., Christy, R. F. & Fowler, W. A. Californium-254 and supernovae. Phys. Rev. 103, 1145–1149 (1956).
Truran, J. W., Arnett, W. D., Tsuruta, S. & Cameron, A. G. W. Rapid neutron capture in supernova explosions. Astrophys. Space Sci. 1, 129–146 (1968).
Woosley, S. E., Wilson, J. R., Mathews, G. J., Hoffman, R. D. & Meyer, B. S. The r-process and neutrino-heated supernova ejecta. Astrophys. J. 433, 229–246 (1994).
Takahashi, K., Witti, J. & Janka, H.-T. Nucleosynthesis in neutrino-driven winds from protoneutron stars II. The r-process. Astron. Astrophys. 286, 857–869 (1994).
Qian, Y.-Z. & Woosley, S. E. Nucleosynthesis in neutrino-driven winds. I. The physical conditions. Astrophys. J. 471, 331–351 (1996).
Thompson, T. A., Burrows, A. & Meyer, B. S. The physics of proto-neutron star winds: implications for r-process nucleosynthesis. Astrophys. J. 562, 887–908 (2001).
Roberts, L. F., Reddy, S. & Shen, G. Medium modification of the charged-current neutrino opacity and its implications. Phys. Rev. C 86, 065803 (2012).
Martínez-Pinedo, G., Fischer, T., Lohs, A. & Huther, L. Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling. Phys. Rev. Lett. 109, 251104 (2012).
Curtis, S. et al. PUSHing core-collapse supernovae to explosions in spherical symmetry. III. Nucleosynthesis yields. Astrophys. J. 870, 2 (2019).
Thompson, T. A. Magnetic protoneutron star winds and r-process nucleosynthesis. Astrophys. J. Lett. 585, L33–L36 (2003).
Thompson, T. A. & ud-Doula, A. High-entropy ejections from magnetized proto-neutron star winds: implications for heavy element nucleosynthesis. Mon. Not. R. Astron. Soc. 476, 5502–5515 (2018).
Ji, A. P., Frebel, A., Chiti, A. & Simon, J. D. R-process enrichment from a single event in an ancient dwarf galaxy. Nature 531, 610–613 (2016).
Wallner, A. et al. Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis. Nat. Commun. 6, 5956 (2015).
Hotokezaka, K., Piran, T. & Paul, M. Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis. Nat. Phys. 11, 1042–1042 (2015).
Macias, P. & Ramirez-Ruiz, E. A stringent limit on the mass production rate of r-process elements in the Milky Way. Astrophys. J. 860, 89 (2018).
LeBlanc, J. M. & Wilson, J. R. A numerical example of the collapse of a rotating magnetized star. Astrophys. J. 161, 541 (1970).
Symbalisty, E. M. D., Schramm, D. N. & Wilson, J. R. An expanding vortex site for the r-process in rotating stellar collapse. Astrophys. J. Lett. 291, L11–L14 (1985).
Cameron, A. G. W. Some nucleosynthesis effects associated with r-process jets. Astrophys. J. 587, 327 (2003).
Nishimura, S. et al. r-Process nucleosynthesis in magnetohydrodynamic jet explosions of core-collapse supernovae. Astrophys. J. 642, 410 (2006).
Winteler, C. et al. Magnetorotationally driven supernovae as the origin of early galaxy r-process elements? Astrophys. J. Lett. 750, L22 (2012).
Nishimura, N., Sawai, H., Takiwaki, T., Yamada, S. & Thielemann, F.-K. The intermediate r-process in core-collapse supernovae driven by the magneto-rotational instability. Astrophys. J. Lett. 836, L21 (2017).
Halevi, G. & Mösta, P. r-Process nucleosynthesis from three-dimensional jet-driven core-collapse supernovae with magnetic misalignments. Mon. Not. R. Astron. Soc. 477, 2366–2375 (2018).
Reichert, M., Obergaulinger, M., Eichler, M., Aloy, M. Á. & Arcones, A. Nucleosynthesis in magneto-rotational supernovae. Mon. Not. R. Astron. Soc. 501, 5733–5745 (2021).
Pruet, J., Woosley, S. E. & Hoffman, R. D. Nucleosynthesis in gamma-ray burst accretion disks. Astrophys. J. 586, 1254 (2003).
Pruet, J., Thompson, T. A. & Hoffman, R. D. Nucleosynthesis in outflows from the inner regions of collapsars. Astrophys. J. 606, 1006 (2004).
Surman, R., McLaughlin, G. C. & Hix, W. R. Nucleosynthesis in the outflow from gamma-ray burst accretion disks. Astrophys. J. 643, 1057 (2006).
Fujimoto, S.-i, Hashimoto, M.-a, Kotake, K. & Yamada, S. Heavy-element nucleosynthesis in a collapsar. Astrophys. J. 656, 382–392 (2007).
Ono, M., Hashimoto, M.-a, Fujimoto, S.-i, Kotake, K. & Yamada, S. Explosive nucleosynthesis in magnetohydrodynamical jets from collapsars. II: — Heavy-element nucleosynthesis of s, p, r-processes. Prog. Theor. Phys. 128, 741–765 (2012).
Caballero, O. L., McLaughlin, G. C. & Surman, R. Neutrino spectra from accretion disks: neutrino general relativistic effects and the consequences for nucleosynthesis. Astrophys. J. 745, 170 (2012).
Siegel, D. M., Barnes, J. & Metzger, B. D. Collapsars as a major source of r-process elements. Nature 569, 241–244 (2019).
Fischer, T. et al. Core-collapse supernova explosions driven by the hadron-quark phase transition as a rare r-process site. Astrophys. J. 894, 9 (2020).
Grichener, A. & Soker, N. The common envelope jet supernova (CEJSN) r-process scenario. Astrophys. J. 878, 24 (2019).
Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).
Kasen, D., Metzger, B., Barnes, J., Quataert, E. & Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80–84 (2017).
Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017).
Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017).
Soares-Santos, M. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the dark energy camera. Astrophys. J. Lett. 848, L16 (2017).
Villar, V. A. et al. The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys. J. Lett. 851, L21 (2017).
Li, L.-X. & Paczyński, B. Transient events from neutron star mergers. Astrophys. J. Lett. 507, L59–L62 (1998).
Kulkarni, S. R. Modeling supernova-like explosions associated with gamma-ray bursts with short durations. Preprint at https://arxiv.org/abs/astro-ph/0510256 (2005).
Metzger, B. D. et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei: transients from compact object mergers. Mon. Not. R. Astron. Soc. 406, 2650–2662 (2010).
Metzger, B. D. Kilonovae. Living Rev. Relativ. 23, 1 (2020).
Siegel, D. M. GW170817–the first observed neutron star merger and its kilonova: implications for the astrophysical site of the r-process. Eur. Phys. J. A 55, 203 (2019).
Margutti, R. & Chornock, R. First multimessenger observations of a neutron star merger. Annu. Rev. Astron. Astrophys. 59, 155–202 (2021).
Pian, E. Mergers of binary neutron star systems: a multimessenger revolution. Front. Astron. Space Sci. 7, 108 (2021).
Kasen, D., Badnell, N. R. & Barnes, J. Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys. J. 774, 25 (2013).
Barnes, J. & Kasen, D. Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys. J. 775, 18 (2013).
Tanaka, M. & Hotokezaka, K. Radiative transfer simulations of neutron star merger ejecta. Astrophys. J. 775, 113 (2013).
Fontes, C. et al. Relativistic opacities for astrophysical applications. High Energy Density Phys. 16, 53–59 (2015).
Kasen, D., Fernández, R. & Metzger, B. D. Kilonova light curves from the disc wind outflows of compact object mergers. Mon. Not. R. Astron. Soc. 450, 1777–1786 (2015).
Tanaka, M., Kato, D., Gaigalas, G. & Kawaguchi, K. Systematic opacity calculations for kilonovae. Mon. Not. R. Astron. Soc. 496, 1369–1392 (2020).
Waxman, E., Ofek, E. O., Kushnir, D. & Gal-Yam, A. Constraints on the ejecta of the GW170817 neutron star merger from its electromagnetic emission. Mon. Not. R. Astron. Soc. 481, 3423–3441 (2018).
Smartt, S. J. et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551, 75–79 (2017).
Pian, E. et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67–70 (2017).
Watson, D. et al. Identification of strontium in the merger of two neutron stars. Nature 574, 497–500 (2019).
Chornock, R. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. IV. Detection of near-infrared signatures of r-process nucleosynthesis with Gemini-South. Astrophys. J. 848, L19 (2017).
Kasliwal, M. M. et al. Spitzer mid-infrared detections of neutron star merger GW170817 suggests synthesis of the heaviest elements. Mon. Not. R. Astron. Soc. 510, L7–L12 (2022).
Kawaguchi, K., Shibata, M. & Tanaka, M. Radiative transfer simulation for the optical and near-infrared electromagnetic counterparts to GW170817. Astrophys. J. 865, L21 (2018).
Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. Lett. 848, L17 (2017).
Radice, D., Bernuzzi, S. & Perego, A. The dynamics of binary neutron star mergers and GW170817. Annu. Rev. Nucl. Part. Sci. 70, 95–119 (2020).
Siegel, D. M. & Metzger, B. D. Three-dimensional general-relativistic magnetohydrodynamic simulations of remnant accretion disks from neutron star mergers: outflows and r-process nucleosynthesis. Phys. Rev. Lett. 119, 231102 (2017).
Siegel, D. M. & Metzger, B. D. Three-dimensional GRMHD simulations of neutrino-cooled accretion disks from neutron star mergers. Astrophys. J. 858, 52 (2018).
De, S. & Siegel, D. M. Igniting weak interactions in neutron star postmerger accretion disks. Astrophys. J. 921, 94 (2021).
Fujibayashi, S. et al. Mass ejection from disks surrounding a low-mass black hole: viscous neutrino-radiation hydrodynamics simulation in full general relativity. Phys. Rev. D 101, 083029 (2020).
Fernández, R., Tchekhovskoy, A., Quataert, E., Foucart, F. & Kasen, D. Long-term GRMHD simulations of neutron star merger accretion discs: implications for electromagnetic counterparts. Mon. Not. R. Astron. Soc. 482, 3373–3393 (2019).
Christie, I. M. et al. The role of magnetic field geometry in the evolution of neutron star merger accretion discs. Mon. Not. R. Astron. Soc. 490, 4811–4825 (2019).
Fernández, R. & Metzger, B. D. Delayed outflows from black hole accretion tori following neutron star binary coalescence. Mon. Not. R. Astron. Soc. 435, 502–517 (2013).
Just, O., Bauswein, A., Pulpillo, R. A., Goriely, S. & Janka, H.-T. Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Mon. Not. R. Astron. Soc. 448, 541–567 (2015).
Miller, J. M. et al. Full transport model of GW170817-like disk produces a blue kilonova. Phys. Rev. D 100, 023008 (2019).
Li, X. & Siegel, D. M. Neutrino fast flavor conversions in neutron-star postmerger accretion disks. Phys. Rev. Lett. 126, 251101 (2021).
Just, O., Goriely, S., Janka, H.-T., Nagataki, S. & Bauswein, A. Neutrino absorption and other physics dependencies in neutrino-cooled black hole accretion discs. Mon. Not. R. Astron. Soc. 509, 1377–1412 (2022).
Chen, W.-X. & Beloborodov, A. M. Neutrino-cooled accretion disks around spinning black holes. Astrophys. J. 657, 383–399 (2007).
Perego, A. et al. Neutrino-driven winds from neutron star merger remnants. Mon. Not. R. Astron. Soc. 443, 3134–3156 (2014).
Lippuner, J. et al. Signatures of hypermassive neutron star lifetimes on r-process nucleosynthesis in the disc ejecta from neutron star mergers. Mon. Not. R. Astron. Soc. 472, 904–918 (2017).
Fujibayashi, S., Kiuchi, K., Nishimura, N., Sekiguchi, Y. & Shibata, M. Mass ejection from the remnant of a binary neutron star merger: viscous-radiation hydrodynamics study. Astrophys. J. 860, 64 (2018).
Radice, D. et al. Binary neutron star mergers: mass ejection, electromagnetic counterparts, and nucleosynthesis. Astrophys. J. 869, 130 (2018).
Nedora, V. et al. Numerical relativity simulations of the neutron star merger GW170817: long-term remnant evolutions, winds, remnant disks, and nucleosynthesis. Astrophys. J. 906, 98 (2021).
Krüger, C. J. & Foucart, F. Estimates for disk and ejecta masses produced in compact binary mergers. Phys. Rev. D 101, 103002 (2020).
Nedora, V. et al. Mapping dynamical ejecta and disk masses from numerical relativity simulations of neutron star mergers. Class. Quantum Gravity 39, 015008 (2021).
Dessart, L., Ott, C. D., Burrows, A., Rosswog, S. & Livne, E. Neutrino signatures and the neutrino-driven wind in binary neutron star mergers. Astrophys. J. 690, 1681–1705 (2009).
Siegel, D. M., Ciolfi, R. & Rezzolla, L. Magnetically driven winds from differentially rotating neutron stars and X-ray afterglows of short gamma-ray bursts. Astrophys. J. Lett. 785, L6 (2014).
Ciolfi, R. et al. General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star. Phys. Rev. D 95, 063016 (2017).
Ciolfi, R., Kastaun, W., Kalinani, J. V. & Giacomazzo, B. First 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger. Phys. Rev. D 100, 023005 (2019).
Metzger, B. D., Thompson, T. A. & Quataert, E. A magnetar origin for the kilonova ejecta in GW170817. Astrophys. J. 856, 101 (2018).
Wu, M.-R., Fernández, R., Martínez-Pinedo, G. & Metzger, B. D. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers. Mon. Not. R. Astron. Soc. 463, 2323–2334 (2016).
Siegel, D. M. Heavy elements form short and long gamma-ray bursts. In Proceedings of the Yamada Conference LXXI: Gamma-ray Bursts in the Gravitational Wave Era 2019, 13–18 (eds Sakamoto, T., Serino, M. & Sugita, S. (Yamada Science Foundation, Yokohama, 2020). Preprint at https://arxiv.org/abs/2008.06078 (2020).
MacFadyen, A. I. & Woosley, S. E. Collapsars: gamma-ray bursts and explosions in “failed supernovae”. Astrophys. J. 524, 262 (1999).
Miller, J. M. et al. Full transport general relativistic radiation magnetohydrodynamics for nucleosynthesis in collapsars. Astrophys. J. 902, 66 (2020).
Metzger, B. D., Thompson, T. A. & Quataert, E. On the conditions for neutron-rich gamma-ray burst outflows. Astrophys. J. 676, 1130–1150 (2008).
Siegel, D. M. et al. “Super-kilonovae” from massive collapsars as signatures of black-hole birth in the pair-instability mass gap. Preprint at https://arxiv.org/abs/2111.03094 (2021).
Brauer, K., Ji, A. P., Drout, M. R. & Frebel, A. Collapsar r-process yields can reproduce [Eu/Fe] abundance scatter in metal-poor stars. Astrophys. J. 915, 81 (2021).
Côté, B. et al. Neutron star mergers might not be the only source of r-process elements in the Milky Way. Astrophys. J. 875, 106 (2019).
Abbott, R. et al. Observation of gravitational waves from two neutron star–black hole coalescences. Astrophys. J. Lett. 915, L5 (2021).
Foucart, F. Black-hole–neutron-star mergers: disk mass predictions. Phys. Rev. D 86, 124007 (2012).
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E. & Hessels, J. W. T. A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081–1083 (2010).
Özel, F., Psaltis, D., Narayan, R. & McClintock, J. E. The black hole mass distribution in the galaxy. Astrophys. J. 725, 1918–1927 (2010).
Kreidberg, L., Bailyn, C. D., Farr, W. M. & Kalogera, V. Mass measurements of black holes in X-ray transients: is there a mass gap? Astrophys. J. 757, 36 (2012).
Pejcha, O. & Thompson, T. A. The landscape of the neutrino mechanism of core-collapse supernovae: neutron star and black hole mass functions, explosion energies, and nickel yields. Astrophys. J. 801, 90 (2015).
Orosz, J. A., Jain, R. K., Bailyn, C. D., McClintock, J. E. & Remillard, R. A. Orbital parameters for the soft X-ray transient 4U 1543-47: evidence for a black hole. Astrophys. J. 499, 375–384 (1998).
Heida, M., Jonker, P. G., Torres, M. A. P. & Chiavassa, A. The mass function of GX 339-4 from spectroscopic observations of its donor star. Astrophys. J. 846, 132 (2017).
Thompson, T. A. et al. A noninteracting low-mass black hole–giant star binary system. Science 366, 637–640 (2019).
Abbott, R. et al. Population properties of compact objects from the second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophys. J. Lett. 913, L7 (2021).
Kawaguchi, K., Kyutoku, K., Shibata, M. & Tanaka, M. Models of kilonova/macronova emission from black hole–neutron star mergers. Astrophys. J. 825, 52 (2016).
Foucart, F. et al. Dynamical ejecta from precessing neutron star-black hole mergers with a hot, nuclear-theory based equation of state. Class. Quantum Gravity 34, 044002 (2017).
Foucart, F. et al. Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime. Phys. Rev. D 99, 103025 (2019).
Kyutoku, K. et al. On the possibility of GW190425 being a black hole–neutron star binary merger. Astrophys. J. Lett. 890, L4 (2020).
Fernández, R., Foucart, F. & Lippuner, J. The landscape of disc outflows from black hole–neutron star mergers. Mon. Not. R. Astron. Soc. 497, 3221–3233 (2020).
Chen, H.-Y., Vitale, S. & Foucart, F. The relative contribution to heavy metals production from binary neutron star mergers and neutron star–black hole mergers. Astrophys. J. Lett. 920, L3 (2021).
Sneden, C., Cowan, J. J. & Gallino, R. Neutron-capture elements in the early galaxy. Annu. Rev. Astron. Astrophys. 46, 241–288 (2008).
Frebel, A. From nuclei to the cosmos: tracing heavy-element production with the oldest stars. Annu. Rev. Nucl. Part. Sci. 68, 237–269 (2018).
Farouqi, K., Thielemann, F.-K., Rosswog, S. & Kratz, K.-L. Correlations of r-process elements in very metal-poor stars as clues to their nucleosynthesis sites. Preprint at http://arxiv.org/abs/2107.03486 (2021).
Schatz, H. et al. Thorium and uranium chronometers applied to CS 31082-001. Astrophys. J. 579, 626–638 (2002).
Roederer, I. U. et al. The end of nucleosynthesis: production of lead and thorium in the early galaxy. Astrophys. J. 698, 1963–1980 (2009).
Mashonkina, L., Christlieb, N. & Eriksson, K. The Hamburg/ESO R-process Enhanced Star survey (HERES). X. HE 2252–4225, one more r-process enhanced and actinide-boost halo star. Astron. Astrophys. 569, A43 (2014).
Korobkin, O., Rosswog, S., Arcones, A. & Winteler, C. On the astrophysical robustness of the neutron star merger r-process. Mon. Not. R. Astron. Soc. 426, 1940–1949 (2012).
Rosswog, S., Korobkin, O., Arcones, A., Thielemann, F.-K. & Piran, T. The long-term evolution of neutron star merger remnants – I. The impact of r-process nucleosynthesis. Mon. Not. R. Astron. Soc. 439, 744–756 (2014).
Eichler, M. et al. The role of fission in neutron star mergers and its impact on the r-process peaks. Astrophys. J. 808, 30 (2015).
Sneden, C. et al. Evidence of multiple R-process sites in the early galaxy: new observations of CS 22892-052. Astrophys. J. Lett. 533, L139–L142 (2000).
Travaglio, C. et al. Galactic evolution of Sr, Y, and Zr: a multiplicity of nucleosynthetic processes. Astrophys. J. 601, 864–884 (2004).
Kratz, K.-L. et al. Explorations of the r-processes: comparisons between calculations and observations of low-metallicity stars. Astrophys. J. 662, 39–52 (2007).
Ji, A. P., Drout, M. R. & Hansen, T. T. The lanthanide fraction distribution in metal-poor stars: a test of neutron star mergers as the dominant r-process site. Astrophys. J. 882, 40 (2019).
Barnes, J. et al. A GRB and broad-lined type Ic supernova from a single central engine. Astrophys. J. 860, 38 (2018).
Wehmeyer, B., Pignatari, M. & Thielemann, F.-K. Galactic evolution of rapid neutron capture process abundances: the inhomogeneous approach. Mon. Not. R. Astron. Soc. 452, 1970–1981 (2015).
van de Voort, F. et al. Neutron star mergers and rare core-collapse supernovae as sources of r-process enrichment in simulated galaxies. Mon. Not. R. Astron. Soc. 494, 4867–4883 (2020).
Tarumi, Y., Hotokezaka, K. & Beniamini, P. Evidence for r-process delay in very metal-poor stars. Astrophys. J. Lett. 913, L30 (2021).
Yong, D. et al. r-Process elements from magnetorotational hypernovae. Nature 595, 223–226 (2021).
Hansen, T. T. et al. An R-process enhanced star in the dwarf galaxy Tucana III. Astrophys. J. 838, 44 (2017).
Beniamini, P., Hotokezaka, K. & Piran, T. Natal kicks and time delays in merging neutron star binaries: implications for r-process nucleosynthesis in ultra-faint dwarfs and in the Milky Way. Astrophys. J. Lett. 829, L13 (2016).
Bonetti, M., Perego, A., Dotti, M. & Cescutti, G. Neutron star binary orbits in their host potential: effect on early r-process enrichment. Mon. Not. R. Astron. Soc. 490, 296–311 (2019).
Roederer, I. U. Primordial r-process dispersion in metal-poor globular clusters. Astrophys. J. Lett. 732, L17 (2011).
Kirby, E. N., Duggan, G., Ramirez-Ruiz, E. & Macias, P. The stars in M15 were born with the r-process. Astrophys. J. Lett. 891, L13 (2020).
Zevin, M. et al. Can neutron-star mergers explain the r-process enrichment in globular clusters? Astrophys. J. 886, 4 (2019).
Côté, B. et al. Advanced LIGO constraints on neutron star mergers and r-process sites. Astrophys. J. 836, 230 (2017).
Hotokezaka, K., Beniamini, P. & Piran, T. Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts. Int. J. Mod. Phys. D 27, 1842005 (2018).
Bartos, I. & Marka, S. A nearby neutron-star merger explains the actinide abundances in the early Solar System. Nature 569, 85–88 (2019).
Stanek, K. Z. et al. Protecting life in the Milky Way: metals keep the GRBs away. Acta Astron. 56, 333–345 (2006).
Perley, D. A. et al. The Swift GRB Host Galaxy Legacy Survey. II. Rest-frame near-IR luminosity distribution and evidence for a near-solar metallicity threshold. Astrophys. J. 817, 8 (2016).
Wallner, A. et al. 60Fe and 244Pu deposited on Earth constrain the r-process yields of recent nearby supernovae. Science 372, 742–745 (2021).
KAGRA Collaboration, LIGO Scientific Collaboration & Virgo Collaboration. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 23, 3 (2020).
Bartos, I., Huard, T. L. & Márka, S. James Webb Space Telescope can detect kilonovae in gravitational wave follow-up search. Astrophys. J. 816, 61 (2016).
Gehrels, N. & Spergel, D., WFIRST SDT and Project. Wide-field infrared survey telescope (WFIRST) mission and synergies with LISA and LIGO-Virgo. J. Phys. Conf. Ser. 610, 012007 (2015).
Abbott, B. P. et al. Exploring the sensitivity of next generation gravitational wave detectors. Class. Quantum Gravity 34, 044001 (2017).
Bailes, M. et al. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nat. Rev. Phys. 3, 344–366 (2021).
Özel, F. & Freire, P. Masses, radii, and the equation of state of neutron stars. Annu. Rev. Astron. Astrophys. 54, 401–440 (2016).
Abbott, B. P. et al. GW190425: observation of a compact binary coalescence with total mass ~3.4 M⊙. Astrophys. J. Lett. 892, L3 (2020).
Hayashi, K. et al. General-relativistic neutrino-radiation magnetohydrodynamics simulation of black hole-neutron star mergers for seconds. Preprint at http://arxiv.org/abs/2111.04621 (2021).
Wu, M.-R., Tamborra, I., Just, O. & Janka, H.-T. Imprints of neutrino-pair flavor conversions on nucleosynthesis in ejecta from neutron-star merger remnants. Phys. Rev. D 96, 123015 (2017).
Fontes, C. J., Fryer, C. L., Hungerford, A. L., Wollaeger, R. T. & Korobkin, O. A line-binned treatment of opacities for the spectra and light curves from neutron star mergers. Mon. Not. R. Astron. Soc. 493, 4143–4171 (2020).
Barnes, J. et al. Kilonovae across the nuclear physics landscape: the impact of nuclear physics uncertainties on r-process-powered emission. Astrophys. J. 918, 44 (2021).
Radžiūtė, L., Gaigalas, G., Kato, D., Rynkun, P. & Tanaka, M. Extended calculations of energy levels and transition rates for singly ionized lanthanide elements. I. Pr–Gd. Astrophys. J. Suppl. 248, 17 (2020).
Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database (version 5.9). http://www.nist.gov/pml/data/asd.cfm (2021).
Wu, M.-R., Barnes, J., Martínez-Pinedo, G. & Metzger, B. D. Fingerprints of heavy-element nucleosynthesis in the late-time lightcurves of kilonovae. Phys. Rev. Lett. 122, 062701 (2019).
Hotokezaka, K., Tanaka, M., Kato, D. & Gaigalas, G. Nebular emission from lanthanide-rich ejecta of neutron star merger. Mon. Not. R. Astron. Soc. 506, 5863–5877 (2021).
Chen, H.-Y., Fishbach, M. & Holz, D. E. A two per cent Hubble constant measurement from standard sirens within five years. Nature 562, 545–547 (2018).
Chen, H.-Y. Systematic uncertainty of standard sirens from the viewing angle of binary neutron star inspirals. Phys. Rev. Lett. 125, 201301 (2020).
The LIGO Scientific Collaboration et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017).
Dietrich, T. et al. Multimessenger constraints on the neutron-star equation of state and the Hubble constant. Science 370, 1450–1453 (2020).
The LIGO Scientific Collaboration, the Virgo Collaboration & the KAGRA Collaboration. Constraints on the cosmic expansion history from GWTC-3. Preprint at http://arxiv.org/abs/2111.03604 (2021).
Riess, A. G., Casertano, S., Yuan, W., Macri, L. M. & Scolnic, D. Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond λCDM. Astrophys. J. 876, 85 (2019).
Wong, K. C. et al. H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. Mon. Not. R. Astron. Soc. 498, 1420–1439 (2020).
Pesce, D. W. et al. The Megamaser Cosmology Project. XIII. Combined Hubble constant constraints. Astrophys. J. Lett. 891, L1 (2020).
Planck Collaboration et al. Planck 2018 results: VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Horowitz, C. J. et al. r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. J. Phys. G Nucl. Part. Phys. 46, 083001 (2019).
Mumpower, M., Surman, R., McLaughlin, G. & Aprahamian, A. The impact of individual nuclear properties on r-process nucleosynthesis. Prog. Part. Nucl. Phys. 86, 86–126 (2016).
Rosswog, S. et al. Detectability of compact binary merger macronovae. Class. Quantum Gravity 34, 104001 (2017).
Eichler, M., Sayar, W., Arcones, A. & Rauscher, T. Probing the production of actinides under different r-process conditions. Astrophys. J. 879, 47 (2019).
Wu, J. et al. β-decay half-lives of 55 neutron-rich isotopes beyond the N = 82 shell gap. Phys. Rev. C 101, 042801 (2020).
Orford, R. et al. Precision mass, easurements of neutron-rich neodymium and samarium isotopes and their role in understanding rare-earth peak formation. Phys. Rev. Lett. 120, 262702 (2018).
Vilen, M. et al. Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP: reduced neutron pairing and implications for r-process calculations. Phys. Rev. Lett. 120, 262701 (2018).
Aprahamian, A. et al. FRIB and the GW170817 kilonova. Preprint at http://arxiv.org/abs/1809.00703 (2018).
Zhu, Y. L. et al. Modeling kilonova light curves: dependence on nuclear inputs. Astrophys. J. 906, 94 (2021).
Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).
Arlandini, C. et al. Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys. J. 525, 886–900 (1999).
Lippuner, J. & Roberts, L. F. SkyNet: a modular nuclear reaction network library. Astrophys. J. Suppl. 233, 18 (2017).
Foucart, F. et al. Neutron star-black hole mergers with a nuclear equation of state and neutrino cooling: dependence in the binary parameters. Phys. Rev. D 90, 024026 (2014).
Steiner, A. W., Hempel, M. & Fischer, T. Core-collapse supernova equations of state based on neutron star observations. Astrophys. J. 774, 17 (2013).
De, S. et al. Tidal deformabilities and radii of neutron stars from the observation of GW170817. Phys. Rev. Lett. 121, 091102 (2018).
Miller, M. C. et al. PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys. J. Lett. 887, L24 (2019).
Riley, T. E. et al. A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887, L21 (2019).
Capano, C. D. et al. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory. Nat. Astron. 4, 625–632 (2020).
Landry, P., Essick, R. & Chatziioannou, K. Nonparametric constraints on neutron star matter with existing and upcoming gravitational wave and pulsar observations. Phys. Rev. D 101, 123007 (2020).
Hix, W. & Thielemann, F.-K. Computational methods for nucleosynthesis and nuclear energy generation. J. Comput. Appl. Math. 109, 321–351 (1999).
Fowler, W. A., Caughlan, G. R. & Zimmerman, B. A. Thermonuclear reaction rates. Annu. Rev. Astron. Astrophys. 5, 525–570 (1967).
Clayton, D. D. Principles of Stellar Evolution and Nucleosynthesis (Univ. Chicago Press, 1983).
Lippuner, J. & Roberts, L. F. r-Process lanthanide production and heating rates in kilonovae. Astrophys. J. 815, 82 (2015).
Arnett, W. D. On the theory of type I supernovae. Astrophys. J. Lett. 230, L37–L40 (1979).
Arnett, W. D. Type I supernovae. I - analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).
Rauscher, T. et al. Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. Rep. Prog. Phys. 76, 066201 (2013).
Ruffert, M., Janka, H.-T., Takahashi, K. & Schaefer, G. Coalescing neutron stars - a step towards physical models. II. Neutrino emission, neutron tori, and gamma-ray bursts. Astron. Astrophys. 319, 122–153 (1997).
Oechslin, R., Janka, H.-T. & Marek, A. Relativistic neutron star merger simulations with non-zero temperature equations of state. I. Variation of binary parameters and equation of state. Astron. Astrophys. 467, 395–409 (2007).
Hotokezaka, K. et al. Progenitor models of the electromagnetic transient associated with the short gamma ray burst 130603B. Astrophys. J. Lett. 778, L16 (2013).
Beloborodov, A. M. Nuclear composition of gamma-ray burst fireballs. Astrophys. J. 588, 931–944 (2003).
Mösta, P. et al. r-process nucleosynthesis from three-dimensional magnetorotational core-collapse supernovae. Astrophys. J. 864, 171 (2018).
Kuroda, T., Arcones, A., Takiwaki, T. & Kotake, K. Magnetorotational explosion of a massive star supported by neutrino heating in general relativistic three-dimensional simulations. Astrophys. J. 896, 102 (2020).
Obergaulinger, M. & Aloy, M. Á. Magnetorotational core collapse of possible GRB progenitors – III. Three-dimensional models. Mon. Not. R. Astron. Soc. 503, 4942–4963 (2021).
Acknowledgements
The author thanks B. Metzger for comments on the manuscript and for introducing him to neutrino-cooled accretion discs several years ago, based on which many of the perspectives incorporated here have emerged. The author acknowledges detailed and thoughtful comments by the referees. The author also thanks L. Combi for providing visualization snapshots for Figs. 2 and 3, and S. De for providing implementations of ejecta fitting formulae used in ref.83, based on which the results of Fig. 4 were obtained. This research was enabled in part by support provided by SciNet (www.scinethpc.ca) and Compute Canada (www.computecanada.ca). The author acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference number RGPIN-2019-04684. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Colleges and Universities.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Friedrich-Karl Thielemann, Oliver Just, Gabriel Martínez-Pinedo and Andreas Floers for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Siegel, D.M. r-Process nucleosynthesis in gravitational-wave and other explosive astrophysical events. Nat Rev Phys 4, 306–318 (2022). https://doi.org/10.1038/s42254-022-00439-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-022-00439-1
This article is cited by
-
Origin of the elements
The Astronomy and Astrophysics Review (2023)