Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

r-Process nucleosynthesis in gravitational-wave and other explosive astrophysical events

Abstract

Gravitational-wave detectors have transformed the way we observe the Universe. Together with ground and space electromagnetic observatories, they have provided key insights into the long-standing question of how the heavy elements in the periodic table are synthesized. A few years into the new era of multi-messenger astronomy, following Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)’s, Virgo’s and Kagra’s third observation run, there is strong evidence for the detection of mergers of two neutron stars and of neutron stars and black holes. This Review reflects on recent observational surprises and speculates on their implications. It provides a preview of the open questions that these observations raise and on future opportunities for both theory and observations. These include insights into rapid neutron-capture (r-process) nucleosynthesis in neutron-star mergers and other astrophysical sites, such as collapsars and magnetorotational supernovae, with implications for nuclear (astro)physics more broadly, fundamental physics in compact astrophysical systems, as well as chemical evolution of galaxies.

Key points

  • The astrophysical origin of roughly half of the elements heavier than iron remains an open question.

  • Multi-messenger observations such as gravitational waves from neutron-star mergers combined with electromagnetic counterparts have transformed observational astronomy in the past 5 years and directly probe the synthesis of heavy elements (‘kilonovae’).

  • Based on recent observations, this Review conjectures that most of the heavy rapid neutron-capture (r-process) elements may be formed in winds from dense accretion discs, such as those that form in the aftermath of neutron-star mergers or in rare supernovae.

  • Many open questions exist regarding the contribution of mergers of neutron stars and black holes and rare types of supernovae (magnetorotational supernovae and collapsars) to the galactic r-process.

  • Important constraints on the astrophysical sites of r-process nucleosynthesis are derived from observations of chemical evolution of galaxies, in particular, from observed elemental abundance patterns of metal-poor stars.

  • Open questions, challenges, opportunities and new directions for multi-messenger astronomy and r-process nucleosynthesis are charted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Abundances of the elements in the Solar System.
Fig. 2: Schematic overview of astrophysical sites for r-process nucleosynthesis.
Fig. 3: The kilonova scenario61.
Fig. 4: Ejecta distribution of neutron-star mergers.

Similar content being viewed by others

References

  1. Cyburt, R. H., Fields, B. D., Olive, K. A. & Yeh, T.-H. Big bang nucleosynthesis: present status. Rev. Mod. Phys. 88, 015004 (2016).

    Article  ADS  Google Scholar 

  2. Pitrou, C., Coc, A., Uzan, J.-P. & Vangioni, E. Precision big bang nucleosynthesis with improved helium-4 predictions. Phys. Rep. 754, 1–66 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957).

    Article  ADS  Google Scholar 

  4. Cameron, A. G. W. On the origin of the heavy elements. Astron. J. 62, 9–10 (1957).

    Article  ADS  Google Scholar 

  5. Nomoto, K., Kobayashi, C. & Tominaga, N. Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457–509 (2013).

    Article  ADS  Google Scholar 

  6. Prantzos, N. Production and evolution of Li, Be, and B isotopes in the Galaxy. Astron. Astrophys. 542, A67 (2012).

    Article  ADS  Google Scholar 

  7. Woosley, S. E. & Hoffman, R. D. The alpha-process and the r-process. Astrophys. J. 395, 202–239 (1992).

    Article  ADS  Google Scholar 

  8. Merrill, P. W. Spectroscopic observations of stars of class S. Astrophys. J. 116, 21 (1952).

    Article  ADS  Google Scholar 

  9. Busso, M., Gallino, R. & Wasserburg, G. J. Nucleosynthesis in asymptotic giant branch stars: relevance for galactic enrichment and solar system formation. Annu. Rev. Astron. Astrophys. 37, 239–309 (1999).

    Article  ADS  Google Scholar 

  10. Käppeler, F., Gallino, R., Bisterzo, S. & Aoki, W. The s process: nuclear physics, stellar models, and observations. Rev. Mod. Phys. 83, 157–193 (2011).

    Article  ADS  Google Scholar 

  11. Karakas, A. I. & Lattanzio, J. C. The Dawes Review 2: nucleosynthesis and stellar yields of low- and intermediate-mass single stars. Publ. Astron. Soc. Aust. 31, e030 (2014).

    Article  ADS  Google Scholar 

  12. Thielemann, F.-K. et al. What are the astrophysical sites for the r-process and the production of heavy elements? Prog. Part. Nucl. Phys. 66, 346–353 (2011).

    Article  ADS  Google Scholar 

  13. Cowan, J. J. et al. Origin of the heaviest elements: the rapid neutron-capture process. Rev. Mod. Phys. 93, 015002 (2021).

    Article  ADS  Google Scholar 

  14. Lattimer, J. M. & Schramm, D. N. Black-hole-neutron-star collisions. Astrophys. J. Lett. 192, L145–L147 (1974).

    Article  ADS  Google Scholar 

  15. Symbalisty, E. & Schramm, D. N. Neutron star collisions and the r-process. Astrophys. Lett. 22, 143–145 (1982).

    ADS  Google Scholar 

  16. Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989).

    Article  ADS  Google Scholar 

  17. Davies, M. B., Benz, W., Piran, T. & Thielemann, F. K. Merging neutron stars. I. Initial results for coalescence of noncorotating systems. Astrophys. J. 431, 742–753 (1994).

    Article  ADS  Google Scholar 

  18. Ruffert, M., Janka, H.-T. & Schaefer, G. Coalescing neutron stars – a step towards physical models. I. Hydrodynamic evolution and gravitational-wave emission. Astron. Astrophys. 311, 532–566 (1996).

    ADS  Google Scholar 

  19. Rosswog, S. et al. Mass ejection in neutron star mergers. Astron. Astrophys. 341, 499–526 (1999).

    ADS  Google Scholar 

  20. Freiburghaus, C., Rosswog, S. & Thielemann, F.-K. r-Process in neutron star mergers. Astrophys. J. 525, L121–L124 (1999).

    Article  ADS  Google Scholar 

  21. Burbidge, G. R., Hoyle, F., Burbidge, E. M., Christy, R. F. & Fowler, W. A. Californium-254 and supernovae. Phys. Rev. 103, 1145–1149 (1956).

    Article  ADS  Google Scholar 

  22. Truran, J. W., Arnett, W. D., Tsuruta, S. & Cameron, A. G. W. Rapid neutron capture in supernova explosions. Astrophys. Space Sci. 1, 129–146 (1968).

    Article  ADS  Google Scholar 

  23. Woosley, S. E., Wilson, J. R., Mathews, G. J., Hoffman, R. D. & Meyer, B. S. The r-process and neutrino-heated supernova ejecta. Astrophys. J. 433, 229–246 (1994).

    Article  ADS  Google Scholar 

  24. Takahashi, K., Witti, J. & Janka, H.-T. Nucleosynthesis in neutrino-driven winds from protoneutron stars II. The r-process. Astron. Astrophys. 286, 857–869 (1994).

    ADS  Google Scholar 

  25. Qian, Y.-Z. & Woosley, S. E. Nucleosynthesis in neutrino-driven winds. I. The physical conditions. Astrophys. J. 471, 331–351 (1996).

    Article  ADS  Google Scholar 

  26. Thompson, T. A., Burrows, A. & Meyer, B. S. The physics of proto-neutron star winds: implications for r-process nucleosynthesis. Astrophys. J. 562, 887–908 (2001).

    Article  ADS  Google Scholar 

  27. Roberts, L. F., Reddy, S. & Shen, G. Medium modification of the charged-current neutrino opacity and its implications. Phys. Rev. C 86, 065803 (2012).

    Article  ADS  Google Scholar 

  28. Martínez-Pinedo, G., Fischer, T., Lohs, A. & Huther, L. Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling. Phys. Rev. Lett. 109, 251104 (2012).

    Article  ADS  Google Scholar 

  29. Curtis, S. et al. PUSHing core-collapse supernovae to explosions in spherical symmetry. III. Nucleosynthesis yields. Astrophys. J. 870, 2 (2019).

    Article  ADS  Google Scholar 

  30. Thompson, T. A. Magnetic protoneutron star winds and r-process nucleosynthesis. Astrophys. J. Lett. 585, L33–L36 (2003).

    Article  ADS  Google Scholar 

  31. Thompson, T. A. & ud-Doula, A. High-entropy ejections from magnetized proto-neutron star winds: implications for heavy element nucleosynthesis. Mon. Not. R. Astron. Soc. 476, 5502–5515 (2018).

    Article  ADS  Google Scholar 

  32. Ji, A. P., Frebel, A., Chiti, A. & Simon, J. D. R-process enrichment from a single event in an ancient dwarf galaxy. Nature 531, 610–613 (2016).

    Article  ADS  Google Scholar 

  33. Wallner, A. et al. Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis. Nat. Commun. 6, 5956 (2015).

    Article  ADS  Google Scholar 

  34. Hotokezaka, K., Piran, T. & Paul, M. Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis. Nat. Phys. 11, 1042–1042 (2015).

    Article  Google Scholar 

  35. Macias, P. & Ramirez-Ruiz, E. A stringent limit on the mass production rate of r-process elements in the Milky Way. Astrophys. J. 860, 89 (2018).

    Article  ADS  Google Scholar 

  36. LeBlanc, J. M. & Wilson, J. R. A numerical example of the collapse of a rotating magnetized star. Astrophys. J. 161, 541 (1970).

    Article  ADS  Google Scholar 

  37. Symbalisty, E. M. D., Schramm, D. N. & Wilson, J. R. An expanding vortex site for the r-process in rotating stellar collapse. Astrophys. J. Lett. 291, L11–L14 (1985).

    Article  ADS  Google Scholar 

  38. Cameron, A. G. W. Some nucleosynthesis effects associated with r-process jets. Astrophys. J. 587, 327 (2003).

    Article  ADS  Google Scholar 

  39. Nishimura, S. et al. r-Process nucleosynthesis in magnetohydrodynamic jet explosions of core-collapse supernovae. Astrophys. J. 642, 410 (2006).

    Article  ADS  Google Scholar 

  40. Winteler, C. et al. Magnetorotationally driven supernovae as the origin of early galaxy r-process elements? Astrophys. J. Lett. 750, L22 (2012).

    Article  ADS  Google Scholar 

  41. Nishimura, N., Sawai, H., Takiwaki, T., Yamada, S. & Thielemann, F.-K. The intermediate r-process in core-collapse supernovae driven by the magneto-rotational instability. Astrophys. J. Lett. 836, L21 (2017).

    Article  ADS  Google Scholar 

  42. Halevi, G. & Mösta, P. r-Process nucleosynthesis from three-dimensional jet-driven core-collapse supernovae with magnetic misalignments. Mon. Not. R. Astron. Soc. 477, 2366–2375 (2018).

    Article  ADS  Google Scholar 

  43. Reichert, M., Obergaulinger, M., Eichler, M., Aloy, M. Á. & Arcones, A. Nucleosynthesis in magneto-rotational supernovae. Mon. Not. R. Astron. Soc. 501, 5733–5745 (2021).

    ADS  Google Scholar 

  44. Pruet, J., Woosley, S. E. & Hoffman, R. D. Nucleosynthesis in gamma-ray burst accretion disks. Astrophys. J. 586, 1254 (2003).

    Article  ADS  Google Scholar 

  45. Pruet, J., Thompson, T. A. & Hoffman, R. D. Nucleosynthesis in outflows from the inner regions of collapsars. Astrophys. J. 606, 1006 (2004).

    Article  ADS  Google Scholar 

  46. Surman, R., McLaughlin, G. C. & Hix, W. R. Nucleosynthesis in the outflow from gamma-ray burst accretion disks. Astrophys. J. 643, 1057 (2006).

    Article  ADS  Google Scholar 

  47. Fujimoto, S.-i, Hashimoto, M.-a, Kotake, K. & Yamada, S. Heavy-element nucleosynthesis in a collapsar. Astrophys. J. 656, 382–392 (2007).

    Article  ADS  Google Scholar 

  48. Ono, M., Hashimoto, M.-a, Fujimoto, S.-i, Kotake, K. & Yamada, S. Explosive nucleosynthesis in magnetohydrodynamical jets from collapsars. II: — Heavy-element nucleosynthesis of s, p, r-processes. Prog. Theor. Phys. 128, 741–765 (2012).

    Article  ADS  Google Scholar 

  49. Caballero, O. L., McLaughlin, G. C. & Surman, R. Neutrino spectra from accretion disks: neutrino general relativistic effects and the consequences for nucleosynthesis. Astrophys. J. 745, 170 (2012).

    Article  ADS  Google Scholar 

  50. Siegel, D. M., Barnes, J. & Metzger, B. D. Collapsars as a major source of r-process elements. Nature 569, 241–244 (2019).

    Article  ADS  Google Scholar 

  51. Fischer, T. et al. Core-collapse supernova explosions driven by the hadron-quark phase transition as a rare r-process site. Astrophys. J. 894, 9 (2020).

    Article  ADS  Google Scholar 

  52. Grichener, A. & Soker, N. The common envelope jet supernova (CEJSN) r-process scenario. Astrophys. J. 878, 24 (2019).

    Article  ADS  Google Scholar 

  53. Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  54. Kasen, D., Metzger, B., Barnes, J., Quataert, E. & Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80–84 (2017).

    Article  ADS  Google Scholar 

  55. Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017).

    Article  ADS  Google Scholar 

  56. Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017).

    Article  ADS  Google Scholar 

  57. Soares-Santos, M. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the dark energy camera. Astrophys. J. Lett. 848, L16 (2017).

    Article  ADS  Google Scholar 

  58. Villar, V. A. et al. The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys. J. Lett. 851, L21 (2017).

    Article  ADS  Google Scholar 

  59. Li, L.-X. & Paczyński, B. Transient events from neutron star mergers. Astrophys. J. Lett. 507, L59–L62 (1998).

    Article  ADS  Google Scholar 

  60. Kulkarni, S. R. Modeling supernova-like explosions associated with gamma-ray bursts with short durations. Preprint at https://arxiv.org/abs/astro-ph/0510256 (2005).

  61. Metzger, B. D. et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei: transients from compact object mergers. Mon. Not. R. Astron. Soc. 406, 2650–2662 (2010).

    Article  ADS  Google Scholar 

  62. Metzger, B. D. Kilonovae. Living Rev. Relativ. 23, 1 (2020).

    Article  ADS  Google Scholar 

  63. Siegel, D. M. GW170817–the first observed neutron star merger and its kilonova: implications for the astrophysical site of the r-process. Eur. Phys. J. A 55, 203 (2019).

    Article  ADS  Google Scholar 

  64. Margutti, R. & Chornock, R. First multimessenger observations of a neutron star merger. Annu. Rev. Astron. Astrophys. 59, 155–202 (2021).

    Article  ADS  Google Scholar 

  65. Pian, E. Mergers of binary neutron star systems: a multimessenger revolution. Front. Astron. Space Sci. 7, 108 (2021).

    Article  ADS  Google Scholar 

  66. Kasen, D., Badnell, N. R. & Barnes, J. Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys. J. 774, 25 (2013).

    Article  ADS  Google Scholar 

  67. Barnes, J. & Kasen, D. Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys. J. 775, 18 (2013).

    Article  ADS  Google Scholar 

  68. Tanaka, M. & Hotokezaka, K. Radiative transfer simulations of neutron star merger ejecta. Astrophys. J. 775, 113 (2013).

    Article  ADS  Google Scholar 

  69. Fontes, C. et al. Relativistic opacities for astrophysical applications. High Energy Density Phys. 16, 53–59 (2015).

    Article  ADS  Google Scholar 

  70. Kasen, D., Fernández, R. & Metzger, B. D. Kilonova light curves from the disc wind outflows of compact object mergers. Mon. Not. R. Astron. Soc. 450, 1777–1786 (2015).

    Article  ADS  Google Scholar 

  71. Tanaka, M., Kato, D., Gaigalas, G. & Kawaguchi, K. Systematic opacity calculations for kilonovae. Mon. Not. R. Astron. Soc. 496, 1369–1392 (2020).

    Article  ADS  Google Scholar 

  72. Waxman, E., Ofek, E. O., Kushnir, D. & Gal-Yam, A. Constraints on the ejecta of the GW170817 neutron star merger from its electromagnetic emission. Mon. Not. R. Astron. Soc. 481, 3423–3441 (2018).

    Article  ADS  Google Scholar 

  73. Smartt, S. J. et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551, 75–79 (2017).

    Article  ADS  Google Scholar 

  74. Pian, E. et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67–70 (2017).

    Article  ADS  Google Scholar 

  75. Watson, D. et al. Identification of strontium in the merger of two neutron stars. Nature 574, 497–500 (2019).

    Article  ADS  Google Scholar 

  76. Chornock, R. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. IV. Detection of near-infrared signatures of r-process nucleosynthesis with Gemini-South. Astrophys. J. 848, L19 (2017).

    Article  ADS  Google Scholar 

  77. Kasliwal, M. M. et al. Spitzer mid-infrared detections of neutron star merger GW170817 suggests synthesis of the heaviest elements. Mon. Not. R. Astron. Soc. 510, L7–L12 (2022).

    Article  ADS  Google Scholar 

  78. Kawaguchi, K., Shibata, M. & Tanaka, M. Radiative transfer simulation for the optical and near-infrared electromagnetic counterparts to GW170817. Astrophys. J. 865, L21 (2018).

    Article  ADS  Google Scholar 

  79. Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. Lett. 848, L17 (2017).

    Article  ADS  Google Scholar 

  80. Radice, D., Bernuzzi, S. & Perego, A. The dynamics of binary neutron star mergers and GW170817. Annu. Rev. Nucl. Part. Sci. 70, 95–119 (2020).

    Article  ADS  Google Scholar 

  81. Siegel, D. M. & Metzger, B. D. Three-dimensional general-relativistic magnetohydrodynamic simulations of remnant accretion disks from neutron star mergers: outflows and r-process nucleosynthesis. Phys. Rev. Lett. 119, 231102 (2017).

    Article  ADS  Google Scholar 

  82. Siegel, D. M. & Metzger, B. D. Three-dimensional GRMHD simulations of neutrino-cooled accretion disks from neutron star mergers. Astrophys. J. 858, 52 (2018).

    Article  ADS  Google Scholar 

  83. De, S. & Siegel, D. M. Igniting weak interactions in neutron star postmerger accretion disks. Astrophys. J. 921, 94 (2021).

    Article  ADS  Google Scholar 

  84. Fujibayashi, S. et al. Mass ejection from disks surrounding a low-mass black hole: viscous neutrino-radiation hydrodynamics simulation in full general relativity. Phys. Rev. D 101, 083029 (2020).

    Article  ADS  Google Scholar 

  85. Fernández, R., Tchekhovskoy, A., Quataert, E., Foucart, F. & Kasen, D. Long-term GRMHD simulations of neutron star merger accretion discs: implications for electromagnetic counterparts. Mon. Not. R. Astron. Soc. 482, 3373–3393 (2019).

    Article  ADS  Google Scholar 

  86. Christie, I. M. et al. The role of magnetic field geometry in the evolution of neutron star merger accretion discs. Mon. Not. R. Astron. Soc. 490, 4811–4825 (2019).

    Article  ADS  Google Scholar 

  87. Fernández, R. & Metzger, B. D. Delayed outflows from black hole accretion tori following neutron star binary coalescence. Mon. Not. R. Astron. Soc. 435, 502–517 (2013).

    Article  ADS  Google Scholar 

  88. Just, O., Bauswein, A., Pulpillo, R. A., Goriely, S. & Janka, H.-T. Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Mon. Not. R. Astron. Soc. 448, 541–567 (2015).

    Article  ADS  Google Scholar 

  89. Miller, J. M. et al. Full transport model of GW170817-like disk produces a blue kilonova. Phys. Rev. D 100, 023008 (2019).

    Article  ADS  Google Scholar 

  90. Li, X. & Siegel, D. M. Neutrino fast flavor conversions in neutron-star postmerger accretion disks. Phys. Rev. Lett. 126, 251101 (2021).

    Article  ADS  Google Scholar 

  91. Just, O., Goriely, S., Janka, H.-T., Nagataki, S. & Bauswein, A. Neutrino absorption and other physics dependencies in neutrino-cooled black hole accretion discs. Mon. Not. R. Astron. Soc. 509, 1377–1412 (2022).

    Article  ADS  Google Scholar 

  92. Chen, W.-X. & Beloborodov, A. M. Neutrino-cooled accretion disks around spinning black holes. Astrophys. J. 657, 383–399 (2007).

    Article  ADS  Google Scholar 

  93. Perego, A. et al. Neutrino-driven winds from neutron star merger remnants. Mon. Not. R. Astron. Soc. 443, 3134–3156 (2014).

    Article  ADS  Google Scholar 

  94. Lippuner, J. et al. Signatures of hypermassive neutron star lifetimes on r-process nucleosynthesis in the disc ejecta from neutron star mergers. Mon. Not. R. Astron. Soc. 472, 904–918 (2017).

    Article  ADS  Google Scholar 

  95. Fujibayashi, S., Kiuchi, K., Nishimura, N., Sekiguchi, Y. & Shibata, M. Mass ejection from the remnant of a binary neutron star merger: viscous-radiation hydrodynamics study. Astrophys. J. 860, 64 (2018).

    Article  ADS  Google Scholar 

  96. Radice, D. et al. Binary neutron star mergers: mass ejection, electromagnetic counterparts, and nucleosynthesis. Astrophys. J. 869, 130 (2018).

    Article  ADS  Google Scholar 

  97. Nedora, V. et al. Numerical relativity simulations of the neutron star merger GW170817: long-term remnant evolutions, winds, remnant disks, and nucleosynthesis. Astrophys. J. 906, 98 (2021).

    Article  ADS  Google Scholar 

  98. Krüger, C. J. & Foucart, F. Estimates for disk and ejecta masses produced in compact binary mergers. Phys. Rev. D 101, 103002 (2020).

    Article  ADS  Google Scholar 

  99. Nedora, V. et al. Mapping dynamical ejecta and disk masses from numerical relativity simulations of neutron star mergers. Class. Quantum Gravity 39, 015008 (2021).

    Article  ADS  Google Scholar 

  100. Dessart, L., Ott, C. D., Burrows, A., Rosswog, S. & Livne, E. Neutrino signatures and the neutrino-driven wind in binary neutron star mergers. Astrophys. J. 690, 1681–1705 (2009).

    Article  ADS  Google Scholar 

  101. Siegel, D. M., Ciolfi, R. & Rezzolla, L. Magnetically driven winds from differentially rotating neutron stars and X-ray afterglows of short gamma-ray bursts. Astrophys. J. Lett. 785, L6 (2014).

    Article  ADS  Google Scholar 

  102. Ciolfi, R. et al. General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star. Phys. Rev. D 95, 063016 (2017).

    Article  ADS  Google Scholar 

  103. Ciolfi, R., Kastaun, W., Kalinani, J. V. & Giacomazzo, B. First 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger. Phys. Rev. D 100, 023005 (2019).

    Article  ADS  Google Scholar 

  104. Metzger, B. D., Thompson, T. A. & Quataert, E. A magnetar origin for the kilonova ejecta in GW170817. Astrophys. J. 856, 101 (2018).

    Article  ADS  Google Scholar 

  105. Wu, M.-R., Fernández, R., Martínez-Pinedo, G. & Metzger, B. D. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers. Mon. Not. R. Astron. Soc. 463, 2323–2334 (2016).

    Article  ADS  Google Scholar 

  106. Siegel, D. M. Heavy elements form short and long gamma-ray bursts. In Proceedings of the Yamada Conference LXXI: Gamma-ray Bursts in the Gravitational Wave Era 2019, 13–18 (eds Sakamoto, T., Serino, M. & Sugita, S. (Yamada Science Foundation, Yokohama, 2020). Preprint at https://arxiv.org/abs/2008.06078 (2020).

  107. MacFadyen, A. I. & Woosley, S. E. Collapsars: gamma-ray bursts and explosions in “failed supernovae”. Astrophys. J. 524, 262 (1999).

    Article  ADS  Google Scholar 

  108. Miller, J. M. et al. Full transport general relativistic radiation magnetohydrodynamics for nucleosynthesis in collapsars. Astrophys. J. 902, 66 (2020).

    Article  ADS  Google Scholar 

  109. Metzger, B. D., Thompson, T. A. & Quataert, E. On the conditions for neutron-rich gamma-ray burst outflows. Astrophys. J. 676, 1130–1150 (2008).

    Article  ADS  Google Scholar 

  110. Siegel, D. M. et al. “Super-kilonovae” from massive collapsars as signatures of black-hole birth in the pair-instability mass gap. Preprint at https://arxiv.org/abs/2111.03094 (2021).

  111. Brauer, K., Ji, A. P., Drout, M. R. & Frebel, A. Collapsar r-process yields can reproduce [Eu/Fe] abundance scatter in metal-poor stars. Astrophys. J. 915, 81 (2021).

    Article  ADS  Google Scholar 

  112. Côté, B. et al. Neutron star mergers might not be the only source of r-process elements in the Milky Way. Astrophys. J. 875, 106 (2019).

    Article  ADS  Google Scholar 

  113. Abbott, R. et al. Observation of gravitational waves from two neutron star–black hole coalescences. Astrophys. J. Lett. 915, L5 (2021).

    Article  ADS  Google Scholar 

  114. Foucart, F. Black-hole–neutron-star mergers: disk mass predictions. Phys. Rev. D 86, 124007 (2012).

    Article  ADS  Google Scholar 

  115. Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E. & Hessels, J. W. T. A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081–1083 (2010).

    Article  ADS  Google Scholar 

  116. Özel, F., Psaltis, D., Narayan, R. & McClintock, J. E. The black hole mass distribution in the galaxy. Astrophys. J. 725, 1918–1927 (2010).

    Article  ADS  Google Scholar 

  117. Kreidberg, L., Bailyn, C. D., Farr, W. M. & Kalogera, V. Mass measurements of black holes in X-ray transients: is there a mass gap? Astrophys. J. 757, 36 (2012).

    Article  ADS  Google Scholar 

  118. Pejcha, O. & Thompson, T. A. The landscape of the neutrino mechanism of core-collapse supernovae: neutron star and black hole mass functions, explosion energies, and nickel yields. Astrophys. J. 801, 90 (2015).

    Article  ADS  Google Scholar 

  119. Orosz, J. A., Jain, R. K., Bailyn, C. D., McClintock, J. E. & Remillard, R. A. Orbital parameters for the soft X-ray transient 4U 1543-47: evidence for a black hole. Astrophys. J. 499, 375–384 (1998).

    Article  ADS  Google Scholar 

  120. Heida, M., Jonker, P. G., Torres, M. A. P. & Chiavassa, A. The mass function of GX 339-4 from spectroscopic observations of its donor star. Astrophys. J. 846, 132 (2017).

    Article  ADS  Google Scholar 

  121. Thompson, T. A. et al. A noninteracting low-mass black hole–giant star binary system. Science 366, 637–640 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  122. Abbott, R. et al. Population properties of compact objects from the second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophys. J. Lett. 913, L7 (2021).

    Article  ADS  Google Scholar 

  123. Kawaguchi, K., Kyutoku, K., Shibata, M. & Tanaka, M. Models of kilonova/macronova emission from black hole–neutron star mergers. Astrophys. J. 825, 52 (2016).

    Article  ADS  Google Scholar 

  124. Foucart, F. et al. Dynamical ejecta from precessing neutron star-black hole mergers with a hot, nuclear-theory based equation of state. Class. Quantum Gravity 34, 044002 (2017).

    Article  ADS  Google Scholar 

  125. Foucart, F. et al. Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime. Phys. Rev. D 99, 103025 (2019).

    Article  ADS  Google Scholar 

  126. Kyutoku, K. et al. On the possibility of GW190425 being a black hole–neutron star binary merger. Astrophys. J. Lett. 890, L4 (2020).

    Article  ADS  Google Scholar 

  127. Fernández, R., Foucart, F. & Lippuner, J. The landscape of disc outflows from black hole–neutron star mergers. Mon. Not. R. Astron. Soc. 497, 3221–3233 (2020).

    Article  ADS  Google Scholar 

  128. Chen, H.-Y., Vitale, S. & Foucart, F. The relative contribution to heavy metals production from binary neutron star mergers and neutron star–black hole mergers. Astrophys. J. Lett. 920, L3 (2021).

    Article  ADS  Google Scholar 

  129. Sneden, C., Cowan, J. J. & Gallino, R. Neutron-capture elements in the early galaxy. Annu. Rev. Astron. Astrophys. 46, 241–288 (2008).

    Article  ADS  Google Scholar 

  130. Frebel, A. From nuclei to the cosmos: tracing heavy-element production with the oldest stars. Annu. Rev. Nucl. Part. Sci. 68, 237–269 (2018).

    Article  ADS  Google Scholar 

  131. Farouqi, K., Thielemann, F.-K., Rosswog, S. & Kratz, K.-L. Correlations of r-process elements in very metal-poor stars as clues to their nucleosynthesis sites. Preprint at http://arxiv.org/abs/2107.03486 (2021).

  132. Schatz, H. et al. Thorium and uranium chronometers applied to CS 31082-001. Astrophys. J. 579, 626–638 (2002).

    Article  ADS  Google Scholar 

  133. Roederer, I. U. et al. The end of nucleosynthesis: production of lead and thorium in the early galaxy. Astrophys. J. 698, 1963–1980 (2009).

    Article  ADS  Google Scholar 

  134. Mashonkina, L., Christlieb, N. & Eriksson, K. The Hamburg/ESO R-process Enhanced Star survey (HERES). X. HE 2252–4225, one more r-process enhanced and actinide-boost halo star. Astron. Astrophys. 569, A43 (2014).

    Article  ADS  Google Scholar 

  135. Korobkin, O., Rosswog, S., Arcones, A. & Winteler, C. On the astrophysical robustness of the neutron star merger r-process. Mon. Not. R. Astron. Soc. 426, 1940–1949 (2012).

    Article  ADS  Google Scholar 

  136. Rosswog, S., Korobkin, O., Arcones, A., Thielemann, F.-K. & Piran, T. The long-term evolution of neutron star merger remnants – I. The impact of r-process nucleosynthesis. Mon. Not. R. Astron. Soc. 439, 744–756 (2014).

    Article  ADS  Google Scholar 

  137. Eichler, M. et al. The role of fission in neutron star mergers and its impact on the r-process peaks. Astrophys. J. 808, 30 (2015).

    Article  ADS  Google Scholar 

  138. Sneden, C. et al. Evidence of multiple R-process sites in the early galaxy: new observations of CS 22892-052. Astrophys. J. Lett. 533, L139–L142 (2000).

    Article  ADS  Google Scholar 

  139. Travaglio, C. et al. Galactic evolution of Sr, Y, and Zr: a multiplicity of nucleosynthetic processes. Astrophys. J. 601, 864–884 (2004).

    Article  ADS  Google Scholar 

  140. Kratz, K.-L. et al. Explorations of the r-processes: comparisons between calculations and observations of low-metallicity stars. Astrophys. J. 662, 39–52 (2007).

    Article  ADS  Google Scholar 

  141. Ji, A. P., Drout, M. R. & Hansen, T. T. The lanthanide fraction distribution in metal-poor stars: a test of neutron star mergers as the dominant r-process site. Astrophys. J. 882, 40 (2019).

    Article  ADS  Google Scholar 

  142. Barnes, J. et al. A GRB and broad-lined type Ic supernova from a single central engine. Astrophys. J. 860, 38 (2018).

    Article  ADS  Google Scholar 

  143. Wehmeyer, B., Pignatari, M. & Thielemann, F.-K. Galactic evolution of rapid neutron capture process abundances: the inhomogeneous approach. Mon. Not. R. Astron. Soc. 452, 1970–1981 (2015).

    Article  ADS  Google Scholar 

  144. van de Voort, F. et al. Neutron star mergers and rare core-collapse supernovae as sources of r-process enrichment in simulated galaxies. Mon. Not. R. Astron. Soc. 494, 4867–4883 (2020).

    Article  ADS  Google Scholar 

  145. Tarumi, Y., Hotokezaka, K. & Beniamini, P. Evidence for r-process delay in very metal-poor stars. Astrophys. J. Lett. 913, L30 (2021).

    Article  ADS  Google Scholar 

  146. Yong, D. et al. r-Process elements from magnetorotational hypernovae. Nature 595, 223–226 (2021).

    Article  ADS  Google Scholar 

  147. Hansen, T. T. et al. An R-process enhanced star in the dwarf galaxy Tucana III. Astrophys. J. 838, 44 (2017).

    Article  ADS  Google Scholar 

  148. Beniamini, P., Hotokezaka, K. & Piran, T. Natal kicks and time delays in merging neutron star binaries: implications for r-process nucleosynthesis in ultra-faint dwarfs and in the Milky Way. Astrophys. J. Lett. 829, L13 (2016).

    Article  ADS  Google Scholar 

  149. Bonetti, M., Perego, A., Dotti, M. & Cescutti, G. Neutron star binary orbits in their host potential: effect on early r-process enrichment. Mon. Not. R. Astron. Soc. 490, 296–311 (2019).

    Article  ADS  Google Scholar 

  150. Roederer, I. U. Primordial r-process dispersion in metal-poor globular clusters. Astrophys. J. Lett. 732, L17 (2011).

    Article  ADS  Google Scholar 

  151. Kirby, E. N., Duggan, G., Ramirez-Ruiz, E. & Macias, P. The stars in M15 were born with the r-process. Astrophys. J. Lett. 891, L13 (2020).

    Article  ADS  Google Scholar 

  152. Zevin, M. et al. Can neutron-star mergers explain the r-process enrichment in globular clusters? Astrophys. J. 886, 4 (2019).

    Article  ADS  Google Scholar 

  153. Côté, B. et al. Advanced LIGO constraints on neutron star mergers and r-process sites. Astrophys. J. 836, 230 (2017).

    Article  ADS  Google Scholar 

  154. Hotokezaka, K., Beniamini, P. & Piran, T. Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts. Int. J. Mod. Phys. D 27, 1842005 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  155. Bartos, I. & Marka, S. A nearby neutron-star merger explains the actinide abundances in the early Solar System. Nature 569, 85–88 (2019).

    Article  ADS  Google Scholar 

  156. Stanek, K. Z. et al. Protecting life in the Milky Way: metals keep the GRBs away. Acta Astron. 56, 333–345 (2006).

    ADS  Google Scholar 

  157. Perley, D. A. et al. The Swift GRB Host Galaxy Legacy Survey. II. Rest-frame near-IR luminosity distribution and evidence for a near-solar metallicity threshold. Astrophys. J. 817, 8 (2016).

    Article  ADS  Google Scholar 

  158. Wallner, A. et al. 60Fe and 244Pu deposited on Earth constrain the r-process yields of recent nearby supernovae. Science 372, 742–745 (2021).

    Article  ADS  Google Scholar 

  159. KAGRA Collaboration, LIGO Scientific Collaboration & Virgo Collaboration. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 23, 3 (2020).

  160. Bartos, I., Huard, T. L. & Márka, S. James Webb Space Telescope can detect kilonovae in gravitational wave follow-up search. Astrophys. J. 816, 61 (2016).

    Article  ADS  Google Scholar 

  161. Gehrels, N. & Spergel, D., WFIRST SDT and Project. Wide-field infrared survey telescope (WFIRST) mission and synergies with LISA and LIGO-Virgo. J. Phys. Conf. Ser. 610, 012007 (2015).

    Article  Google Scholar 

  162. Abbott, B. P. et al. Exploring the sensitivity of next generation gravitational wave detectors. Class. Quantum Gravity 34, 044001 (2017).

    Article  ADS  Google Scholar 

  163. Bailes, M. et al. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nat. Rev. Phys. 3, 344–366 (2021).

    Article  Google Scholar 

  164. Özel, F. & Freire, P. Masses, radii, and the equation of state of neutron stars. Annu. Rev. Astron. Astrophys. 54, 401–440 (2016).

    Article  ADS  Google Scholar 

  165. Abbott, B. P. et al. GW190425: observation of a compact binary coalescence with total mass ~3.4 M. Astrophys. J. Lett. 892, L3 (2020).

    Article  ADS  Google Scholar 

  166. Hayashi, K. et al. General-relativistic neutrino-radiation magnetohydrodynamics simulation of black hole-neutron star mergers for seconds. Preprint at http://arxiv.org/abs/2111.04621 (2021).

  167. Wu, M.-R., Tamborra, I., Just, O. & Janka, H.-T. Imprints of neutrino-pair flavor conversions on nucleosynthesis in ejecta from neutron-star merger remnants. Phys. Rev. D 96, 123015 (2017).

    Article  ADS  Google Scholar 

  168. Fontes, C. J., Fryer, C. L., Hungerford, A. L., Wollaeger, R. T. & Korobkin, O. A line-binned treatment of opacities for the spectra and light curves from neutron star mergers. Mon. Not. R. Astron. Soc. 493, 4143–4171 (2020).

    Article  ADS  Google Scholar 

  169. Barnes, J. et al. Kilonovae across the nuclear physics landscape: the impact of nuclear physics uncertainties on r-process-powered emission. Astrophys. J. 918, 44 (2021).

    Article  ADS  Google Scholar 

  170. Radžiūtė, L., Gaigalas, G., Kato, D., Rynkun, P. & Tanaka, M. Extended calculations of energy levels and transition rates for singly ionized lanthanide elements. I. Pr–Gd. Astrophys. J. Suppl. 248, 17 (2020).

    Article  ADS  Google Scholar 

  171. Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database (version 5.9). http://www.nist.gov/pml/data/asd.cfm (2021).

  172. Wu, M.-R., Barnes, J., Martínez-Pinedo, G. & Metzger, B. D. Fingerprints of heavy-element nucleosynthesis in the late-time lightcurves of kilonovae. Phys. Rev. Lett. 122, 062701 (2019).

    Article  ADS  Google Scholar 

  173. Hotokezaka, K., Tanaka, M., Kato, D. & Gaigalas, G. Nebular emission from lanthanide-rich ejecta of neutron star merger. Mon. Not. R. Astron. Soc. 506, 5863–5877 (2021).

    ADS  Google Scholar 

  174. Chen, H.-Y., Fishbach, M. & Holz, D. E. A two per cent Hubble constant measurement from standard sirens within five years. Nature 562, 545–547 (2018).

    Article  ADS  Google Scholar 

  175. Chen, H.-Y. Systematic uncertainty of standard sirens from the viewing angle of binary neutron star inspirals. Phys. Rev. Lett. 125, 201301 (2020).

    Article  ADS  Google Scholar 

  176. The LIGO Scientific Collaboration et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017).

    Article  Google Scholar 

  177. Dietrich, T. et al. Multimessenger constraints on the neutron-star equation of state and the Hubble constant. Science 370, 1450–1453 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  178. The LIGO Scientific Collaboration, the Virgo Collaboration & the KAGRA Collaboration. Constraints on the cosmic expansion history from GWTC-3. Preprint at http://arxiv.org/abs/2111.03604 (2021).

  179. Riess, A. G., Casertano, S., Yuan, W., Macri, L. M. & Scolnic, D. Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond λCDM. Astrophys. J. 876, 85 (2019).

    Article  ADS  Google Scholar 

  180. Wong, K. C. et al. H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. Mon. Not. R. Astron. Soc. 498, 1420–1439 (2020).

    Article  ADS  Google Scholar 

  181. Pesce, D. W. et al. The Megamaser Cosmology Project. XIII. Combined Hubble constant constraints. Astrophys. J. Lett. 891, L1 (2020).

    Article  ADS  Google Scholar 

  182. Planck Collaboration et al. Planck 2018 results: VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  183. Horowitz, C. J. et al. r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. J. Phys. G Nucl. Part. Phys. 46, 083001 (2019).

    Article  ADS  Google Scholar 

  184. Mumpower, M., Surman, R., McLaughlin, G. & Aprahamian, A. The impact of individual nuclear properties on r-process nucleosynthesis. Prog. Part. Nucl. Phys. 86, 86–126 (2016).

    Article  ADS  Google Scholar 

  185. Rosswog, S. et al. Detectability of compact binary merger macronovae. Class. Quantum Gravity 34, 104001 (2017).

    Article  ADS  Google Scholar 

  186. Eichler, M., Sayar, W., Arcones, A. & Rauscher, T. Probing the production of actinides under different r-process conditions. Astrophys. J. 879, 47 (2019).

    Article  ADS  Google Scholar 

  187. Wu, J. et al. β-decay half-lives of 55 neutron-rich isotopes beyond the N = 82 shell gap. Phys. Rev. C 101, 042801 (2020).

    Article  ADS  Google Scholar 

  188. Orford, R. et al. Precision mass, easurements of neutron-rich neodymium and samarium isotopes and their role in understanding rare-earth peak formation. Phys. Rev. Lett. 120, 262702 (2018).

    Article  ADS  Google Scholar 

  189. Vilen, M. et al. Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP: reduced neutron pairing and implications for r-process calculations. Phys. Rev. Lett. 120, 262701 (2018).

    Article  ADS  Google Scholar 

  190. Aprahamian, A. et al. FRIB and the GW170817 kilonova. Preprint at http://arxiv.org/abs/1809.00703 (2018).

  191. Zhu, Y. L. et al. Modeling kilonova light curves: dependence on nuclear inputs. Astrophys. J. 906, 94 (2021).

    Article  ADS  Google Scholar 

  192. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    Article  ADS  Google Scholar 

  193. Arlandini, C. et al. Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys. J. 525, 886–900 (1999).

    Article  ADS  Google Scholar 

  194. Lippuner, J. & Roberts, L. F. SkyNet: a modular nuclear reaction network library. Astrophys. J. Suppl. 233, 18 (2017).

    Article  ADS  Google Scholar 

  195. Foucart, F. et al. Neutron star-black hole mergers with a nuclear equation of state and neutrino cooling: dependence in the binary parameters. Phys. Rev. D 90, 024026 (2014).

    Article  ADS  Google Scholar 

  196. Steiner, A. W., Hempel, M. & Fischer, T. Core-collapse supernova equations of state based on neutron star observations. Astrophys. J. 774, 17 (2013).

    Article  ADS  Google Scholar 

  197. De, S. et al. Tidal deformabilities and radii of neutron stars from the observation of GW170817. Phys. Rev. Lett. 121, 091102 (2018).

    Article  ADS  Google Scholar 

  198. Miller, M. C. et al. PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys. J. Lett. 887, L24 (2019).

    Article  ADS  Google Scholar 

  199. Riley, T. E. et al. A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887, L21 (2019).

    Article  ADS  Google Scholar 

  200. Capano, C. D. et al. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory. Nat. Astron. 4, 625–632 (2020).

    Article  ADS  Google Scholar 

  201. Landry, P., Essick, R. & Chatziioannou, K. Nonparametric constraints on neutron star matter with existing and upcoming gravitational wave and pulsar observations. Phys. Rev. D 101, 123007 (2020).

    Article  ADS  Google Scholar 

  202. Hix, W. & Thielemann, F.-K. Computational methods for nucleosynthesis and nuclear energy generation. J. Comput. Appl. Math. 109, 321–351 (1999).

    Article  ADS  MATH  Google Scholar 

  203. Fowler, W. A., Caughlan, G. R. & Zimmerman, B. A. Thermonuclear reaction rates. Annu. Rev. Astron. Astrophys. 5, 525–570 (1967).

    Article  ADS  Google Scholar 

  204. Clayton, D. D. Principles of Stellar Evolution and Nucleosynthesis (Univ. Chicago Press, 1983).

  205. Lippuner, J. & Roberts, L. F. r-Process lanthanide production and heating rates in kilonovae. Astrophys. J. 815, 82 (2015).

    Article  ADS  Google Scholar 

  206. Arnett, W. D. On the theory of type I supernovae. Astrophys. J. Lett. 230, L37–L40 (1979).

    Article  ADS  Google Scholar 

  207. Arnett, W. D. Type I supernovae. I - analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).

    Article  ADS  Google Scholar 

  208. Rauscher, T. et al. Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. Rep. Prog. Phys. 76, 066201 (2013).

    Article  ADS  Google Scholar 

  209. Ruffert, M., Janka, H.-T., Takahashi, K. & Schaefer, G. Coalescing neutron stars - a step towards physical models. II. Neutrino emission, neutron tori, and gamma-ray bursts. Astron. Astrophys. 319, 122–153 (1997).

    ADS  Google Scholar 

  210. Oechslin, R., Janka, H.-T. & Marek, A. Relativistic neutron star merger simulations with non-zero temperature equations of state. I. Variation of binary parameters and equation of state. Astron. Astrophys. 467, 395–409 (2007).

    Article  ADS  Google Scholar 

  211. Hotokezaka, K. et al. Progenitor models of the electromagnetic transient associated with the short gamma ray burst 130603B. Astrophys. J. Lett. 778, L16 (2013).

    Article  ADS  Google Scholar 

  212. Beloborodov, A. M. Nuclear composition of gamma-ray burst fireballs. Astrophys. J. 588, 931–944 (2003).

    Article  ADS  Google Scholar 

  213. Mösta, P. et al. r-process nucleosynthesis from three-dimensional magnetorotational core-collapse supernovae. Astrophys. J. 864, 171 (2018).

    Article  ADS  Google Scholar 

  214. Kuroda, T., Arcones, A., Takiwaki, T. & Kotake, K. Magnetorotational explosion of a massive star supported by neutrino heating in general relativistic three-dimensional simulations. Astrophys. J. 896, 102 (2020).

    Article  ADS  Google Scholar 

  215. Obergaulinger, M. & Aloy, M. Á. Magnetorotational core collapse of possible GRB progenitors – III. Three-dimensional models. Mon. Not. R. Astron. Soc. 503, 4942–4963 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks B. Metzger for comments on the manuscript and for introducing him to neutrino-cooled accretion discs several years ago, based on which many of the perspectives incorporated here have emerged. The author acknowledges detailed and thoughtful comments by the referees. The author also thanks L. Combi for providing visualization snapshots for Figs. 2 and 3, and S. De for providing implementations of ejecta fitting formulae used in ref.83, based on which the results of Fig. 4 were obtained. This research was enabled in part by support provided by SciNet (www.scinethpc.ca) and Compute Canada (www.computecanada.ca). The author acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference number RGPIN-2019-04684. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Colleges and Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Siegel.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Friedrich-Karl Thielemann, Oliver Just, Gabriel Martínez-Pinedo and Andreas Floers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siegel, D.M. r-Process nucleosynthesis in gravitational-wave and other explosive astrophysical events. Nat Rev Phys 4, 306–318 (2022). https://doi.org/10.1038/s42254-022-00439-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00439-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing