Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Superior carrier tuning in ultrathin superconducting materials by electric-field gating

Abstract

Two-dimensional (2D) superconductors with excellent crystallinity down to the monolayer have many unusual properties absent in the three-dimensional (3D) bulk, such as continuous phase transition, quantum metallic state and localization of electrons. Preparation of 2D superconductors has been challenging, owing to poor quality and extreme sensitivity to air exposure at ultralow thickness, but exfoliation methods have recently been developed to achieve perfectly crystallized ultrathin superconductors. The electric-double-layer transistor and ionic field-effect transistor are powerful electric-field gating strategies for modulating the carrier concentration of ultrathin materials, which can be up to 100 times those of conventional techniques limited by high-temperature phase separation and low voltage windows. Therefore, electric-field gating of 2D superconductors has become an essential way to find new high-temperature superconductors and investigate new quantum phenomena. This Technical Review summarizes recent advances in electric-field-gated superconductivity in various ultrathin superconducting materials, including iron-based superconductors, transition-metal dichalcogenides, honeycomb bilayer superconductors and cuprates. We also offer a perspective on open challenges and future development paths in this field.

Key points

  • 2D superconductors exhibit properties absent in the 3D bulk, such as continuous phase transitions, quantum metallic states and localization of electrons. This has been an important means of studying superconductivity at the 2D limit and understanding superconducting mechanisms.

  • An electric-double-layer transistor can precisely modulate the interfacial carrier concentration of an ultrathin superconductor in a reversible way, while keeping its crystal structure unchanged.

  • Ionic field-effect transistors can generate high carrier densities in a layered superconductor, as the electrochemical doping drives ionic intercalation into the interlayer space.

  • These gating strategies demonstrate great advantages over conventional techniques, including no phase separation, precise carrier modulation and a larger voltage window.

  • Electric-field gating techniques can continuously tune carrier densities in a 2D superconductor sample and strongly manipulate associated superconducting properties, including superconducting dome, upper critical field and quantum phase transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of gating methods.
Fig. 2: Electric-field-gated FeSe.
Fig. 3: Dependence of gated FeSe on thickness, substrate and electrolyte.
Fig. 4: EDLT-gated MoS2.
Fig. 5: Electric-field-gated WS2 and TaS2.
Fig. 6: Electric-field-gated ZrNCl.
Fig. 7: Electric-field-gated cuprates.

Similar content being viewed by others

References

  1. Chen, T. et al. Metal–insulator transition in films of doped semiconductor nanocrystals. Nat. Mater. 15, 299 (2015).

    Article  ADS  Google Scholar 

  2. Cheng, X., Gordon, E. E., Whangbo, M. H. & Deng, S. Superconductivity induced by oxygen doping in Y2O2Bi. Angew. Chem. Int. Ed. 56, 10123–10126 (2017).

    Article  Google Scholar 

  3. Huang, B. et al. Superconductivity induced by U doping in the SmFeAsO system. Phys. Rev. B 87, 060501 (2013).

    Article  ADS  Google Scholar 

  4. Luo, J. H. et al. Bi doping-induced ferromagnetism of layered material SnSe2 with extremely large coercivity. J. Magn. Magn. Mater. 486, 165269 (2019).

    Article  Google Scholar 

  5. Ma, Z., Wu, F., Liu, Y. & Kan, E. Giant band gap reduction and insulator–metal transition in two-dimensional InX (X = Cl, Br, I) layers. J. Phys. Chem. C. 123, 21763–21767 (2019).

    Article  Google Scholar 

  6. Qu, L. H. et al. Strain tunable structural, mechanical and electronic properties of monolayer tin dioxides and dichalcogenides SnX2 (X = O, S, Se, Te). Mater. Res. Bull. 119, 110533 (2019).

    Article  Google Scholar 

  7. Stewart, G. R. Superconductivity in iron compounds. Rev. Mod. Phys. 83, 1589–1652 (2011).

    Article  ADS  Google Scholar 

  8. Dagotto, E. Colloquium: The unexpected properties of alkali metal iron selenide superconductors. Rev. Mod. Phys. 85, 849–867 (2013).

    Article  ADS  Google Scholar 

  9. Takahei, Y. et al. A new way to synthesize superconducting metal-intercalated C60 and FeSe. Sci. Rep. 6, 18931 (2016).

    Article  ADS  Google Scholar 

  10. Shen, S. J. et al. Electrochemical synthesis of alkali-intercalated iron selenide superconductors. Chin. Phys. B 24, 117406 (2015).

    Article  ADS  Google Scholar 

  11. Ueno, K. et al. Field-induced superconductivity in electric double layer transistors. J. Phys. Soc. Jpn 83, 032001 (2014).

    Article  ADS  Google Scholar 

  12. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  ADS  Google Scholar 

  13. Wu, C. L. et al. Gate-induced metal–insulator transition in MoS2 by solid superionic conductor LaF3. Nano Lett. 18, 2387–2392 (2018).

    Article  ADS  Google Scholar 

  14. Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y. & Goldman, A. M. Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa2Cu3O7−x films. Phys. Rev. Lett. 107, 027001 (2011).

    Article  ADS  Google Scholar 

  15. Yuan, H. et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19, 1046–1053 (2009).

    Article  Google Scholar 

  16. Lei, B. et al. Evolution of high-temperature superconductivity from a low-Tc phase tuned by carrier concentration in FeSe thin flakes. Phys. Rev. Lett. 116, 077002 (2016).

    Article  ADS  Google Scholar 

  17. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270 (2015).

    Article  ADS  Google Scholar 

  18. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193 (2012).

    Article  ADS  Google Scholar 

  19. Ma, L. et al. Electric-field-controlled superconductor–ferromagnetic insulator transition. Sci. Bull. 64, 653–658 (2019).

    Article  Google Scholar 

  20. Lei, B. et al. Gate-tuned superconductor–insulator transition in (Li,Fe)OHFeSe. Phys. Rev. B 93, 060501 (2016).

    Article  ADS  Google Scholar 

  21. Song, Y. et al. Superconductivity in Li-intercalated 1T-SnSe2 driven by electric field gating. Phys. Rev. Mater. 3, 054804 (2019).

    Article  Google Scholar 

  22. Ying, T. P. et al. Discrete superconducting phases in FeSe-derived superconductors. Phys. Rev. Lett. 121, 207003 (2018).

    Article  ADS  Google Scholar 

  23. Jiang, D. et al. High-Tc superconductivity in ultrathin Bi2Sr2CaCu2O8+x down to half-unit-cell thickness by protection with graphene. Nat. Commun. 5, 5708 (2014).

    Article  ADS  Google Scholar 

  24. Lei, B. et al. Tuning phase transitions in FeSe thin flakes by field-effect transistor with solid ion conductor as the gate dielectric. Phys. Rev. B 95, 020503 (2017).

    Article  ADS  Google Scholar 

  25. Piatti, E. et al. Multi-valley superconductivity in ion-gated MoS2 layers. Nano Lett. 18, 4821–4830 (2018).

    Article  ADS  Google Scholar 

  26. Yuan, H. T. et al. Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS2. Appl. Phys. Lett. 98, 012102 (2011).

    Article  ADS  Google Scholar 

  27. Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).

    Article  ADS  Google Scholar 

  28. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7, 855–858 (2008).

    Article  ADS  Google Scholar 

  29. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).

    Article  ADS  Google Scholar 

  30. Shimotani, H., Diguet, G. & Iwasa, Y. Direct comparison of field-effect and electrochemical doping in regioregular poly(3-hexylthiophene). Appl. Phys. Lett. 86, 022104 (2005).

    Article  ADS  Google Scholar 

  31. Panzer, M. J. & Frisbie, C. D. Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J. Am. Chem. Soc. 127, 6960–6961 (2005).

    Article  Google Scholar 

  32. Takeya, J. et al. High-density electrostatic carrier doping in organic single-crystal transistors with polymer gel electrolyte. Appl. Phys. Lett. 88, 112102 (2006).

    Article  ADS  Google Scholar 

  33. Shimotani, H. et al. Insulator-to-metal transition in ZnO by electric double layer gating. Appl. Phys. Lett. 91, 082106 (2007).

    Article  ADS  Google Scholar 

  34. Bell, C. et al. Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 103, 226802 (2009).

    Article  ADS  Google Scholar 

  35. Bollinger, A. T. et al. Superconductor–insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472, 458 (2011).

    Article  ADS  Google Scholar 

  36. Bert, J. A. et al. Gate-tuned superfluid density at the superconducting LaAlO3/SrTiO3 interface. Phys. Rev. B 86, 060503 (2012).

    Article  ADS  Google Scholar 

  37. Dubuis, G., Bollinger, A. T., Pavuna, D. & Božović, I. Electric field effect on superconductivity in La2−xSrxCuO4. J. Appl. Phys. 111, 112632 (2012).

    Article  ADS  Google Scholar 

  38. Ueno, K. et al. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotechnol. 6, 408–412 (2011).

    Article  ADS  Google Scholar 

  39. Leighton, C. Electrolyte-based ionic control of functional oxides. Nat. Mater. 18, 13–18 (2019).

    Article  ADS  Google Scholar 

  40. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125 (2009).

    Article  ADS  Google Scholar 

  41. El-Bana, M. S. et al. Superconductivity in two-dimensional NbSe2 field effect transistors. Supercond. Sci. Technol. 26, 125020 (2013).

    Article  ADS  Google Scholar 

  42. Zhang, Y. J., Ye, J. T., Yomogida, Y., Takenobu, T. & Iwasa, Y. Formation of a stable p–n junction in a liquid-gated MoS2 ambipolar transistor. Nano Lett. 13, 3023–3028 (2013).

    Article  ADS  Google Scholar 

  43. Choi, J. et al. Electrical modulation of superconducting critical temperature in liquid-gated thin niobium films. Appl. Phys. Lett. 105, 012601 (2014).

    Article  ADS  Google Scholar 

  44. Chen, Q. et al. Continuous low-bias switching of superconductivity in a MoS2 transistor. Adv. Mater. 30, 1800399 (2018).

    Article  Google Scholar 

  45. Lu, J. et al. Full superconducting dome of strong Ising protection in gated monolayer WS2. Proc. Natl Acad. Sci. USA 115, 3551 (2018).

    Article  ADS  Google Scholar 

  46. Shi, W. et al. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 5, 12534 (2015).

    Article  ADS  Google Scholar 

  47. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  48. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article  ADS  Google Scholar 

  49. Rodan-Legrain, D. et al. Highly tunable junctions and non-local Josephson effect in magic-angle graphene tunnelling devices. Nat. Nanotechnol. 16, 769–775 (2021).

    Article  ADS  Google Scholar 

  50. Saito, Y., Nojima, T. & Iwasa, Y. Gate-induced superconductivity in two-dimensional atomic crystals. Supercond. Sci. Technol. 29, 093001 (2016).

    Article  ADS  Google Scholar 

  51. Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2016).

    Article  ADS  Google Scholar 

  52. Misra, R., McCarthy, M. & Hebard, A. F. Electric field gating with ionic liquids. Appl. Phys. Lett. 90, 052905 (2007).

    Article  ADS  Google Scholar 

  53. Kötz, R. & Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000).

    Article  Google Scholar 

  54. McQueen, T. M. et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys. Rev. B 79, 014522 (2009).

    Article  ADS  Google Scholar 

  55. Hsu, F. C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262 (2008).

    Article  ADS  Google Scholar 

  56. Margadonna, S. et al. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc = 37 K). Phys. Rev. B 80, 064506 (2009).

    Article  ADS  Google Scholar 

  57. Medvedev, S. et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nat. Mater. 8, 630 (2009).

    Article  ADS  Google Scholar 

  58. Sun, J. P. et al. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe. Nat. Commun. 7, 12146 (2016).

    Article  ADS  Google Scholar 

  59. He, S. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605 (2013).

    Article  ADS  Google Scholar 

  60. Tan, S. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 12, 634 (2013).

    Article  ADS  Google Scholar 

  61. Ge, J. F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 14, 285 (2015).

    Article  ADS  Google Scholar 

  62. Miyata, Y., Nakayama, K., Sugawara, K., Sato, T. & Takahashi, T. High-temperature superconductivity in potassium-coated multilayer FeSe thin films. Nat. Mater. 14, 775 (2015).

    Article  ADS  Google Scholar 

  63. Watson, M. D. et al. Dichotomy between the hole and electron behavior in multiband superconductor FeSe probed by ultrahigh magnetic fields. Phys. Rev. Lett. 115, 027006 (2015).

    Article  ADS  Google Scholar 

  64. Shiogai, J., Ito, Y., Mitsuhashi, T., Nojima, T. & Tsukazaki, A. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat. Phys. 12, 42 (2015).

    Article  Google Scholar 

  65. Miyakawa, T. et al. Enhancement of superconducting transition temperature in FeSe electric-double-layer transistor with multivalent ionic liquids. Phys. Rev. Mater. 2, 031801 (2018).

    Article  Google Scholar 

  66. Harada, T., Shiogai, J., Miyakawa, T., Nojima, T. & Tsukazaki, A. Critical current enhancement driven by suppression of superconducting fluctuation in ion-gated ultrathin FeSe. Supercond. Sci. Technol. 31, 055003 (2018).

    Article  ADS  Google Scholar 

  67. Shiogai, J., Kimura, S., Awaji, S., Nojima, T. & Tsukazaki, A. Anisotropy of the upper critical field and its thickness dependence in superconducting FeSe electric-double-layer transistors. Phys. Rev. B 97, 174520 (2018).

    Article  ADS  Google Scholar 

  68. Hanzawa, K., Sato, H., Hiramatsu, H., Kamiya, T. & Hosono, H. Electric field-induced superconducting transition of insulating FeSe thin film at 35 K. Proc. Natl Acad. Sci. USA 113, 3986 (2016).

    Article  ADS  Google Scholar 

  69. Zhang, C. et al. Low-temperature charging dynamics of the ionic liquid and its gating effect on FeSe0.5Te0.5 superconducting films. ACS Appl. Mater. Interfaces 11, 17979–17986 (2019).

    Article  Google Scholar 

  70. Hu, G. B. et al. Superconductivity in solid-state synthesized (Li,Fe)OHFeSe by tuning Fe vacancies in FeSe layer. Phys. Rev. Mater. 3, 064802 (2019).

    Article  Google Scholar 

  71. Lu, X. F. et al. Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe. Nat. Mater. 14, 325–329 (2015).

    Article  ADS  Google Scholar 

  72. Dong, X. et al. (Li0.84Fe0.16)OHFe0.98Se superconductor: ion-exchange synthesis of large single-crystal and highly two-dimensional electron properties. Phys. Rev. B 92, 064515 (2015).

    Article  ADS  Google Scholar 

  73. Lu, X. F. et al. Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe. Nat. Mater. 14, 325 (2014).

    Article  ADS  Google Scholar 

  74. Pachmayr, U. et al. Coexistence of 3d-ferromagnetism and superconductivity in [(Li1−xFex)OH](Fe1−yLiy)Se. Angew. Chem. Int. Ed. 54, 293–297 (2015).

    Article  Google Scholar 

  75. Woodruff, D. N. et al. The parent Li(OH)FeSe phase of lithium iron hydroxide selenide superconductors. Inorg. Chem. 55, 9886–9891 (2016).

    Article  Google Scholar 

  76. Sun, H. et al. Soft chemical control of superconductivity in lithium iron selenide hydroxides Li1–xFex(OH)Fe1–ySe. Inorg. Chem. 54, 1958–1964 (2015).

    Article  Google Scholar 

  77. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05−0.12) with Tc = 26 K. J. Am. Chem. Soc.130, 3296–3297 (2008).

    Article  Google Scholar 

  78. Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1xFx. Nature 453, 761–762 (2008).

    Article  ADS  Google Scholar 

  79. Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 87, 855–896 (2015).

    Article  MathSciNet  ADS  Google Scholar 

  80. Fang, Y. et al. Discovery of superconductivity in 2M WS2 with possible topological surface states. Adv. Mater. 31, 1901942 (2019).

    Article  Google Scholar 

  81. Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353 (2015).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  82. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139 (2015).

    Article  Google Scholar 

  83. de la Barrera, S. C. et al. Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 9, 1427 (2018).

    Article  ADS  Google Scholar 

  84. Klemm, R. A. Pristine and intercalated transition metal dichalcogenide superconductors. Physica C Supercond. 514, 86–94 (2015).

    Article  ADS  Google Scholar 

  85. Biscaras, J., Chen, Z., Paradisi, A. & Shukla, A. Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide. Nat. Commun. 6, 8826 (2015).

    Article  ADS  Google Scholar 

  86. Saito, Y. et al. Superconductivity protected by spin–valley locking in ion-gated MoS2. Nat. Phys. 12, 144 (2015).

    Article  Google Scholar 

  87. Costanzo, D., Jo, S., Berger, H. & Morpurgo, A. F. Gate-induced superconductivity in atomically thin MoS2 crystals. Nat. Nanotechnol. 11, 339 (2016).

    Article  ADS  Google Scholar 

  88. Fu, Y. et al. Gated tuned superconductivity and phonon softening in monolayer and bilayer MoS2. npj Quant. Mater. 2, 52 (2017).

    Article  ADS  Google Scholar 

  89. Ovchinnikov, D., Allain, A., Huang, Y. S., Dumcenco, D. & Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 8, 8174–8181 (2014).

    Article  Google Scholar 

  90. Jo, S., Costanzo, D., Berger, H. & Morpurgo, A. F. Electrostatically induced superconductivity at the surface of WS2. Nano Lett. 15, 1197–1202 (2015).

    Article  ADS  Google Scholar 

  91. Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008).

    Article  ADS  Google Scholar 

  92. Yoshida, M. et al. Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2. Sci. Rep. 4, 7302 (2014).

    Article  Google Scholar 

  93. Li, L. J. et al. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 529, 185 (2015).

    Article  ADS  Google Scholar 

  94. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765 (2015).

    Article  ADS  Google Scholar 

  95. Yang, J. et al. Thickness dependence of the charge-density-wave transition temperature in VSe2. Appl. Phys. Lett. 105, 063109 (2014).

    Article  ADS  Google Scholar 

  96. Samnakay, R. et al. Zone-folded phonons and the commensurate–incommensurate charge-density-wave transition in 1T-TaSe2 thin films. Nano Lett. 15, 2965–2973 (2015).

    Article  ADS  Google Scholar 

  97. Inada, R., Ōnuki, Y. & Tanuma, S. Hall effect of 1T-TaS2 and 1T-TaSe2. Phys. B+C. 99, 188–192 (1980).

    Article  ADS  Google Scholar 

  98. Zeng, J. et al. Gate-induced interfacial superconductivity in 1T-SnSe2. Nano Lett. 18, 1410–1415 (2018).

    Article  ADS  Google Scholar 

  99. Xi, X., Berger, H., Forró, L., Shan, J. & Mak, K. F. Gate tuning of electronic phase transitions in two-dimensional NbSe2. Phys. Rev. Lett. 117, 106801 (2016).

    Article  ADS  Google Scholar 

  100. Yoshida, M., Ye, J., Nishizaki, T., Kobayashi, N. & Iwasa, Y. Electrostatic and electrochemical tuning of superconductivity in two-dimensional NbSe2 crystals. Appl. Phys. Lett. 108, 202602 (2016).

    Article  ADS  Google Scholar 

  101. Li, Z. J., Gao, B. F., Zhao, J. L., Xie, X. M. & Jiang, M. H. Effect of electrolyte gating on the superconducting properties of thin 2H-NbSe2 platelets. Supercond. Sci. Technol. 27, 015004 (2013).

    Article  ADS  Google Scholar 

  102. Zhang, S. et al. Electric field induced permanent superconductivity in layered metal nitride chlorides HfNCl and ZrNCl. Chin. Phys. Lett. 35, 097401 (2018).

    Article  ADS  Google Scholar 

  103. Saito, Y., Kasahara, Y., Ye, J., Iwasa, Y. & Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science 350, 409 (2015).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  104. Saito, Y., Nojima, T. & Iwasa, Y. Quantum phase transitions in highly crystalline two-dimensional superconductors. Nat. Commun. 9, 778 (2018).

    Article  ADS  Google Scholar 

  105. Nakagawa, Y. et al. Gate-controlled BCS–BEC crossover in a two-dimensional superconductor. Science 372, 190–195 (2021).

    Article  ADS  Google Scholar 

  106. Nakagawa, Y. et al. Gate-controlled low carrier density superconductors: toward the two-dimensional BCS–BEC crossover. Phys. Rev. B 98, 064512 (2018).

    Article  ADS  Google Scholar 

  107. Wang, X. et al. Dominant role of processing temperature in electric field induced superconductivity in layered ZrNBr. N. J. Phys. 21, 023002 (2019).

    Article  Google Scholar 

  108. Rafique, M. et al. Ionic liquid gating induced protonation of electron-doped cuprate superconductors. Nano Lett. 19, 7775–7780 (2019).

    Article  ADS  Google Scholar 

  109. Leng, X. et al. Electrostatic tuning of the superconductor to insulator transition of YBa2Cu3O7−x using ionic liquids. J. Phys. Conf. Ser. 449, 012009 (2013).

    Article  Google Scholar 

  110. Jeong, J. et al. Suppression of metal–insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402 (2013).

    Article  ADS  Google Scholar 

  111. Li, M. et al. Suppression of ionic liquid gate-induced metallization of SrTiO3 (001) by oxygen. Nano Lett. 13, 4675–4678 (2013).

    Article  ADS  Google Scholar 

  112. Perez-Muñoz, A. M. et al. In operando evidence of deoxygenation in ionic liquid gating of YBa2Cu3O7−x. Proc. Natl Acad. Sci. USA 114, 215 (2017).

    Article  ADS  Google Scholar 

  113. Zeng, S. W. et al. Two-dimensional superconductor–insulator quantum phase transitions in an electron-doped cuprate. Phys. Rev. B 92, 020503 (2015).

    Article  ADS  Google Scholar 

  114. Zhang, L. et al. The mechanism of electrolyte gating on high-Tc cuprates: the role of oxygen migration and electrostatics. ACS Nano 11, 9950–9956 (2017).

    Article  Google Scholar 

  115. Liang, S. J., Cheng, B., Cui, X. & Miao, F. Van der Waals heterostructures for high-performance device applications: challenges and opportunities. Adv. Mater. 32, 1903800 (2019).

    Article  Google Scholar 

  116. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  ADS  Google Scholar 

  117. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451 (2005).

    Article  ADS  Google Scholar 

  118. Sandilands, L. J. et al. Origin of the insulating state in exfoliated high-Tc two-dimensional atomic crystals. Phys. Rev. B 90, 081402 (2014).

    Article  ADS  Google Scholar 

  119. Sterpetti, E., Biscaras, J., Erb, A. & Shukla, A. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x. Nat. Commun. 8, 2060 (2017).

    Article  ADS  Google Scholar 

  120. Liao, M. et al. Superconductor–insulator transitions in exfoliated Bi2Sr2CaCu2O8+δ flakes. Nano Lett. 18, 5660–5665 (2018).

    Article  ADS  Google Scholar 

  121. Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156–163 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

X.L.W. acknowledges the Australian Research Council (ARC) for funding support through the ARC Centre of Excellence in Future Low-Energy Electronics Technologies (CE170100039) and ARC Professorial Future Fellowship project (FT130100778).

Author information

Authors and Affiliations

Authors

Contributions

All authors have read, discussed and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Xianhui Chen or Xiaolin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Helmholtz layer

A narrow charge accumulation region at the semiconductor–electrolyte interface in an electric field.

Upper critical field

The magnetic flux density of a type-II superconductor that destroys superconductivity at 0 K.

Cooper pairs

In a superconducting state, a pair of electrons coupled by the electron–phonon interaction, which can flow without resistance.

2D-Tinkham superconductivity

Superconductivity linked with angular dependence of the upper critical field showing a cusp-like feature.

Berezinskii–Kosterlitz–Thouless type

A 2D superconductor with the Berezinskii–Kosterlitz–Thouless (BKT) transition feature reflected by power-law dependence in the current–voltage characteristics.

Quantum Griffiths state

A critical state in which quantum phase transition shows a typical feature of a divergent dynamical exponent.

Bardeen–Cooper–Schrieffer state

A physical state in which electrons are bound into Cooper pairs by attractive electron–phonon interactions.

Bose–Einstein condensation state

A state of matter in which the majority of bosons enter the lowest quantum state, and wavefunction interference is on a macroscopic scale.

Thomas–Fermi screening length

The inverse of the screening parameter that indicates the strength of the screening effect.

Hall number

Effective carrier density, which is the inverse of the product of Hall coefficient and the elementary charge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Lei, B., Chen, X. et al. Superior carrier tuning in ultrathin superconducting materials by electric-field gating. Nat Rev Phys 4, 336–352 (2022). https://doi.org/10.1038/s42254-022-00438-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00438-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing