Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thermal conductivity of materials under pressure

Abstract

The thermal conductivities of materials are extremely important for many practical applications, such as in understanding the thermal balance and history of the Earth, energy conversion of devices and thermal management of electronics. However, measurements of the thermal conductivity of materials under pressure and understanding of associated thermal transport mechanisms remain some of the most difficult challenges and complex topics in high-pressure research. Breakthroughs in high-pressure experimental techniques enable in situ measurements of thermal conductivity at extreme pressure–temperature conditions. This new capability provides not only a unique insight to understand thermal transport mechanisms in materials but also opportunities to realize reversible modulation of materials’ thermal properties. In this Review, we discuss recent progresses in characterization techniques developed at high pressures, in the determination of the thermal conductivity of gases, liquids and solids, as well as in establishing the correlated thermal transport mechanisms. In addition, we focus on the applications of high-pressure and high-temperature experimental simulations of materials in the Earth’s interior.

Key points

  • Thermal characterization techniques have been developed in apparatus such as piston–cylinder cells, multi-anvil cells and diamond anvil cells, for both bulk and thin-film materials, and for both temperature-dependent and pressure-dependent measurements.

  • Such high-pressure thermal characterization techniques have been applied to gases, liquids and solids, including thermoelectric materials, Earth materials and semiconductor materials.

  • The results of the high-pressure thermal conductivities of various materials are summarized, and the underlying thermal transport mechanisms are discussed.

  • Practical applications are given on high-pressure and high-temperature experimental simulations of materials in the Earth’s interior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermal transport in materials at ambient and high pressures.
Fig. 2: Steady-state thermal characterization methodologies used under pressure.
Fig. 3: Transient thermal characterization methodologies used under pressure.
Fig. 4: Thermal conductivity of gases, liquids and thermoelectric materials under pressure.
Fig. 5: Thermal conductivity of Earth materials under pressure.
Fig. 6: Thermal conductivity of semiconducting electronic materials under pressure.

Similar content being viewed by others

References

  1. Mao, H.-K., Chen, X.-J., Ding, Y., Li, B. & Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 90, 015007 (2018).

    Article  ADS  Google Scholar 

  2. Mao, H.-K. High-pressure physics: sustained static generation of 1.36 to 1.72 megabars. Science 200, 1145–1147 (1978).

    Article  ADS  Google Scholar 

  3. Mao, H.-K. & Bell, P. M. High-pressure physics: the 1-megabar mark on the ruby R1 static pressure scale. Science 191, 851–852 (1976).

    Article  ADS  Google Scholar 

  4. Jayaraman, A. Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 55, 65–108 (1983).

    Article  ADS  Google Scholar 

  5. Wang, L. et al. Nanoprobe measurements of materials at megabar pressures. Proc. Natl Acad. Sci. USA 107, 6140–6145 (2010).

    Article  ADS  Google Scholar 

  6. Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B. & Abakumov, A. M. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163 (2012).

    Article  ADS  Google Scholar 

  7. Irifune, T., Kunimoto, T., Shinmei, T. & Tange, Y. High pressure generation in Kawai-type multianvil apparatus using nano-polycrystalline diamond anvils. C. R. Geosci. 351, 260–268 (2019).

    Article  Google Scholar 

  8. Liebermann, R. C. Multi-anvil, high pressure apparatus: a half-century of development and progress. High Press. Res. 31, 493–532 (2011).

    Article  ADS  Google Scholar 

  9. Dubrovinsky, L. et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 525, 226–229 (2015).

    Article  ADS  Google Scholar 

  10. Barker Jr, R. & Chen, R. Grüneisen parameter from thermal conductivity measurements under pressure. J. Chem. Phys. 53, 2616–2620 (1970).

    Article  ADS  Google Scholar 

  11. Walker, I. Nonmagnetic piston–cylinder pressure cell for use at 35 kbar and above. Rev. Sci. Instrum. 70, 3402–3412 (1999).

    Article  ADS  Google Scholar 

  12. Dubrovinskaia, N. et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2, e1600341 (2016).

    Article  ADS  Google Scholar 

  13. Mao, H.-K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).

    Article  ADS  Google Scholar 

  14. Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 410 GPa. J. Phys. Conf. Ser. 215, 012195 (2010).

    Article  Google Scholar 

  15. Chi, Z.-H. et al. Pressure-induced metallization of molybdenum disulfide. Phys. Rev. Lett. 113, 036802 (2014).

    Article  ADS  Google Scholar 

  16. Livneh, T. & Sterer, E. Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H–MoS2. Phys. Rev. B 81, 195209 (2010).

    Article  ADS  Google Scholar 

  17. Beck, P. et al. Measurement of thermal diffusivity at high pressure using a transient heating technique. Appl. Phys. Lett. 91, 181914 (2007).

    Article  ADS  Google Scholar 

  18. Hsieh, W.-P., Chen, B., Li, J., Keblinski, P. & Cahill, D. G. Pressure tuning of the thermal conductivity of the layered muscovite crystal. Phys. Rev. B 80, 180302 (2009).

    Article  ADS  Google Scholar 

  19. Ji, C. et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature 573, 558–562 (2019).

    Article  ADS  Google Scholar 

  20. Celliers, P. M. et al. Insulator-metal transition in dense fluid deuterium. Science 361, 677–682 (2018).

    Article  ADS  Google Scholar 

  21. Chen, X.-J. et al. Enhancement of superconductivity by pressure-driven competition in electronic order. Nature 466, 950–953 (2010).

    Article  ADS  Google Scholar 

  22. Wang, Y. et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. J. Am. Chem. Soc. 137, 11144–11149 (2015).

    Article  Google Scholar 

  23. Knudson, M. D. et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348, 1455–1460 (2015).

    Article  ADS  Google Scholar 

  24. Eremets, M. I., Drozdov, A. P., Kong, P. & Wang, H. Semimetallic molecular hydrogen at pressure above 350 GPa. Nat. Phys. 15, 1246–1249 (2019).

    Article  Google Scholar 

  25. Cheng, B., Mazzola, G., Pickard, C. J. & Ceriotti, M. Evidence for supercritical behaviour of high-pressure liquid hydrogen. Nature 585, 217–220 (2020).

    Article  ADS  Google Scholar 

  26. Jiang, S. et al. A spectroscopic study of the insulator–metal transition in liquid hydrogen and deuterium. Adv. Sci. 7, 1901668 (2020).

    Article  Google Scholar 

  27. Drozdov, A., Eremets, M., Troyan, I., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    Article  ADS  Google Scholar 

  28. Drozdov, A. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    Article  ADS  Google Scholar 

  29. Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).

    Article  ADS  Google Scholar 

  30. Snider, E. et al. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586, 373–377 (2020).

    Article  ADS  Google Scholar 

  31. Medvedev, S. et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nat. Mater. 8, 630–633 (2009).

    Article  ADS  Google Scholar 

  32. Sun, L. et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature 483, 67–69 (2012).

    Article  ADS  Google Scholar 

  33. Zhao, X.-M. et al. Pressure tuning of the charge density wave and superconductivity in 2H–TaS2. Phys. Rev. B 101, 134506 (2020).

    Article  ADS  Google Scholar 

  34. Ci, P. et al. Quantifying van der Waals interactions in layered transition metal dichalcogenides from pressure-enhanced valence band splitting. Nano Lett. 17, 4982–4988 (2017).

    Article  ADS  Google Scholar 

  35. Meng, X. et al. Thermal conductivity enhancement in MoS2 under extreme strain. Phys. Rev. Lett. 122, 155901 (2019).

    Article  ADS  Google Scholar 

  36. Howie, R. T., Magdău, I. B., Goncharov, A. F., Ackland, G. J. & Gregoryanz, E. Phonon localization by mass disorder in dense hydrogen-deuterium binary alloy. Phys. Rev. Lett. 113, 175501 (2014).

    Article  ADS  Google Scholar 

  37. Howie, R. T., Dalladay-Simpson, P. & Gregoryanz, E. Raman spectroscopy of hot hydrogen above 200 GPa. Nat. Mater. 14, 495–499 (2015).

    Article  ADS  Google Scholar 

  38. Dalladay-Simpson, P., Howie, R. T. & Gregoryanz, E. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 529, 63–67 (2016).

    Article  ADS  Google Scholar 

  39. Li, F. et al. Brillouin scattering spectroscopy for a laser heated diamond anvil cell. Appl. Phys. Lett. 88, 203507 (2006).

    Article  ADS  Google Scholar 

  40. Nayak, A. P. et al. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 5, 3731 (2014).

    Article  ADS  Google Scholar 

  41. Chi, Z.-H. et al. Superconductivity in pristine 2Ha–MoS2 at ultrahigh pressure. Phys. Rev. Lett. 120, 037002 (2018).

    Article  ADS  Google Scholar 

  42. Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

    Article  ADS  Google Scholar 

  43. Li, Q. et al. Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506 (2009).

    Article  ADS  Google Scholar 

  44. Tian, Y. et al. Ultrahard nanotwinned cubic boron nitride. Nature 493, 385–388 (2013).

    Article  ADS  Google Scholar 

  45. Huang, Q. et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014).

    Article  ADS  Google Scholar 

  46. Ohta, K. et al. The electrical conductivity of post-perovskite in Earth’s D″ layer. Science 320, 89–91 (2008).

    Article  ADS  Google Scholar 

  47. Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N. & Goncharov, A. F. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534, 99–101 (2016).

    Article  ADS  Google Scholar 

  48. Hsieh, W.-P. et al. Low thermal conductivity of iron-silicon alloys at Earth’s core conditions with implications for the geodynamo. Nat. Commun. 11, 3332 (2020).

    Article  ADS  Google Scholar 

  49. Chen, X.-J. et al. Pressure-induced phonon frequency shifts in transition-metal nitrides. Phys. Rev. B 70, 014501 (2004).

    Article  ADS  Google Scholar 

  50. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

    Article  ADS  Google Scholar 

  51. Ma, Z. et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nat. Commun. 9, 4506 (2018).

    Article  ADS  Google Scholar 

  52. Li, M., Liu, T., Wang, Y., Yang, W. & Lü, X. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies. Matter Radiat. Extremes 5, 018201 (2020).

    Article  Google Scholar 

  53. Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).

    Article  ADS  Google Scholar 

  54. Cahill, D. G. et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).

    Article  ADS  Google Scholar 

  55. Giri, A. & Hopkins, P. E. A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30, 1903857 (2020).

    Article  Google Scholar 

  56. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  ADS  Google Scholar 

  57. Huxtable, S. T., Cahill, D. G. & Phinney, L. M. Thermal contact conductance of adhered microcantilevers. J. Appl. Phys. 95, 2102–2108 (2004).

    Article  ADS  Google Scholar 

  58. Kaviany, M. Heat Transfer Physics (Cambridge Univ. Press, 2014).

  59. Chen, S. et al. Thermal conductivity of isotopically modified graphene. Nat. Mater. 11, 203–207 (2012).

    Article  ADS  Google Scholar 

  60. Li, X., Maute, K., Dunn, M. L. & Yang, R. Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81, 245318 (2010).

    Article  ADS  Google Scholar 

  61. Ding, Z., Pei, Q.-X., Jiang, J.-W. & Zhang, Y.-W. Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering. J. Phys. Chem. C 119, 16358–16365 (2015).

    Article  Google Scholar 

  62. Wei, Z., Chen, Y. & Dames, C. Negative correlation between in-plane bonding strength and cross-plane thermal conductivity in a model layered material. Appl. Phys. Lett. 102, 011901 (2013).

    Article  ADS  Google Scholar 

  63. Lindsay, L., Broido, D. A., Carrete, J., Mingo, N. & Reinecke, T. L. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds. Phys. Rev. B 91, 121202 (2015).

    Article  ADS  Google Scholar 

  64. Ouyang, T. & Hu, M. Competing mechanism driving diverse pressure dependence of thermal conductivity of XTe (X=Hg, Cd, and Zn). Phys. Rev. B 92, 235204 (2015).

    Article  ADS  Google Scholar 

  65. Ravichandran, N. K. & Broido, D. Non-monotonic pressure dependence of the thermal conductivity of boron arsenide. Nat. Commun. 10, 827 (2019).

    Article  Google Scholar 

  66. Chen, L.-C. et al. Enhancement of thermoelectric performance across the topological phase transition in dense lead selenide. Nat. Mater. 18, 1321–1326 (2019).

    Article  ADS  Google Scholar 

  67. Ross, R. G., Andersson, P., Sundqvist, B. & Backstrom, G. Thermal conductivity of solids and liquids under pressure. Rep. Prog. Phys. 47, 1347–1402 (1984).

    Article  ADS  Google Scholar 

  68. Hofmeister, A. M. Pressure dependence of thermal transport properties. Proc. Natl Acad. Sci. USA 104, 9192–9197 (2007).

    Article  ADS  Google Scholar 

  69. Chen, J., Walther, J. H. & Koumoutsakos, P. Strain engineering of Kapitza resistance in few-layer graphene. Nano Lett. 14, 819–825 (2014).

    Article  ADS  Google Scholar 

  70. Hohensee, G. T., Wilson, R. & Cahill, D. G. Thermal conductance of metal–diamond interfaces at high pressure. Nat. Commun. 6, 6578 (2015).

    Article  ADS  Google Scholar 

  71. Vandersande, J. & Wood, C. The thermal conductivity of insulators and semiconductors. Contemp. Phys. 27, 117–144 (1986).

    Article  ADS  Google Scholar 

  72. Wang, Y., Qiu, B., J. H. McGaughey, A., Ruan, X. & Xu, X. Mode-wise thermal conductivity of bismuth telluride. J. Heat Transf. 135, 091102 (2013).

    Article  Google Scholar 

  73. Borca-Tasciuc, D.-A. et al. Thermal properties of electrodeposited bismuth telluride nanowires embedded in amorphous alumina. Appl. Phys. Lett. 85, 6001–6003 (2004).

    Article  ADS  Google Scholar 

  74. Mavrokefalos, A. et al. Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires. J. Appl. Phys. 105, 104318 (2009).

    Article  ADS  Google Scholar 

  75. Park, K. H., Mohamed, M., Aksamija, Z. & Ravaioli, U. Phonon scattering due to van der Waals forces in the lattice thermal conductivity of Bi2Te3 thin films. J. Appl. Phys. 117, 015103 (2015).

    Article  ADS  Google Scholar 

  76. Al-Alam, P. et al. Lattice thermal conductivity of Bi2Te3 and SnSe using Debye-Callaway and Monte Carlo phonon transport modeling: application to nanofilms and nanowires. Phys. Rev. B 100, 115304 (2019).

    Article  ADS  Google Scholar 

  77. Prasher, R. Acoustic mismatch model for thermal contact resistance of van der Waals contacts. Appl. Phys. Lett. 94, 041905 (2009).

    Article  ADS  Google Scholar 

  78. Huang, B.-L. & Kaviany, M. Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride. Phys. Rev. B 77, 125209 (2008).

    Article  ADS  Google Scholar 

  79. Qiu, B. & Ruan, X. Molecular dynamics simulations of lattice thermal conductivity of bismuth telluride using two-body interatomic potentials. Phys. Rev. B 80, 165203 (2009).

    Article  ADS  Google Scholar 

  80. Termentzidis, K. et al. Large thermal conductivity decrease in point defective Bi2Te3 bulk materials and superlattices. J. Appl. Phys. 113, 013506 (2013).

    Article  ADS  Google Scholar 

  81. Kapitza, P. L. Heat transfer and superfluidity of helium II. Phys. Rev. 60, 354–355 (1941).

    Article  ADS  Google Scholar 

  82. Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010).

    Article  Google Scholar 

  83. Kuball, M. & Pomeroy, J. W. A review of Raman thermography for electronic and opto-electronic device measurement with submicron spatial and nanosecond temporal resolution. IEEE Trans. Device Mater. Reliab. 16, 667–684 (2016).

    Article  Google Scholar 

  84. Siegrist, T., Merkelbach, P. & Wuttig, M. Phase change materials: challenges on the path to a universal storage device. Annu. Rev. Condens. Matter Phys. 3, 215–237 (2012).

    Article  Google Scholar 

  85. Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 11, 465–476 (2017).

    Article  Google Scholar 

  86. Costescu, R. M., Cahill, D. G., Fabreguette, F. H., Sechrist, Z. A. & George, S. M. Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303, 989–990 (2004).

    Article  ADS  Google Scholar 

  87. Losego, M. D., Blitz, I. P., Vaia, R. A., Cahill, D. G. & Braun, P. V. Ultralow thermal conductivity in organoclay nanolaminates synthesized via simple self-assembly. Nano Lett. 13, 2215–2219 (2013).

    Article  ADS  Google Scholar 

  88. Giri, A., Donovan, B. F. & Hopkins, P. E. Localization of vibrational modes leads to reduced thermal conductivity of amorphous heterostructures. Phys. Rev. Mater. 2, 056002 (2018).

    Article  Google Scholar 

  89. Merabia, S., Shenogin, S., Joly, L., Keblinski, P. & Barrat, J.-L. Heat transfer from nanoparticles: a corresponding state analysis. Proc. Natl Acad. Sci. USA 106, 15113–15118 (2009).

    Article  ADS  Google Scholar 

  90. Little, W. The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37, 334–349 (1959).

    Article  ADS  Google Scholar 

  91. Swartz, E. & Pohl, R. Thermal resistance at interfaces. Appl. Phys. Lett. 51, 2200–2202 (1987).

    Article  ADS  Google Scholar 

  92. Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).

    Article  ADS  Google Scholar 

  93. Stoner, R. & Maris, H. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 48, 16373 (1993).

    Article  ADS  Google Scholar 

  94. Stevens, R. J., Smith, A. N. & Norris, P. M. Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique. J. Heat Transf. 127, 315–322 (2005).

    Article  Google Scholar 

  95. Snyder, N. Heat transport through helium II: Kapitza conductance. Cryogenics 10, 89–95 (1970).

    Article  ADS  Google Scholar 

  96. Lyeo, H.-K. & Cahill, D. G. Thermal conductance of interfaces between highly dissimilar materials. Phys. Rev. B 73, 144301 (2006).

    Article  ADS  Google Scholar 

  97. Hopkins, P. E., Norris, P. M. & Stevens, R. J. Influence of inelastic scattering at metal-dielectric interfaces. J. Heat Transf. 130, 022401 (2008).

    Article  Google Scholar 

  98. Stevens, R. J., Zhigilei, L. V. & Norris, P. M. Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: nonequilibrium molecular dynamics simulations. Int. J. Heat Mass Transf. 50, 3977–3989 (2007).

    Article  MATH  Google Scholar 

  99. Zha, C.-S., Mao, H.-K. & Hemley, R. J. Elasticity of MgO and a primary pressure scale to 55 GPa. Proc. Natl Acad. Sci. USA 97, 13494–13499 (2000).

    Article  ADS  Google Scholar 

  100. Spetzler, H. et al. Ultrasonic measurements in a diamond anvil cell. Phys. Earth Planet. Inter. 98, 93–99 (1996).

    Article  ADS  Google Scholar 

  101. Jacobsen, S. D. et al. Structure and elasticity of single-crystal (Mg,Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. J. Geophys. Res Solid Earth 107, ECV 4-1–ECV 4-14 (2002).

    Article  Google Scholar 

  102. Jacobsen, S. D., Spetzler, H., Reichmann, H. J. & Smyth, J. R. Shear waves in the diamond-anvil cell reveal pressure-induced instability in (Mg,Fe)O. Proc. Natl Acad. Sci. USA 101, 5867–5871 (2004).

    Article  ADS  Google Scholar 

  103. Decremps, F. et al. Sound velocity of iron up to 152 GPa by picosecond acoustics in diamond anvil cell. Geophys. Res. Lett. 41, 1459–1464 (2014).

    Article  ADS  Google Scholar 

  104. Mao, H.-K. et al. Phonon density of states of iron up to 153 gigapascals. Science 292, 914–916 (2001).

    Article  ADS  Google Scholar 

  105. Farber, D. L. et al. Lattice dynamics of molybdenum at high pressure. Phys. Rev. Lett. 96, 115502 (2006).

    Article  ADS  Google Scholar 

  106. Loa, I. et al. Lattice dynamics and superconductivity in cerium at high pressure. Phys. Rev. Lett. 108, 045502 (2012).

    Article  ADS  Google Scholar 

  107. Klotz, S. et al. Phonon dispersion measurements at high pressures to 7 GPa by inelastic neutron scattering. Appl. Phys. Lett. 66, 1557–1559 (1995).

    Article  ADS  Google Scholar 

  108. Klotz, S. et al. Pressure induced frequency shifts of transverse acoustic phonons in germanium to 9.7 GPa. Phys. Rev. Lett. 79, 1313–1316 (1997).

    Article  ADS  Google Scholar 

  109. Klotz, S. Phonon dispersion curves by inelastic neutron scattering to 12 GPa. Z. Kristallogr. Cryst. Mater. 216, 420–429 (2001).

    Article  Google Scholar 

  110. Sun, Z., Yuan, K., Zhang, X. & Tang, D. Pressure tuning of the thermal conductivity of gallium arsenide from first-principles calculations. Phys. Chem. Chem. Phys. 20, 30331–30339 (2018).

    Article  Google Scholar 

  111. Yu, H. et al. Large enhancement of thermoelectric performance in CuInTe2 upon compression. Mater. Today Phys. 5, 1–6 (2018).

    Article  ADS  Google Scholar 

  112. Wang, L. et al. High-pressure phases of boron arsenide with potential high thermal conductivity. Phys. Rev. B 99, 174104 (2019).

    Article  ADS  Google Scholar 

  113. Saha, P., Mazumder, A. & Mukherjee, G. D. Thermal conductivity of dense hcp iron: direct measurements using laser heated diamond anvil cell. Geosci. Front. 11, 1755–1761 (2020).

    Article  Google Scholar 

  114. Yuan, K., Zhang, X., Tang, D. & Hu, M. Anomalous pressure effect on the thermal conductivity of ZnO, GaN, and AlN from first-principles calculations. Phys. Rev. B 98, 144303 (2018).

    Article  ADS  Google Scholar 

  115. Lan, G., Ouyang, B. & Song, J. The role of low-lying optical phonons in lattice thermal conductance of rare-earth pyrochlores: a first-principle study. Acta Mater. 91, 304–317 (2015).

    Article  ADS  Google Scholar 

  116. Zhao, D., Qian, X., Gu, X., Jajja, S. A. & Yang, R. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Packag. 138, 040802 (2016).

    Article  Google Scholar 

  117. Tritt, T. M. & Weston, D. in Thermal Conductivity: Theory, Properties, and Applications (ed. Tritt, T. M.) 187–203 (Springer, 2004).

  118. Pope, A. L., Zawilski, B. & Tritt, T. M. Description of removable sample mount apparatus for rapid thermal conductivity measurements. Cryogenics 41, 725–731 (2001).

    Article  ADS  Google Scholar 

  119. Zawilski, B. M., Littleton IV, R. T. & Tritt, T. M. Description of the parallel thermal conductance technique for the measurement of the thermal conductivity of small diameter samples. Rev. Sci. Instrum. 72, 1770–1774 (2001).

    Article  ADS  Google Scholar 

  120. Völklein, F. Thermal conductivity and diffusivity of a thin film SiO2–Si3N4 sandwich system. Thin Solid Films 188, 27–33 (1990).

    Article  ADS  Google Scholar 

  121. Völklein, F., Reith, H. & Meier, A. Measuring methods for the investigation of in-plane and cross-plane thermal conductivity of thin films. Phys. Status Solidi A 210, 106–118 (2013).

    Article  ADS  Google Scholar 

  122. Borca-Tasciuc, T. & Chen, G. in Thermal Conductivity: Theory, Properties, and Applications (ed. Tritt, T. M.) 205–237 (Springer, 2004).

  123. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  ADS  Google Scholar 

  124. Maldonado, O. Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures. Cryogenics 32, 908–912 (1992).

    Article  ADS  Google Scholar 

  125. Stalhane, B. & Pyk, S. New method for determining the coefficients of thermal conductivity. Tek. Tidskr. 61, 389–393 (1931).

    Google Scholar 

  126. Gustafsson, S. E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62, 797–804 (1991).

    Article  ADS  Google Scholar 

  127. Cahill, D. G. Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61, 802–808 (1990).

    Article  ADS  Google Scholar 

  128. Parker, W. J., Jenkins, R. J., Butler, C. P. & Abbott, G. L. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32, 1679–1684 (1961).

    Article  ADS  Google Scholar 

  129. Rosencwaig, A. & Gersho, A. Theory of the photoacoustic effect with solids. J. Appl. Phys. 47, 64–69 (1976).

    Article  ADS  Google Scholar 

  130. Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).

    Article  ADS  Google Scholar 

  131. Schmidt, A. J., Cheaito, R. & Chiesa, M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009).

    Article  ADS  Google Scholar 

  132. Fujisawa, H., Fujii, N., Mizutani, H., Kanamori, H. & Akimoto, S. I. Thermal diffusivity of Mg2SiO4, Fe2SiO4, and NaCl at high pressures and temperatures. J. Geophys. Res. 73, 4727–4733 (1968).

    Article  ADS  Google Scholar 

  133. Håkansson, B., Andersson, P. & Bäckström, G. Improved hot-wire procedure for thermophysical measurements under pressure. Rev. Sci. Instrum. 59, 2269–2275 (1988).

    Article  ADS  Google Scholar 

  134. Katsura, T. Thermal diffusivity of silica glass at pressures up to 9 GPa. Phys. Chem. Miner. 20, 201–208 (1993).

    Article  ADS  Google Scholar 

  135. Xu, Y. et al. Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K. Phys. Earth Planet. Inter. 143–144, 321–336 (2004).

    Article  ADS  Google Scholar 

  136. Bercegeay, C. & Bernard, S. First-principles equations of state and elastic properties of seven metals. Phys. Rev. B 72, 214101 (2005).

    Article  ADS  Google Scholar 

  137. Hsieh, W.-P. et al. Testing the minimum thermal conductivity model for amorphous polymers using high pressure. Phys. Rev. B 83, 174205 (2011).

    Article  ADS  Google Scholar 

  138. Park, C. H., Cheong, B. H., Lee, K. H. & Chang, K. J. Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Phys. Rev. B 49, 4485–4493 (1994).

    Article  ADS  Google Scholar 

  139. Xie, J., Chen, S.-P., Tse, J. S., de Gironcoli, S. & Baroni, S. High-pressure thermal expansion, bulk modulus, and phonon structure of diamond. Phys. Rev. B 60, 9444–9449 (1999).

    Article  ADS  Google Scholar 

  140. Manthilake, M. A. G. M., de Koker, N. & Frost, D. J. Thermal conductivity of CaGeO3 perovskite at high pressure. Geophys. Res. Lett. 38, L08301 (2011).

    Article  ADS  Google Scholar 

  141. Barker, R. Jr, Chen, R. & Frost, R. Influence of pressure and chemical structure on the thermal conductivity of vitreous poly(alkyl methacrylates). I. J. Polym. Sci. Polym. Phys. 15, 1199–1210 (1977).

    Article  ADS  Google Scholar 

  142. Frost, R. S., Chen, R. Y. S. & Barker, R. E. Pressure dependence of thermal conductivity in polyethylene. J. Appl. Phys. 46, 4506–4509 (1975).

    Article  ADS  Google Scholar 

  143. Hsieh, W.-P. Testing Theories for Thermal Transport Using High Pressure. Thesis, Univ. Illinois at Urbana-Champaign (2012).

  144. Katsura, T. Thermal diffusivity of olivine under upper mantle conditions. Geophys. J. Int. 122, 63–69 (1995).

    Article  ADS  Google Scholar 

  145. Frost, D. J. et al. A new large-volume multianvil system. Phys. Earth Planet. Inter. 143–144, 507–514 (2004).

    Article  ADS  Google Scholar 

  146. Manthilake, G. M., de Koker, N., Frost, D. J. & McCammon, C. A. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core. Proc. Natl Acad. Sci. USA 108, 17901 (2011).

    Article  ADS  Google Scholar 

  147. Abramson, E. H., Brown, J. M. & Slutsky, L. J. The thermal diffusivity of water at high pressures and temperatures. J. Chem. Phys. 115, 10461–10463 (2001).

    Article  ADS  Google Scholar 

  148. Abramson, E. H., Slutsky, L. J. & Brown, J. M. Thermal diffusivity of fluid oxygen to 12 GPa and 300 °C. J. Chem. Phys. 111, 9357–9360 (1999).

    Article  ADS  Google Scholar 

  149. Chai, M., Brown, J. M. & Slutsky, L. J. Thermal diffusivity of mantle minerals. Phys. Chem. Miner. 23, 470–475 (1996).

    Article  ADS  Google Scholar 

  150. Yue, D. et al. Accurate temperature measurement by temperature field analysis in diamond anvil cell for thermal transport study of matter under high pressures. Appl. Phys. Lett. 112, 081901 (2018).

    Article  ADS  Google Scholar 

  151. Pang, H.-J. et al. Pressure tuning of thermoelectric performance in FeNbSb. J. Alloys Compd. 805, 1224–1230 (2019).

    Article  Google Scholar 

  152. Chen, L.-C. et al. Pressure-induced enhancement of thermoelectric performance in palladium sulfide. Mater. Today Phys. 5, 64–71 (2018).

    Article  Google Scholar 

  153. Håkansson, B. & Ross, R. G. Effective thermal conductivity of binary dispersed composites over wide ranges of volume fraction, temperature, and pressure. J. Appl. Phys. 68, 3285–3292 (1990).

    Article  ADS  Google Scholar 

  154. Andersson, O. & Suga, H. Thermal conductivity of the Ih and XI phases of ice. Phys. Rev. B 50, 6583–6588 (1994).

    Article  ADS  Google Scholar 

  155. Andersson, O. & Suga, H. Thermal conductivity of normal and deuterated tetrahydrofuran clathrate hydrates. J. Phys. Chem. Solids 57, 125–132 (1996).

    Article  ADS  Google Scholar 

  156. Andersson, O., Soldatov, A. & Sundqvist, B. Thermal conductivity of C60 at pressures up to 1 GPa and temperatures in the 50–300 K range. Phys. Rev. B 54, 3093–3100 (1996).

    Article  ADS  Google Scholar 

  157. Larsson, R. & Andersson, O. Lubricant thermal conductivity and heat capacity under high pressure. Proc. Inst. Mech. Eng. J. J. Eng. Tribol. 214, 337–342 (2000).

    Article  Google Scholar 

  158. Andersson, O., Chobal, O., Rizak, I., Rizak, V. & Sabadosh, V. Effects of pressure and temperature on the thermal conductivity of Sn2P2S6. Phys. Rev. B 83, 134121 (2011).

    Article  ADS  Google Scholar 

  159. Yu, J., Tonpheng, B., Gröbner, G. & Andersson, O. Thermal properties and transition studies of multi-wall carbon nanotube/nylon-6 composites. Carbon 49, 4858–4866 (2011).

    Article  Google Scholar 

  160. Andersson, O. Thermal conductivity of normal and deuterated water, crystalline ice, and amorphous ices. J. Chem. Phys. 149, 124506 (2018).

    Article  ADS  Google Scholar 

  161. Soldatov, A. & Sundqvist, B. Molecular rotation in C70 at high pressures: a thermal conductivity study. J. Phys. Chem. Solids 57, 1371–1375 (1996).

    Article  ADS  Google Scholar 

  162. Franco, A. An apparatus for the routine measurement of thermal conductivity of materials for building application based on a transient hot-wire method. Appl. Therm. Eng. 27, 2495–2504 (2007).

    Article  Google Scholar 

  163. Osako, M., Ito, E. & Yoneda, A. Simultaneous measurements of thermal conductivity and thermal diffusivity for garnet and olivine under high pressure. Phys. Earth Planet. Inter. 143-144, 311–320 (2004).

    Article  ADS  Google Scholar 

  164. Yoneda, A., Osako, M. & Ito, E. Heat capacity measurement under high pressure: a finite element method assessment. Phys. Earth Planet. Inter. 174, 309–314 (2009).

    Article  ADS  Google Scholar 

  165. Goncharov, A. F., Beck, P., Struzhkin, V. V., Haugen, B. D. & Jacobsen, S. D. Thermal conductivity of lower-mantle minerals. Phys. Earth Planet. Inter. 174, 24–32 (2009).

    Article  ADS  Google Scholar 

  166. Goncharov, A. F. et al. Effect of composition, structure, and spin state on the thermal conductivity of the Earth’s lower mantle. Phys. Earth Planet. Inter. 180, 148–153 (2010).

    Article  ADS  Google Scholar 

  167. Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007).

    Article  ADS  Google Scholar 

  168. Ge, Z., Cahill, D. G. & Braun, P. V. Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett. 96, 186101 (2006).

    Article  ADS  Google Scholar 

  169. Beran, A. The reflectance behaviour of gold at temperatures up to 500 °C. Tschermaks Min. Petr. Mitt. 34, 211–215 (1985).

    Article  Google Scholar 

  170. Hsieh, W.-P. & Cahill, D. G. Ta and Au(Pd) alloy metal film transducers for time-domain thermoreflectance at high pressures. J. Appl. Phys. 109, 113520 (2011).

    Article  ADS  Google Scholar 

  171. Hsieh, W.-P. Thermal conductivity of methanol-ethanol mixture and silicone oil at high pressures. J. Appl. Phys. 117, 235901 (2015).

    Article  ADS  Google Scholar 

  172. Jeong, J. et al. Picosecond transient thermoreflectance for thermal conductivity characterization. Nanoscale Microscale Thermophys. Eng. 23, 211–221 (2019).

    Article  ADS  Google Scholar 

  173. Hasegawa, A., Yagi, T. & Ohta, K. Combination of pulsed light heating thermoreflectance and laser-heated diamond anvil cell for in-situ high pressure-temperature thermal diffusivity measurements. Rev. Sci. Instrum. 90, 074901 (2019).

    Article  ADS  Google Scholar 

  174. McWilliams, R. S., Konôpková, Z. & Goncharov, A. F. A flash heating method for measuring thermal conductivity at high pressure and temperature: application to Pt. Phys. Earth Planet. Inter. 247, 17–26 (2015).

    Article  ADS  Google Scholar 

  175. Geballe, Z. M., Sime, N., Badro, J., van Keken, P. E. & Goncharov, A. F. Thermal conductivity near the bottom of the Earth’s lower mantle: measurements of pyrolite up to 120 GPa and 2500 K. Earth Planet. Sci. Lett. 536, 116161 (2020).

    Article  Google Scholar 

  176. Hsieh, W.-P., Lyons, A. S., Pop, E., Keblinski, P. & Cahill, D. G. Pressure tuning of the thermal conductance of weak interfaces. Phys. Rev. B 84, 184107 (2011).

    Article  ADS  Google Scholar 

  177. Okuda, Y. et al. Thermal conductivity of Fe-bearing post-perovskite in the Earth’s lowermost mantle. Earth Planet Sci. Lett. 547, 116466 (2020).

    Article  Google Scholar 

  178. Hamrin, C. E. & Thodos, G. The thermal conductivity of hydrogen for pressures up to 660atm and temperatures between 1.6 and 74.6 °C. Physica 32, 918–932 (1966).

    Article  ADS  Google Scholar 

  179. Roder, H. M. The thermal conductivity of oxygen. J. Res. Natl Bur. Stand. 87, 279–310 (1982).

    Article  Google Scholar 

  180. Roder, H. M. Thermal conductivity of methane for temperatures between 110 and 310 K with pressures to 70 MPa. Int. J. Thermophys. 6, 119–142 (1985).

    Article  ADS  Google Scholar 

  181. Gilmore, T. F. & Comings, E. W. Thermal conductivity of binary mixtures of carbon dioxide, nitrogen, and ethane at high pressures: comparison with correlation and theory. AIChE J. 12, 1172–1178 (1966).

    Article  Google Scholar 

  182. Sengers, J. V., Bolk, W. T. & Stigter, C. J. The thermal conductivity of neon between 25 °C and 75 °C at pressures up to 2600 atmospheres. Physica 30, 1018–1026 (1964).

    Article  ADS  Google Scholar 

  183. Millat, J., Mustafa, M., Ross, M., Wakeham, W. A. & Zalaf, M. The thermal conductivity of argon, carbon dioxide and nitrous oxide. Phys. A Stat. Mech. Appl. 145, 461–497 (1987).

    Article  Google Scholar 

  184. Goncharov, A. F. et al. Thermal conductivity of argon at high pressures and high temperatures. J. Appl. Phys. 111, 112609 (2012).

    Article  ADS  Google Scholar 

  185. Tretiakov, K. V. & Scandolo, S. Thermal conductivity of solid argon at high pressure and high temperature: a molecular dynamics study. J. Chem. Phys. 121, 11177–11182 (2004).

    Article  ADS  Google Scholar 

  186. Chernatynskiy, A. & Phillpot, S. R. Thermal conductivity of argon at high pressure from first principles calculations. J. Appl. Phys. 114, 064902 (2013).

    Article  ADS  Google Scholar 

  187. Zaghoo, M. & Silvera, I. F. Conductivity and dissociation in liquid metallic hydrogen and implications for planetary interiors. Proc. Natl Acad. Sci. USA 114, 11873–11877 (2017).

    Article  ADS  Google Scholar 

  188. Ramaswamy, R., Balasubramaniam, V. M. & Sastry, S. K. Thermal conductivity of selected liquid foods at elevated pressures up to 700 MPa. J. Food Eng. 83, 444–451 (2007).

    Article  Google Scholar 

  189. Shulga, V. M., Eldarov, F. G., Atanov, Y. A. & Kuyumchev, A. A. Thermal conductivity and heat capacity of liquid toluene at temperatures between 255 and 400 K and at pressures up to 1000 MPa. Int. J. Thermophys. 7, 1147–1161 (1986).

    Article  ADS  Google Scholar 

  190. Yebra, F., Troncoso, J. & Romaní, L. Thermal conductivity measurements for organic liquids at high pressure. J. Chem. Thermodyn. 142, 106005 (2020).

    Article  Google Scholar 

  191. Chen, B., Hsieh, W.-P., Cahill, D. G., Trinkle, D. R. & Li, J. Thermal conductivity of compressed H2O to 22 GPa: a test of the Leibfried-Schlomann equation. Phys. Rev. B 83, 132301 (2011).

    Article  ADS  Google Scholar 

  192. Ross, R. G. & Sandberg, O. The thermal conductivity of four solid phases of NH4F, and a comparison with H2O. J. Phys. C Solid State Phys. 11, 667–672 (1978).

    Article  ADS  Google Scholar 

  193. Jacobsen, M. K., Sinogeikin, S. V., Kumar, R. S. & Cornelius, A. L. High pressure transport characteristics of Bi2Te3, Sb2Te3, and BiSbTe3. J. Phys. Chem. Solids 73, 1154–1158 (2012).

    Article  ADS  Google Scholar 

  194. Yu, C., Zhang, G., Zhang, Y.-W. & Peng, L.-M. Strain engineering on the thermal conductivity and heat flux of thermoelectric Bi2Te3 nanofilm. Nano Energy 17, 104–110 (2015).

    Article  Google Scholar 

  195. Jacobsen, M. K., Kumar, R. S. & Cornelius, A. L. Transport properties of Ni and PbTe under pressure. J. Electron. Mater. 41, 633–638 (2012).

    Article  ADS  Google Scholar 

  196. Morozova, N. V., Korobeinikov, I. V. & Ovsyannikov, S. V. Strategies and challenges of high-pressure methods applied to thermoelectric materials. J. Appl. Phys. 125, 220901 (2019).

    Article  ADS  Google Scholar 

  197. Ovsyannikov, S. V. & Shchennikov, V. V. Pressure-tuned colossal improvement of thermoelectric efficiency of PbTe. Appl. Phys. Lett. 90, 122103 (2007).

    Article  ADS  Google Scholar 

  198. Yang, X. et al. Pressure induced excellent thermoelectric behavior in skutterudites CoSb3 and IrSb3. Phys. Chem. Chem. Phys. 21, 851–858 (2019).

    Article  Google Scholar 

  199. Boehler, R. & Ramakrishnan, J. Experimental results on the pressure dependence of the Grüneisen parameter: a review. J. Geophys. Res. Solid Earth 85, 6996–7002 (1980).

    Article  Google Scholar 

  200. Boehler, R. Adiabats (∂T/∂P)s and Grüneisen parameter of NaCl up to 50 kilobars and 800 °C. J. Geophys. Res. Solid Earth 86, 7159–7162 (1981).

    Article  Google Scholar 

  201. Anderson, O. L. The Grüneisen ratio for the last 30 years. Geophys. J. Int. 143, 279–294 (2000).

    Article  ADS  Google Scholar 

  202. Hofmeister, A. M. & Mao, H.-K. Redefinition of the mode Grüneisen parameter for polyatomic substances and thermodynamic implications. Proc. Natl Acad. Sci. USA 99, 559–564 (2002).

    Article  ADS  Google Scholar 

  203. Dorogokupets, P. I. & Dewaele, A. Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: internally consistent high-temperature pressure scales. High Press. Res. 27, 431–446 (2007).

    Article  ADS  Google Scholar 

  204. Dewaele, A., Datchi, F., Loubeyre, P. & Mezouar, M. High pressure–high temperature equations of state of neon and diamond. Phys. Rev. B 77, 094106 (2008).

    Article  ADS  Google Scholar 

  205. Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. Thermal and electrical conductivity of iron at Earth’s core conditions. Nature 485, 355–358 (2012).

    Article  ADS  Google Scholar 

  206. McWilliams, R. S., Dalton, D. A., Konôpková, Z., Mahmood, M. F. & Goncharov, A. F. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors. Proc. Natl Acad. Sci. USA 112, 7925–7930 (2015).

    Article  ADS  Google Scholar 

  207. Basu, A., Field, M. R., McCulloch, D. G. & Boehler, R. New measurement of melting and thermal conductivity of iron close to outer core conditions. Geosci. Front. 11, 565–568 (2020).

    Article  Google Scholar 

  208. Xu, J. et al. Thermal conductivity and electrical resistivity of solid iron at Earth’s core conditions from first principles. Phys. Rev. Lett. 121, 096601 (2018).

    Article  ADS  Google Scholar 

  209. de Koker, N., Steinle-Neumann, G. & Vlček, V. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core. Proc. Natl Acad. Sci. USA 109, 4070–4073 (2012).

    Article  ADS  Google Scholar 

  210. Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K. & Ohishi, Y. Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature 534, 95–98 (2016).

    Article  ADS  Google Scholar 

  211. Seagle, C. T., Cottrell, E., Fei, Y., Hummer, D. R. & Prakapenka, V. B. Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure. Geophys. Res. Lett. 40, 5377–5381 (2013).

    Article  ADS  Google Scholar 

  212. Tang, X. & Dong, J. Lattice thermal conductivity of MgO at conditions of Earth’s interior. Proc. Natl Acad. Sci. USA 107, 4539–4543 (2010).

    Article  ADS  Google Scholar 

  213. Tang, X. & Dong, J. Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: a first-principles calculation and implications for lattice thermal conductivity. Phys. Earth Planet. Inter. 174, 33–38 (2009).

    Article  ADS  Google Scholar 

  214. Goncharov, A. F., Haugen, B. D., Struzhkin, V. V., Beck, P. & Jacobsen, S. D. Radiative conductivity in the Earth’s lower mantle. Nature 456, 231–234 (2008).

    Article  ADS  Google Scholar 

  215. Goncharov, A. F., Struzhkin, V. V. & Jacobsen, S. D. Reduced radiative conductivity of low-spin (Mg,Fe)O in the lower mantle. Science 312, 1205–1208 (2006).

    Article  ADS  Google Scholar 

  216. Lobanov, S. S., Holtgrewe, N., Lin, J.-F. & Goncharov, A. F. Radiative conductivity and abundance of post-perovskite in the lowermost mantle. Earth Planet. Sci. Lett. 479, 43–49 (2017).

    Article  ADS  Google Scholar 

  217. Lobanov, S. S. et al. Blocked radiative heat transport in the hot pyrolitic lower mantle. Earth Planet. Sci. Lett. 537, 116176 (2020).

    Article  Google Scholar 

  218. Dalton, D. A., Hsieh, W.-P., Hohensee, G. T., Cahill, D. G. & Goncharov, A. F. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure. Sci. Rep. 3, 2400 (2013).

    Article  Google Scholar 

  219. Stackhouse, S., Stixrude, L. & Karki, B. B. Thermal conductivity of periclase (MgO) from first principles. Phys. Rev. Lett. 104, 208501 (2010).

    Article  ADS  Google Scholar 

  220. de Koker, N. Thermal conductivity of MgO periclase at high pressure: implications for the D″ region. Earth Planet. Sci. Lett. 292, 392–398 (2010).

    Article  ADS  Google Scholar 

  221. Hsieh, W.-P., Deschamps, F., Okuchi, T. & Lin, J.-F. Effects of iron on the lattice thermal conductivity of Earth’s deep mantle and implications for mantle dynamics. Proc. Natl Acad. Sci. USA 115, 4099–4104 (2018).

    Article  ADS  Google Scholar 

  222. Hsieh, W.-P., Deschamps, F., Okuchi, T. & Lin, J.-F. Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth’s deep mantle. J. Geophys. Res. Solid Earth 122, 4900–4917 (2017).

    Article  ADS  Google Scholar 

  223. Chao, K.-H. & Hsieh, W.-P. Thermal conductivity anomaly in (Fe0.78Mg0.22)CO3 siderite across spin transition of iron. J. Geophys. Res. Solid Earth 124, 1388–1396 (2019).

    Article  ADS  Google Scholar 

  224. Hsieh, W.-P. et al. Spin transition of iron in δ-(Al,Fe)OOH induces thermal anomalies in Earth’s lower mantle. Geophys. Res. Lett. 47, e2020GL087036 (2020).

    Article  ADS  Google Scholar 

  225. Goncharov, A. F. et al. Experimental study of thermal conductivity at high pressures: implications for the deep Earth’s interior. Phys. Earth Planet. Inter. 247, 11–16 (2015).

    Article  ADS  Google Scholar 

  226. Yagi, T. et al. Thermal diffusivity measurement in a diamond anvil cell using a light pulse thermoreflectance technique. Meas. Sci. Technol. 22, 024011 (2010).

    Article  ADS  Google Scholar 

  227. Chang, Y.-Y., Hsieh, W.-P., Tan, E. & Chen, J. Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle. Proc. Natl Acad. Sci. USA 114, 4078 (2017).

    Article  Google Scholar 

  228. Marzotto, E. et al. Effect of water on lattice thermal conductivity of ringwoodite and its implications for the thermal evolution of descending slabs. Geophys. Res. Lett. 47, e2020GL087607 (2020).

    Article  ADS  Google Scholar 

  229. Ohta, K. et al. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core–mantle boundary. Earth Planet. Sci. Lett. 349-350, 109–115 (2012).

    Article  ADS  Google Scholar 

  230. Osako, M. & Ito, E. Thermal diffusivity of MgSiO3 perovskite. Geophys. Res. Lett. 18, 239–242 (1991).

    Article  ADS  Google Scholar 

  231. Hofmeister, A. M. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283, 1699–1706 (1999).

    Article  ADS  Google Scholar 

  232. Hofmeister, A. M. Inference of high thermal transport in the lower mantle from laser-flash experiments and the damped harmonic oscillator model. Phys. Earth Planet. Inter. 170, 201–206 (2008).

    Article  ADS  Google Scholar 

  233. Okuda, Y. et al. The effect of iron and aluminum incorporation on lattice thermal conductivity of bridgmanite at the Earth’s lower mantle. Earth Planet. Sci. Lett. 474, 25–31 (2017).

    Article  ADS  Google Scholar 

  234. Ohta, K., Yagi, T., Hirose, K. & Ohishi, Y. Thermal conductivity of ferropericlase in the Earth’s lower mantle. Earth Planet. Sci. Lett. 465, 29–37 (2017).

    Article  ADS  Google Scholar 

  235. Haigis, V., Salanne, M. & Jahn, S. Thermal conductivity of MgO, MgSiO3 perovskite and post-perovskite in the Earth’s deep mantle. Earth Planet. Sci. Lett. 355, 102–108 (2012).

    Article  ADS  Google Scholar 

  236. Ammann, M. W. et al. Variation of thermal conductivity and heat flux at the Earth’s core mantle boundary. Earth Planet. Sci. Lett. 390, 175–185 (2014).

    Article  ADS  Google Scholar 

  237. Tang, X., Ntam, M. C., Dong, J., Rainey, E. S. G. & Kavner, A. The thermal conductivity of Earth’s lower mantle. Geophys. Res. Lett. 41, 2746–2752 (2014).

    Article  ADS  Google Scholar 

  238. Stackhouse, S., Stixrude, L. & Karki, B. B. First-principles calculations of the lattice thermal conductivity of the lower mantle. Earth Planet. Sci. Lett. 427, 11–17 (2015).

    Article  ADS  Google Scholar 

  239. Hohensee, G. T., Fellinger, M. R., Trinkle, D. R. & Cahill, D. G. Thermal transport across high-pressure semiconductor-metal transition in Si and Si0.991Ge0.009. Phys. Rev. B 91, 205104 (2015).

    Article  ADS  Google Scholar 

  240. Broido, D. A., Lindsay, L. & Ward, A. Thermal conductivity of diamond under extreme pressure: a first-principles study. Phys. Rev. B 86, 115203 (2012).

    Article  ADS  Google Scholar 

  241. Slack, G. A. & Andersson, P. Pressure and temperature effects on the thermal conductivity of CuCl. Phys. Rev. B 26, 1873–1884 (1982).

    Article  ADS  Google Scholar 

  242. Ulrich, C., Göbel, A., Syassen, K. & Cardona, M. Pressure-induced disappearance of the Raman anomaly in CuCl. Phys. Rev. Lett. 82, 351–354 (1999).

    Article  ADS  Google Scholar 

  243. Ulrich, C., Syassen, K., Cardona, M., Cros, A. & Cantarero, A. Lattice phonon modes of the high-pressure phase CuCl-IV. Phys. Rev. B 60, 9410–9415 (1999).

    Article  ADS  Google Scholar 

  244. Liu, J., Choi, G. M. & Cahill, D. G. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys. 116, 233107 (2014).

    Article  ADS  Google Scholar 

  245. Jo, I., Pettes, M. T., Ou, E., Wu, W. & Shi, L. Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett. 104, 201902 (2014).

    Article  ADS  Google Scholar 

  246. Sahoo, S., Gaur, A. P. S., Ahmadi, M., Guinel, M. J. F. & Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 117, 9042–9047 (2013).

    Article  Google Scholar 

  247. Muratore, C. et al. Cross-plane thermal properties of transition metal dichalcogenides. Appl. Phys. Lett. 102, 081604 (2013).

    Article  ADS  Google Scholar 

  248. Jiang, P., Qian, X., Gu, X. & Yang, R. Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se) using time-domain thermoreflectance. Adv. Mater. 29, 1701068 (2017).

    Article  Google Scholar 

  249. Wang, X. & Tabarraei, A. Phonon thermal conductivity of monolayer MoS2. Appl. Phys. Lett. 108, 191905 (2016).

    Article  ADS  Google Scholar 

  250. Yuan, K., Zhang, X., Li, L. & Tang, D. Effects of tensile strain and finite size on thermal conductivity in monolayer WSe2. Phys. Chem. Chem. Phys. 21, 468–477 (2019).

    Article  Google Scholar 

  251. Raeisi, M., Ahmadi, S. & Rajabpour, A. Modulated thermal conductivity of 2D hexagonal boron arsenide: a strain engineering study. Nanoscale 11, 21799–21810 (2019).

    Article  Google Scholar 

  252. Duffy, T. S. Synchrotron facilities and the study of the Earth’s deep interior. Rep. Prog. Phys. 68, 1811–1859 (2005).

    Article  ADS  Google Scholar 

  253. Shen, G. & Mao, H.-K. High-pressure studies with x-rays using diamond anvil cells. Rep. Prog. Phys. 80, 016101 (2016).

    Article  ADS  Google Scholar 

  254. Lin, J.-F., Alp, E. E. & Goncharov, A. F. in Treatise on Geochemistry 2nd edn Vol. 15 (eds Holland, H. D. & Turekian, K. K.) 195–211 (Elsevier, 2014).

  255. Lay, T., Hernlund, J. & Buffett, B. A. Core–mantle boundary heat flow. Nat. Geosci. 1, 25–32 (2008).

    Article  ADS  Google Scholar 

  256. Nimmo, F. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 27–55 (Elsevier, 2015).

  257. Moroe, S. et al. Measurements of hydrogen thermal conductivity at high pressure and high temperature. Int. J. Thermophys. 32, 1887–1917 (2011).

    Article  ADS  Google Scholar 

  258. Johns, A. I., Rashid, S., Rowan, L., Watson, J. T. R. & Clifford, A. A. The thermal conductivity of pure nitrogen and of mixtures of nitrogen and carbon dioxide at elevated temperatures and pressures. Int. J. Thermophys. 9, 3–19 (1988).

    Article  ADS  Google Scholar 

  259. Michels, A., Sengers, J. V. & Van De Klundert, L. J. M. The thermal conductivity of argon at elevated densities. Physica 29, 149–160 (1963).

    Article  ADS  Google Scholar 

  260. Parrish, K. D., Jain, A., Larkin, J. M., Saidi, W. A. & McGaughey, A. J. H. Origins of thermal conductivity changes in strained crystals. Phys. Rev. B 90, 235201 (2014).

    Article  ADS  Google Scholar 

  261. Ross, R. G., Andersson, P. & Bäckström, G. Thermal conductivity of allotropic modifications of ice. Nature 259, 553–554 (1976).

    Article  ADS  Google Scholar 

  262. Elalfy, L., Music, D. & Hu, M. First principles investigation of anomalous pressure-dependent thermal conductivity of chalcopyrites. Materials 12, 3491 (2019).

    Article  ADS  Google Scholar 

  263. Harish, S. et al. Thermal conductivity reduction of crystalline silicon by high-pressure torsion. Nanoscale Res. Lett. 9, 326 (2014).

    Article  ADS  Google Scholar 

  264. Kuryliuk, V., Nepochatyi, O., Chantrenne, P., Lacroix, D. & Isaiev, M. Thermal conductivity of strained silicon: molecular dynamics insight and kinetic theory approach. J. Appl. Phys. 126, 055109 (2019).

    Article  ADS  Google Scholar 

  265. Xie, H. et al. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Phys. Rev. B 93, 075404 (2016).

    Article  ADS  Google Scholar 

  266. Bridgman, P. W. The thermal conductivity and compressibility of several rocks under high pressures. Am. J. Sci. 7, 81–102 (1924).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank H.-K. Mao for the encouragement in the technique development and research. The Center for High Pressure Science & Technology Advanced Research (HPSTAR, Shanghai), Harbin Institute of Technology (HIT, Shenzhen), Academia Sinica (Taipei) and the Carnegie Institution for Science (Washington DC) are gratefully acknowledged for support. This work is funded through the Shenzhen Science and Technology Program (grant no. KQTD2020082011304508) and the Basic Research Program of Shenzhen (grant no. JCYJ20200109112810241) at HIT and the National Key R&D Program of China (grant no. 2018YFA0305900) at HPSTAR. W.-P.H. acknowledges support from Academia Sinica and the Ministry of Science and Technology of Taiwan under contracts AS-CDA-106-M02 and 107-2628-M-001-004-MY3, as well as the fellowship from the Foundation for the Advancement of Outstanding Scholarship of Taiwan. The work at Carnegie is supported by the US National Science Foundation (grant nos. EAR-1763287 and EAR-2049127).

Author information

Authors and Affiliations

Authors

Contributions

X.-J.C. designed the project and developed the outline of this work. Y.Z., Z.-Y.D. and X.-J.C. compiled all the data in the tables. Z.-Y.D. and Y.Z. drew the figures. All authors contributed to the discussion of content and the preparation of the manuscript in collaboration.

Corresponding author

Correspondence to Xiao-Jia Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous referees for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Dong, ZY., Hsieh, WP. et al. Thermal conductivity of materials under pressure. Nat Rev Phys 4, 319–335 (2022). https://doi.org/10.1038/s42254-022-00423-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00423-9

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene