Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Roadmap
  • Published:

Magnetic reconnection in the era of exascale computing and multiscale experiments

Abstract

Astrophysical plasmas have the remarkable ability to preserve magnetic topology, which inevitably gives rise to the accumulation of magnetic energy within stressed regions including current sheets. This stored energy is often released explosively through the process of magnetic reconnection, which produces a reconfiguration of the magnetic field, along with high-speed flows, thermal heating and nonthermal particle acceleration. Either collisional or kinetic dissipation mechanisms are required to overcome the topological constraints, both of which have been predicted by theory and validated with in situ spacecraft observations or laboratory experiments. However, major challenges remain in understanding magnetic reconnection in large systems, such as the solar corona, where the collisionality is weak and the kinetic scales are vanishingly small in comparison with macroscopic scales. The plasmoid instability or formation of multiple plasmoids in long, reconnecting current sheets is one possible multiscale solution for bridging this vast range of scales, and new laboratory experiments are poised to study these regimes. In conjunction with these efforts, we anticipate that the coming era of exascale computing, together with the next generation of observational capabilities, will enable new progress on a range of challenging problems, including the energy build-up and onset of reconnection, partially ionized regimes, the influence of magnetic turbulence and particle acceleration.

Key points

  • Major challenges remain in understanding magnetic reconnection in large astrophysical systems where dissipation scales are extremely small compared with macroscopic scales.

  • The plasmoid instability of reconnecting current sheets is a natural mechanism to bridge this vast range of scales in both fully and partially ionized plasmas.

  • Upcoming multiscale laboratory experiments are poised to provide the first validation tests of the plasmoid instability, whereas exascale simulations will allow researchers to evaluate competing hypotheses regarding the influence of turbulence.

  • These simulations and experiments can also shed new light on the mechanisms of reconnection onset and how the reconnection layers couple with the macroscale systems that supply the magnetic flux.

  • Rapid progress is being made towards understanding the acceleration of highly energetic particles produced by magnetic reconnection, which may have broad relevance to energetic phenomena across the Universe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of large-scale electric current sheets in space, solar atmosphere, astrophysics and laboratory fusion plasmas.
Fig. 2: Magnetic reconnection within a current sheet.
Fig. 3: Phase diagram of magnetic reconnection.
Fig. 4: Two reconnection scenarios with different onset/trigger mechanisms and macroscale coupling.
Fig. 5: Illustration of particle acceleration mechanisms.

Similar content being viewed by others

References

  1. Birn, J. & Priest, E. R. in Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations Ch. 2 (Cambridge Univ. Press, 2007).

  2. Priest, E. & Forbes, T. Magnetic Reconnection: MHD Theory and Applications (Cambridge Univ. Press, 2000).

    Book  MATH  Google Scholar 

  3. Yamada, M., Kulsrud, R. & Ji, H. Magnetic reconnection. Rev. Mod. Phys. 82, 603 (2010).

    Article  ADS  MATH  Google Scholar 

  4. Yamada, M. Magnetic Reconnection: A Modern Synthesis of Theory, Experiment, and Observations (Princeton Univ. Press, 2022).

  5. Ji, H. & Daughton, W. Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasmas 18, 111207 (2011).

    Article  ADS  Google Scholar 

  6. Zhang, B. The physical mechanisms of fast radio bursts. Nature 587, 45–53 (2020).

    Article  ADS  Google Scholar 

  7. MacGregor, M. A. et al. Discovery of an extremely short duration flare from Proxima Centauri using millimeter through far-ultraviolet observations. Astrophys. J. Lett. 911, L25 (2021).

    Article  ADS  Google Scholar 

  8. Lapenta, G., Markidis, S., Divin, A., Newman, D. & Goldman, M. Separatrices: the crux of reconnection. J. Plasma Phys. 81, 325810109 (2015).

    Article  Google Scholar 

  9. Zhang, Q., Drake, J. & Siwsdak, M. Particle heating and energy partition in low-β guide field reconnection with kinetic Riemann simulations. Phys. Plasmas 26, 072115 (2019).

    Article  ADS  Google Scholar 

  10. Parker, E. N. Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509–520 (1957).

    Article  ADS  Google Scholar 

  11. Petschek, H. E. in Proceedings of the AAS-NASA Symposium on the Physics of Solar Flares Vol. 50 (ed. Hess, W.N.) 425–439 (NASA, 1964).

  12. Priest, E. & Forbes, T. New models for fast steady state magnetic reconnection. J. Geophys. Res. 91, 5579–5588 (1986).

    Article  ADS  Google Scholar 

  13. Forbes, T. G. & Priest, E. R. A comparison of analytical and numerical models for steadily driven magnetic reconnection. Rev. Geophys. 25, 1583–1607 (1987).

    Article  ADS  Google Scholar 

  14. Forbes, T. G., Priest, E. R., Seaton, D. B. & Litvinenko, Y. E. Indeterminacy and instability in Petschek reconnection. Phys. Plasmas 20, 052902 (2013).

    Article  ADS  Google Scholar 

  15. Ji, H., Yamada, M., Hsu, S. & Kulsrud, R. Experimental test of the Sweet-Parker model of magnetic reconnection. Phys. Rev. Lett. 80, 3256–3259 (1998).

    Article  ADS  Google Scholar 

  16. Torbert, R. et al. Estimates of terms in Ohm’s law during an encounter with an electron diffusion region. Geophys. Res. Lett. 43, 5918–5925 (2016).

    Article  ADS  Google Scholar 

  17. Roytershteyn, V., Daughton, W., Karimabadi, H. & Mozer, F. S. Influence of the lower-hybrid drift instability on magnetic reconnection in asymmetric configurations. Phys. Rev. Lett. 108, 185001 (2012).

    Article  ADS  Google Scholar 

  18. Liu, Y.-H., Daughton, W., Karimabadi, H., Li, H. & Roytershteyn, V. Bifurcated structure of the electron diffusion region in three-dimensional magnetic reconnection. Phys. Rev. Lett. 110, 265004 (2013).

    Article  ADS  Google Scholar 

  19. Le, A. et al. Drift turbulence, particle transport, and anomalous dissipation at the reconnecting magnetopause. Phys. Plasmas 25, 062103 (2018).

    Article  ADS  Google Scholar 

  20. Shibayama, T., Kusano, K., Miyoshi, T. & Bhattacharjee, A. Mechanism of non-steady Petschek-type reconnection with uniform resistivity. Phys. Plasmas 26, 032903 (2019).

    Article  ADS  Google Scholar 

  21. von Goeler, S., Stodiek, W. & Sauthoff, N. Studies of internal disruptions and m = 1 oscillations in tokamak discharges with soft — X-ray tecniques. Phys. Rev. Lett. 33, 1201–1203 (1974).

    Article  ADS  Google Scholar 

  22. Aydemir, A. Nonlinear studies of m = 1 modes in high-temperature plasmas. Phys. Fluids B 4, 3469–3472 (1992).

    Article  ADS  Google Scholar 

  23. Wang, X. & Bhattacharjee, A. Nonlinear dynamics of the m=1 instability and fast sawtooth collapse in high-temperature plasmas. Phys. Rev. Lett. 70, 1627–1630 (1993).

    Article  ADS  Google Scholar 

  24. Kleva, R., Drake, J. & Waelbroeck, F. Fast reconnection in high temperature plasmas. Phys. Plasmas 2, 23–34 (1995).

    Article  ADS  Google Scholar 

  25. Birn, J. et al. Geospace Environmental Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715–3719 (2001).

    Article  ADS  Google Scholar 

  26. Rogers, B. N., Denton, R. E., Drake, J. F. & Shay, M. A. Role of dispersive waves in collisionless magnetic reconnection. Phys. Rev. Lett. 87, 195004 (2001).

    Article  ADS  Google Scholar 

  27. Hesse, M., Birn, J. & Kuznetsova, M. Collisionless magnetic reconnection: electron processes and transport modeling. J. Geophys. Res. 106, 3721–3735 (2001).

    Article  ADS  Google Scholar 

  28. Pritchett, P. Geospace environmental modeling magnetic reconnection challenge: simulations with a full particle electromagnetic code. J. Geophys. Res. 106, 3783–3798 (2001).

    Article  ADS  Google Scholar 

  29. Ren, Y. et al. Experiment verification of the Hall effect during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 95, 055003 (2005).

    Article  ADS  Google Scholar 

  30. Fox, W. et al. Experimental verification of the role of electron pressure in fast magnetic reconnection with a guide field. Phys. Rev. Lett. 118, 125002 (2017).

    Article  ADS  Google Scholar 

  31. Yoo, J., Yamada, M., Ji, H. & Myers, C. Observation of ion acceleration and heating during collisionless magnetic reconnection in a laboratory plasma. Phys. Rev. Letts 110, 215007 (2013).

    Article  ADS  Google Scholar 

  32. Burch, J. L. et al. Electron-scale measurements of magnetic reconnection in space. Science 352, aaf2939 (2016).

    Article  ADS  Google Scholar 

  33. Chen, L.-J. et al. Electron diffusion region during magnetopause reconnection with an intermediate guide field: magnetospheric multiscale observations. J. Geophys. Res. 122, 5235–5246 (2017).

    Article  Google Scholar 

  34. Egedal, J. et al. Pressure tensor elements breaking the frozen-in law during reconnection in Earth’s magnetotail. Phys. Rev. Lett. 123, 225101 (2019).

    Article  ADS  Google Scholar 

  35. Ji, H. et al. New insights into dissipation in the electron layer during magnetic reconnection. Geophys. Res. Lett. 35, L13106 (2008).

    Article  ADS  Google Scholar 

  36. Yamada, M. et al. The two-fluid dynamics and energetics of the asymmetric magnetic reconnection in laboratory and space plasmas. Nat. Commun. 9, 5223 (2018).

    Article  ADS  Google Scholar 

  37. Cassak, P., Liu, Y.-H. & Shay, M. A review of the 0.1 reconnection rate. J. Plasma Phys. 83, 715830501 (2017).

    Article  Google Scholar 

  38. Bessho, N. & Bhattacharjee, A. Collisionless reconnection in an electron-positron plasma. Phys. Rev. Lett. 95, 245001 (2005).

    Article  ADS  Google Scholar 

  39. Ng, J., Egedal, J., Le, A., Daughton, W. & Chen, L.-J. Kinetic structure of the electron diffusion region in antiparallel magnetic reconnection. Phys. Rev. Lett. 106, 065002 (2011).

    Article  ADS  Google Scholar 

  40. Daughton, W., Scudder, J. & Karimabadi, H. Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas 13, 072101 (2006).

    Article  ADS  Google Scholar 

  41. Wang, X., Bhattacharjee, A. & Ma, Z. W. Scaling of collisionless forced reconnection. Phys. Rev. Lett. 87, 265003 (2001).

    Article  ADS  Google Scholar 

  42. Liu, Y. et al. Why does steady-state magnetic reconnection have a maximum local rate of order 0.1? Phys. Rev. Lett. 118, 085101 (2017).

    Article  ADS  Google Scholar 

  43. Stanier, A. et al. Role of ion kinetic physics in the interaction of magnetic flux ropes. Phys. Rev. Lett. 115, 175004 (2015).

    Article  ADS  Google Scholar 

  44. Ng, J. et al. The island coalescence problem: scaling of reconnection in extended fluid models including higher-order moments. Phys. Plasmas 22, 112104 (2015).

    Article  ADS  Google Scholar 

  45. Allmann-Rahn, F., Trost, T. & Grauer, R. Temperature gradient driven heat flux closure in fluid simulations of collisionless reconnection. J. Plasma Phys. 84, 905840307 (2018).

    Article  Google Scholar 

  46. Ng, J., Hakim, A., Bhattacharjee, A., Stanier, A. & Daughton, W. Simulations of anti-parallel reconnection using a nonlocal heat flux closure. Phys. Plasmas 24, 082112 (2017).

    Article  ADS  Google Scholar 

  47. Arnold, H. et al. Electron acceleration during macroscale magnetic reconnection. Phys. Rev. Lett. 126, 135101 (2021).

    Article  ADS  Google Scholar 

  48. Tajima, T. & Shibata, K. Plasma Astrophysics (Addison-Wesley, 1997).

    Google Scholar 

  49. Shibata, K. & Tanuma, S. Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53, 473–482 (2001).

    Article  ADS  Google Scholar 

  50. Birn, J. Computer studies of the dynamic evolution of the geomagnetic tail. J. Geophys. Res. 85, 1214–1222 (1980).

    Article  ADS  Google Scholar 

  51. Biskamp, D. Effect of secondary tearing instability on the coalescence of magnetic islands. Phys. Lett. A 87, 357–360 (1982).

    Article  ADS  Google Scholar 

  52. Forbes, T. G. & Priest, E. R. A numerical experiment relevant to line-tied reconnection in two-ribbon flares. Sol. Phys. 84, 169–188 (1983).

    Article  ADS  Google Scholar 

  53. Lee, L. & Fu, Z. Multiple X line reconnection: 1. A criterion for the transition from a single X line to a multiple X line reconnection. J. Geophys. Res. 91, 6807–6815 (1986).

    Article  ADS  Google Scholar 

  54. Loureiro, N. F., Schekochihin, A. A. & Cowley, S. C. Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14, 100703 (2007).

    Article  ADS  Google Scholar 

  55. Bhattacharjee, A., Huang, Y.-M., Yang, H. & Rogers, B. Fast reconnection in high-Lundquist-number plasmas due to secondary tearing instabilities. Phys. Plasmas 16, 112102 (2009).

    Article  ADS  Google Scholar 

  56. Samtaney, R., Loureiro, N., Uzdensky, D., Schekochihin, A. & Cowley, S. C. Formation of plasmoid chains in magnetic reconnection. Phys. Rev. Lett. 103, 105004 (2009).

    Article  ADS  Google Scholar 

  57. Ni, L. et al. Linear plasmoid instability of thin current sheets with shear flow. Phys. Plasmas 17, 052109 (2010).

    Article  ADS  Google Scholar 

  58. Huang, Y.-M., Bhattacharjee, A. & Sullivan, B. P. Onset of fast reconnection in Hall magnetohydrodynamics mediated by the plasmoid instability. Phys. Plasmas 18, 072109 (2011).

    Article  ADS  Google Scholar 

  59. Comisso, L., Lingam, M., Huang, Y.-M. & Bhattacharjee, A. General theory of the plasmoid instability. Phys. Plasmas 23, 100702 (2016).

    Article  ADS  Google Scholar 

  60. Bulanov, S. V., Syrovatskiĭ, S. I. & Sakai, J. Stabilizing influence of plasma flow on dissipative tearing instability. Soviet J. Exp. Theor. Phys. Lett. 28, 177–179 (1978).

    Google Scholar 

  61. Loureiro, N. F., Samtaney, R., Schekochihin, A. A. & Uzdensky, D. A. Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas. Phys. Plasmas 19, 042303 (2012).

    Article  ADS  Google Scholar 

  62. Uzdensky, D. A., Loureiro, N. F. & Schekochihin, A. Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105, 235002 (2010).

    Article  ADS  Google Scholar 

  63. Daughton, W. et al. Influence of Coulomb collisions on the structure of reconnection layers. Phys. Plasmas 16, 072117 (2009).

    Article  ADS  Google Scholar 

  64. Daughton, W. et al. Transition from collisional to kinetic regimes in large-scale reconnection layers. Phys. Rev. Lett. 103, 065004 (2009).

    Article  ADS  Google Scholar 

  65. Stanier, A., Daughton, W., Le, A., Li, X. & Bird, R. Influence of 3D plasmoid dynamics on the transition from collisional to kinetic reconnection. Phys. Plasmas 26, 072121 (2019).

    Article  ADS  Google Scholar 

  66. Lazarian, A. & Vishniac, E. Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999).

    Article  ADS  Google Scholar 

  67. Schekochihin, A. A. MHD turbulence: a biased review. Preprint at https://arxiv.org/abs/2010.00699 (2020).

  68. Zhdankin, V., Uzdensky, D. A., Perez, J. C. & Boldyrev, S. Statistical analysis of current sheets in three-dimensional magnetohydrodynamic turbulence. Astrophys. J. 771, 124 (2013).

    Article  ADS  Google Scholar 

  69. Loureiro, N. F. & Boldyrev, S. Role of magnetic reconnection in magnetohydrodynamic turbulence. Phys. Rev. Lett. 118, 245101 (2017).

    Article  ADS  Google Scholar 

  70. Dong, C., Wang, L., Huang, Y.-M., Comisso, L. & Bhattacharjee, A. Role of the plasmoid instability in magnetohydrodynamic turbulence. Phys. Rev. Lett. 121, 165101 (2018).

    Article  ADS  Google Scholar 

  71. Boldyrev, S. & Loureiro, N. F. Tearing instability in Alfvén and kinetic-Alfvén turbulence. J. Geophys. Res. 125, e2020JA028185 (2020).

    Article  ADS  Google Scholar 

  72. Loureiro, N. F. & Boldyrev, S. Nonlinear reconnection in magnetized turbulence. Astrophys. J. 890, 55 (2020).

    Article  ADS  Google Scholar 

  73. Phan, T. D. et al. Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature 557, 202–206 (2018).

    Article  ADS  Google Scholar 

  74. Karimabadi, H. et al. The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Phys. Plasmas 21, 062308 (2014).

    Article  ADS  Google Scholar 

  75. Matsumoto, Y., Amano, T., Kato, T. N. & Hoshino, M. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave. Science 347, 974–978 (2015).

    Article  ADS  Google Scholar 

  76. Hawley, J. F. & Balbus, S. A. A powerful local shear instability in weakly magnetized disks. III. Long-term evolution in a shearing sheet. Astrophys. J. 400, 595–609 (1992).

    Article  ADS  Google Scholar 

  77. Uzdensky, D. A. Magnetic reconnection in extreme astrophysical environments. Space Sci. Rev. 160, 45–71 (2011).

    Article  ADS  Google Scholar 

  78. Daughton, W. & Roytershteyn, V. Emerging parameter space map of magnetic reconnection in collisional and kinetic regimes. Space Sci. Rev. 172, 271–282 (2012).

    Article  ADS  Google Scholar 

  79. Huang, Y.-M. & Bhattacharjee, A. Plasmoid instability in high-Lundquist-number magnetic reconnection. Phys. Plasmas 20, 055702 (2013).

    Article  ADS  Google Scholar 

  80. Karimabadi, H. & Lazarian, A. Magnetic reconnection in the presence of externally driven and self-generated turbulence. Phys. Plamas 20, 112102 (2013).

    Article  ADS  Google Scholar 

  81. Cassak, P. A. & Drake, J. F. On phase diagrams of magnetic reconnection. Phys. Plasmas 20, 061207 (2013).

    Article  ADS  Google Scholar 

  82. Le, A. et al. Transition in electron physics of magnetic reconnection in weakly collisional plasma. J. Plasma Phys. 81, 305810108 (2015).

    Article  Google Scholar 

  83. Loureiro, N. F. & Uzdensky, D. A. Magnetic reconnection: from the Sweet–Parker model to stochastic plasmoid chains. Plasma Phys. Control. Fusion 58, 014021 (2016).

    Article  ADS  Google Scholar 

  84. Pucci, F., Velli, M. & Tenerani, A. Fast magnetic reconnection: “ideal” tearing and the Hall effect. Astrophys. J. 845, 25 (2017).

    Article  ADS  Google Scholar 

  85. Bhat, P. & Loureiro, N. F. Plasmoid instability in the semi-collisional regime. J. Plasma Phys. 84, 905840607 (2018).

    Article  Google Scholar 

  86. Hare, J. D. et al. Anomalous heating and plasmoid formation in a driven magnetic reconnection experiment. Phys. Rev. Lett. 118, 085001 (2017).

    Article  ADS  Google Scholar 

  87. Mozer, F. S., Bale, S. D. & Phan, T. D. Evidence of diffusion regions at a subsolar magnetopause crossing. Phys. Rev. Lett. 89, 015002 (2002).

    Article  ADS  Google Scholar 

  88. Jara-Almonte, J. & Ji, H. Thermodynamic phase transition in magnetic reconnection. Phys. Rev. Lett. 127, 055102 (2021).

    Article  ADS  Google Scholar 

  89. Dreicer, H. Electron and ion runaway in a fully ionized gas. I. Phys. Rev. 115, 238–249 (1959).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Sharma Pyakurel, P. et al. Transition from ion-coupled to electron-only reconnection: basic physics and implications for plasma turbulence. Phys. Plasmas 26, 082307 (2019).

    Article  ADS  Google Scholar 

  91. Califano, F. et al. Electron-only reconnection in plasma turbulence. Front. Phys. 8, 317 (2020).

    Article  Google Scholar 

  92. Ebrahimi, F. & Raman, R. Plasmoids formation during simulations of coaxial helicity injection in the national spherical torus experiment. Phys. Rev. Lett. 114, 205003 (2015).

    Article  ADS  Google Scholar 

  93. Fermo, R. L., Drake, J. F. & Swisdak, M. A statistical model of magnetic islands in a current layer. Phys. Plasmas 17, 010702 (2010).

    Article  ADS  Google Scholar 

  94. Huang, Y.-M. & Bhattacharjee, A. Distribution of plasmoids in high-Lundquist-number magnetic reconnection. Phys. Rev. Lett. 109, 265002 (2012).

    Article  ADS  Google Scholar 

  95. Takamoto, M. Evolution of relativistic plasmoid chains in a Poynting-dominated plasma. Astrophys. J. 775, 50 (2013).

    Article  ADS  Google Scholar 

  96. Guo, L.-J., Bhattacharjee, A. & Huang, Y.-M. Distribution of plasmoids in post-coronal mass ejection current sheets. Astrophys. J. Lett. 771, L14 (2013).

    Article  ADS  Google Scholar 

  97. Lingam, M. & Comisso, L. A maximum entropy principle for inferring the distribution of 3D plasmoids. Phys. Plasmas 25, 012114 (2018).

    Article  ADS  Google Scholar 

  98. Petropoulou, M., Christie, I. M., Sironi, L. & Giannios, D. Plasmoid statistics in relativistic magnetic reconnection. Mon. Not. R. Astron. Soc. 475, 3797–3812 (2018).

    Article  ADS  Google Scholar 

  99. Zhou, M., Loureiro, N. F. & Uzdensky, D. Multi-scale dynamics of magnetic flux tubes and inverse magnetic energy transfer. J. Plasma Phys. 86, 535860401 (2020).

    Article  Google Scholar 

  100. Majeski, S., Ji, H., Jara-Almonte, J. & Yoo, J. Guide field effects on the distribution of plasmoids in multiple scale reconnection. Phys. Plasmas 28, 092106 (2021).

    Article  ADS  Google Scholar 

  101. Russell, C. T. & Elphic, R. C. ISEE observations of flux transfer events at the dayside magnetopause. Geophys. Res. Lett. 6, 33–36 (1979).

    Article  ADS  Google Scholar 

  102. Slavin, J. A. et al. Geotail observations of magnetic flux ropes in the plasma sheet. J. Geophys. Res. 108, 1015 (2003).

    Article  Google Scholar 

  103. Chen, L.-J. et al. Observation of energetic electrons within magnetic islands. Nat. Phys. 4, 19–23 (2008).

    Article  Google Scholar 

  104. Shibata, K. et al. Hot-plasma ejections associated with compact-loop solar flares. Astrophys. J. Lett. 451, L83–L85 (1995).

    Article  ADS  Google Scholar 

  105. McKenzie, D. E. & Hudson, H. S. X-ray observations of motions and structure above a solar flare arcade. Astrophys. J. Lett. 519, L93–L96 (1999).

    Article  ADS  Google Scholar 

  106. Fermo, R. L., Drake, J. F., Swisdak, M. & Hwang, K.-J. Comparison of a statistical model for magnetic islands in large current layers with Hall MHD simulations and Cluster FTE observations. J. Geophys. Res. 116, 9226 (2011).

    Google Scholar 

  107. Dorfman, S. et al. Three-dimensional, impulsive magnetic reconnection in a laboratory plasma. Geophys. Res. Lett. 40, 233–238 (2013).

    Article  ADS  Google Scholar 

  108. Vogt, M. F. et al. Structure and statistical properties of plasmoids in Jupiter’s magnetotail. J. Geophys. Res. Space Phys. 119, 821–843 (2014).

    Article  ADS  Google Scholar 

  109. Olson, J. et al. Experimental demonstration of the collisionless plasmoid instability below the ion kinetic scale during magnetic reconnection. Phys. Rev. Lett 116, 255001 (2016).

    Article  ADS  Google Scholar 

  110. Akhavan-Tafti, M. et al. MMS examination of FTEs at the Earth’s subsolar magnetopause. J. Geophys. Res. Space Phys. 123, 1224–1241 (2018).

    Article  ADS  Google Scholar 

  111. Bergstedt, K. et al. Statistical properties of magnetic structures and energy dissipation during turbulent reconnection in the Earth’s magnetotail. Geophys. Res. Lett. 47, e88540 (2020).

    Article  ADS  Google Scholar 

  112. Ji, H. et al. The FLARE device and its first plasma operation [abstract CP11.020]. Bull. Am. Phys. Soc. 63, 11 (2018).

    Google Scholar 

  113. Yamada, M. et al. Study of driven magnetic reconnection in a laboratory plasma. Phys. Plasmas 4, 1936–1944 (1997).

    Article  ADS  Google Scholar 

  114. Forest, C. B. et al. The Wisconsin Plasma Astrophysics Laboratory. J. Plasma Phys. 81, 345810501 (2015).

    Article  Google Scholar 

  115. Stenzel, R. L., Gekelman, W. & Urrutia, J. M. Lessons from laboratory experiments on reconnection. Adv. Space Res. 6, 135–147 (1986).

    Article  Google Scholar 

  116. Ono, Y. et al. Intermittent magnetic reconnection in TS-3 merging experiment. Phys. Plasmas 18, 111213 (2011).

    Article  ADS  Google Scholar 

  117. Jara-Almonte, J., Ji, H., Yamada, M., Yoo, J. & Fox, W. Laboratory observation of resistive electron tearing in a two-fluid reconnecting current sheet. Phys. Rev. Lett. 117, 095001 (2016).

    Article  ADS  Google Scholar 

  118. Ni, L., Ji, H., Murphy, N. A. & Jara-Almonte, J. Magnetic reconnection in partially ionized plasmas. Proc. R. Soc. A 476, 20190867 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. Mestel, L. & Spitzer, J. L. Star formation in magnetic dust clouds. Mon. Not. R. Astron. Soc. 116, 503–514 (1956).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. Brandenburg, A. & Zweibel, E. G. The formation of sharp structures by ambipolar diffusion. Astrophys. J. Lett. 427, L91–L94 (1994).

    Article  ADS  Google Scholar 

  121. Brandenburg, A. & Zweibel, E. G. Effects of pressure and resistivity on the ambipolar diffusion singularity: too little, too late. Astrophys. J. 448, 734–741 (1995).

    Article  ADS  Google Scholar 

  122. Kulsrud, R. & Pearce, W. P. The effect of wave-particle interactions on the propagation of cosmic rays. Astrophys. J. 156, 445–469 (1969).

    Article  ADS  Google Scholar 

  123. Zweibel, E. G. Magnetic reconnection in partially ionized gases. Astrophys. J. 340, 550–557 (1989).

    Article  ADS  Google Scholar 

  124. Malyshkin, L. M. & Zweibel, E. G. Onset of fast magnetic reconnection in partially ionized gases. Astrophys. J. 739, 72 (2011).

    Article  ADS  Google Scholar 

  125. Zweibel, E. G. et al. Magnetic reconnection in partially ionized plasmas. Phys. Plasmas 18, 111211 (2011).

    Article  ADS  Google Scholar 

  126. Ni, L., Yang, Z. & Wang, H. Fast magnetic reconnection with Cowling’s conductivity. Astrophys. Space Sci. 312, 139–144 (2007).

    Article  ADS  MATH  Google Scholar 

  127. Smith, P. & Sakai, J. Chromospheric magnetic reconnection: two-fluid simulations of coalescing current loops. Astron. Astrophys. 486, 569–575 (2008).

    Article  ADS  MATH  Google Scholar 

  128. Leake, J. E., Lukin, V. S., Linton, M. G. & Meier, E. T. Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. Astrophys. J. 760, 109 (2012).

    Article  ADS  Google Scholar 

  129. Murphy, N. A. & Lukin, V. S. Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas. Astrophys. J. 805, 134 (2015).

    Article  ADS  Google Scholar 

  130. Ni, L., Lukin, V. S., Murphy, N. A. & Lin, J. Magnetic reconnection in strongly magnetized regions of the low solar chromosphere. Astrophys. J. 852, 95 (2018).

    Article  ADS  Google Scholar 

  131. Singh, K. A. P. et al. Effect of ionization and recombination on the evolution of the Harris-type current sheet in partially ionized plasmas. Astrophys. J. 884, 161 (2019).

    Article  ADS  Google Scholar 

  132. Leake, J. E., Lukin, V. S. & Linton, M. G. Magnetic reconnection in a weakly ionized plasma. Phys. Plasmas 20, 061202 (2013).

    Article  ADS  Google Scholar 

  133. Lawrence, E., Ji, H., Yamada, M. & Yoo, J. Laboratory study of Hall reconnection in partially ionized plasmas. Phys. Rev. Lett. 110, 015001 (2013).

    Article  ADS  Google Scholar 

  134. Takahata, Y., Yanai, R. & Inomoto, M. Experimental study of magnetic reconnection in partially ionized plasmas using rotating magnetic field. Plasma Fusion Res. 14, 3401054 (2019).

    Article  ADS  Google Scholar 

  135. Jara-Almonte, J. et al. Kinetic simulations of magnetic reconnection in partially ionized plasmas. Phys. Rev. Lett. 122, 015101 (2019).

    Article  ADS  Google Scholar 

  136. Jara-Almonte, J., Murphy, N. & Ji, H. Multi-fluid and kinetic models of partially ionized magnetic reconnection. Phys. Plasmas 28, 042108 (2021).

    Article  ADS  Google Scholar 

  137. Avrett, E. H. & Loeser, R. Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. Astrophys. J. Suppl. Ser. 175, 229 (2008).

    Article  ADS  Google Scholar 

  138. Carlsson, M., De Pontieu, B. & Hansteen, V. H. New view of the solar chromosphere. Annu Rev. Astron. Astrophys. 57, 189–226 (2019).

    Article  ADS  Google Scholar 

  139. Innes, D., Guo, L.-J., Huang, Y.-M. & Bhattacharjee, A. IRIS Si IV line profiles: an indication for the plasmoid instability during small-scale magnetic reconnection on the Sun. Astrophys. J. 813, 86 (2015).

    Article  ADS  Google Scholar 

  140. Lazarian, A., Vishniac, E. T. & Cho, J. Magnetic field structure and stochastic reconnection in a partially ionized gas. Astrophys. J. 603, 180–197 (2004).

    Article  ADS  Google Scholar 

  141. Galeev, A., Kuznetsova, M. & Zelenyi, L. Magnetopause stability threshold for patchy reconnection. Space Sci. Rev. 44, 1–41 (1986).

    Article  ADS  Google Scholar 

  142. Matthaeus, W. & Lamkin, S. Turbulent magnetic reconnection. Phys. Fluids 29, 2513–2534 (1986).

    Article  ADS  Google Scholar 

  143. Loureiro, N. F., Uzdensky, D. A., Schekochihin, A. A., Cowley, S. C. & Yousef, T. A. Turbulent magnetic reconnection in two dimensions. Mon. Not. R. Astron. Soc. 399, L146–L150 (2009).

    Article  ADS  Google Scholar 

  144. Oishi, J., Low, M., Collins, D. & Tamura, M. Self-generated turbulence in magnetic reconnection. Astrophys. J. Lett. 806, L12 (2015).

    Article  ADS  Google Scholar 

  145. Huang, Y.-M. & Bhattacharjee, A. Turbulent magnetohydrodynamic reconnection mediated by the plasmoid instability. Astrophys. J. 818, 20 (2016).

    Article  ADS  Google Scholar 

  146. Kowal, G., Falceta-Goncalves, D., Lazarian, A. & Vishniac, E. Statistics of reconnection-driven turbulence. Astrophys. J. 838, 91 (2017).

    Article  ADS  Google Scholar 

  147. Beresnyak, A. Three-dimensional spontaneous magnetic reconnection. Astrophys. J. 834, 47 (2017).

    Article  ADS  Google Scholar 

  148. Kowal, G., Falceta-Goncalves, D., Lazarian, A. & Vishniac, E. Kelvin–Helmholtz versus tearing instability: what drives turbulence in stochastic reconnection? Astrophys. J. 892, 50 (2020).

    Article  ADS  Google Scholar 

  149. Yang, L. et al. Fast magnetic reconnection with turbulence in high Lundquist number limit. Astrophys. J. Lett. 901, L22 (2020).

    Article  ADS  Google Scholar 

  150. Daughton, W. et al. Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. 7, 539–542 (2011).

    Article  Google Scholar 

  151. Leonardis, E., Chapman, S. C., Daughton, W., Royterhsteyn, V. & Karimabadi, H. Identification of intermittent multi-fractal turbulence in fully kinetic simulations of magnetic reconnection. Phys. Rev. Lett. 110, 205002 (2013).

    Article  ADS  Google Scholar 

  152. Daughton, W., Nakamura, T., Karimabadi, H., Roytershteyn, V. & Loring, B. Computing the reconnection rate in turbulent kinetic layers by using electron mixing to identify topology. Phys. Plasmas 21, 052307 (2014).

    Article  ADS  Google Scholar 

  153. Liu, Y.-H., Daughton, W., Karimabadi, H., Li, H. & Roytershteyn, V. Bifurcated structure of the electron diffusion region in three-dimensional magnetic reconnection. Phys. Rev. Lett. 110, 265004 (2013).

    Article  ADS  Google Scholar 

  154. Nakamura, T., Nakamura, R., Narita, Y., Baumjohann, W. & Daughton, W. Multi-scale structures of turbulent magnetic reconnection. Phys. Plasmas 23, 052116 (2016).

    Article  ADS  Google Scholar 

  155. Dahlin, J., Drake, J. & Swisdak, M. The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection. Phys. Plasmas 24, 092110 (2017).

    Article  ADS  Google Scholar 

  156. Li, X., Guo, F., Li, H., Stanier, A. & Kilian, P. Formation of power-law electron energy spectra in three-dimensional low-β magnetic reconnection. Astrophys. J. 884, 118 (2019).

    Article  ADS  Google Scholar 

  157. Guo, F. et al. Magnetic energy release, plasma dynamics, and particle acceleration in relativistic turbulent magnetic reconnection. Astrophys. J. 919, 111 (2021).

    Article  ADS  Google Scholar 

  158. Fu, H. et al. Intermittent energy dissipation by turbulent reconnection. Geophys. Res. Lett. 44, 37–43 (2017).

    Article  ADS  Google Scholar 

  159. Nakamura, T. K. M., Daughton, W., Karimabadi, H. & Eriksson, S. Three-dimensional dynamics of vortex-induced reconnection and comparison with THEMIS observations. J. Geophys. Res. Space Phys. 118, 5742–5757 (2013).

    Article  ADS  Google Scholar 

  160. Pucci, F. et al. Properties of turbulence in the reconnection exhaust: numerical simulations compared with observations. Astrophys. J. 841, 60 (2017).

    Article  ADS  Google Scholar 

  161. Nakamura, T. et al. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas. Nat. Commun. 8, 1582 (2017).

    Article  ADS  Google Scholar 

  162. Lazarian, A. et al. 3D turbulent reconnection: theory, tests, and astrophysical implications. Phys. Plasmas 27, 012305 (2020).

    Article  ADS  Google Scholar 

  163. Goldreich, P. & Sridhar, S. Magnetohydrodynamic turbulence revisited. Astrophys. J. 485, 680–688 (1997).

    Article  ADS  Google Scholar 

  164. Kowal, G., Lazarian, A., Vishniac, E. & Otmianowska-Mazur, K. Reconnection studies under different types of turbulence driving. Nonlinear Process. Geophys. 19, 297–314 (2012).

    Article  ADS  Google Scholar 

  165. Park, W., Monticello, D. A. & White, R. B. Reconnection rates of magnetic fields including the effects of viscosity. Phys. Fluids 27, 137–149 (1984).

    Article  ADS  MATH  Google Scholar 

  166. Boozer, A. H. Separation of magnetic field lines. Phys. Plasmas 19, 112901 (2012).

    Article  ADS  Google Scholar 

  167. Eyink, G. L., Lazarian, A. & Vishniac, E. T. Fast magnetic reconnection and spontaneous stochasticity. Astrophys. J. 743, 51 (2011).

    Article  ADS  Google Scholar 

  168. Priest, E. & Pontin, D. Three-dimensional null point reconnection regimes. Phys. Plasmas 16, 122101 (2009).

    Article  ADS  Google Scholar 

  169. Li, T., Priest, E. & Guo, R. Three-dimensional magnetic reconnection in astrophysical plasmas. Proc. R. Soc. A 477, 20200949 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  170. Kusano, K., Maeshiro, T., Yokoyama, T. & Sakurai, T. Measurement of magnetic helicity injection and free energy loading into the solar corona. Astrophys. J. 577, 501 (2002).

    Article  ADS  Google Scholar 

  171. Sitnov, M. et al. Explosive magnetotail activity. Space Sci. Rev. 215, 31 (2019).

    Article  ADS  Google Scholar 

  172. Angelopoulos, V. et al. Tail reconnection triggering substorm onset. Science 321, 931–935 (2008).

    Article  ADS  Google Scholar 

  173. Hastie, R. Sawtooth instability in tokamak plasmas. Astrophys. Space Sci. 256, 177–204 (1997).

    Article  ADS  MATH  Google Scholar 

  174. Prager, S. C. et al. Overview of results in the MST reversed field pinch experiment. Nucl. Fusion 45, S276 (2005).

    Article  Google Scholar 

  175. Pritchett, P. & Coroniti, F. Formation of thin current sheets during plasma sheet convection. J. Geophys. Res. Space Phys. 100, 23551–23565 (1995).

    Article  ADS  Google Scholar 

  176. Pucci, F. & Velli, M. Reconnection of quasi-singular current sheets: the “ideal” tearing mode. Astrophys. J. Lett. 780, L19 (2014).

    Article  ADS  Google Scholar 

  177. Uzdensky, D. A. & Loureiro, N. F. Magnetic reconnection onset via disruption of a forming current sheet by the tearing instability. Phys. Rev. Lett 116, 105003 (2016).

    Article  ADS  Google Scholar 

  178. Huang, Y.-M., Comisso, L. & Bhattacharjee, A. Plasmoid instability in evolving current sheets and onset of fast reconnection. Astrophys. J. 849, 75 (2017).

    Article  ADS  Google Scholar 

  179. Baalrud, S. D., Bhattacharjee, A., Huang, Y.-M. & Germaschewski, K. Hall magnetohydrodynamic reconnection in the plasmoid unstable regime. Phys. Plasmas 18, 092108 (2011).

    Article  ADS  Google Scholar 

  180. Baalrud, S. D., Bhattacharjee, A. & Huang, Y.-M. Reduced magnetohydrodynamic theory of oblique plasmoid instabilities. Phys. Plasmas 19, 022101 (2012).

    Article  ADS  Google Scholar 

  181. Baalrud, S. D., Bhattacharjee, A. & Daughton, W. Collisionless kinetic theory of oblique tearing instabilities. Phys. Plasmas 25, 022115 (2018).

    Article  ADS  Google Scholar 

  182. Pritchett, P. L. & Coroniti, F. V. Structure and consequences of the kinetic ballooning/interchange instability in the magnetotail. J. Geophys. Res. 118, 146–159 (2013).

    Article  Google Scholar 

  183. Eriksson, S. et al. Magnetospheric multiscale observations of magnetic reconnection associated with Kelvin-Helmholtz waves. Geophys. Res. Lett. 43, 5606–5615 (2016).

    Article  ADS  Google Scholar 

  184. Shibata, K. & Magara, T. Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8, 6 (2011).

    Article  ADS  Google Scholar 

  185. Forbes, T. & Priest, E. Photospheric magnetic field evolution and eruptive flares. Astrophys. J. 446, 377–389 (1995).

    Article  ADS  Google Scholar 

  186. Hood, A. W. & Priest, E. Kink instability of solar coronal loops as the cause of solar flares. Sol. Phys. 64, 303–321 (1979).

    Article  ADS  Google Scholar 

  187. Kliem, B. & Török, T. Torus Instability. Phys. Rev. Lett. 96, 255002 (2006).

    Article  ADS  Google Scholar 

  188. Kadomtsev, B. B. Disruptive instability in tokamaks. Sov. J. Plasma Phys. 1, 389–391 (1975).

    ADS  Google Scholar 

  189. Porcelli, F., Boucher, D. & Rosenbluth, M. Model for the sawtooth period and amplitude. Plasma Phys. Control. Fusion 38, 2163 (1996).

    Article  ADS  Google Scholar 

  190. Jardin, S. C., Krebs, I. & Ferraro, N. A new explanation of the sawtooth phenomena in tokamaks. Phys. Plasmas 27, 032509 (2020).

    Article  ADS  Google Scholar 

  191. Biskamp, D. & Welter, H. Coalescence of magnetic islands. Phys. Rev. Lett. 44, 1069 (1980).

    Article  ADS  Google Scholar 

  192. Knoll, D. & Chacón, L. Coalescence of magnetic islands, sloshing, and the pressure problem. Phys. Plasmas 13, 032307 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  193. Shadid, J., Pawlowski, R., Chacóon, L. & Knoll, D. Current sheet break-up via fast plasmoid formation in the island coalescence problem the ultra-high Lundquist number regime (S109) [abstract CP9.00152]. Bull. Am. Phys. Soc. 55, 15 (2010).

  194. Dorelli, J. C. & Birn, J. Whistler-mediated magnetic reconnection in large systems: magnetic flux pileup and the formation of thin current sheets. J. Geophys. Res. Space Phys. 108, 1133 (2003).

    Article  ADS  Google Scholar 

  195. Knoll, D. A. & Chacón, L. Coalescence of magnetic islands in the low-resistivity, Hall-MHD regime. Phys. Rev. Lett. 96, 135001 (2006).

    Article  ADS  Google Scholar 

  196. Karimabadi, H., Dorelli, J., Roytershteyn, V., Daughton, W. & Chacón, L. Flux pileup in collisionless magnetic reconnection: bursty interaction of large flux ropes. Phys. Rev. Lett. 107, 025002 (2011).

    Article  ADS  Google Scholar 

  197. Makwana, K. D., Keppens, R. & Lapenta, G. Study of magnetic reconnection in large-scale magnetic island coalescence via spatially coupled MHD and PIC simulations. Phys. Plasmas 25, 082904 (2018).

    Article  ADS  Google Scholar 

  198. Chapman, I. et al. Magnetic reconnection triggering magnetohydrodynamic instabilities during a sawtooth crash in a tokamak plasma. Phys. Rev. Lett. 105, 255002 (2010).

    Article  ADS  Google Scholar 

  199. Sun, X. et al. Why is the great solar active region 12192 flare-rich but CME-poor? Astrophys. J. Lett. 804, L28 (2015).

    Article  ADS  Google Scholar 

  200. Myers, C. E. et al. A dynamic magnetic tension force as the cause of failed solar eruptions. Nature 528, 526–529 (2015).

    Article  ADS  Google Scholar 

  201. Antiochos, S., DeVore, C. & Klimchuk, J. A model for solar coronal mass ejections. Astrophys. J. 510, 485 (1999).

    Article  ADS  Google Scholar 

  202. Wyper, P. F., Antiochos, S. K. & DeVore, C. R. A universal model for solar eruptions. Nature 544, 452–455 (2017).

    Article  ADS  Google Scholar 

  203. Longcope, D. & Forbes, T. Breakout and tether-cutting eruption models are both catastrophic (sometimes). Sol. Phys. 289, 2091–2122 (2014).

    Article  ADS  Google Scholar 

  204. Kumar, P., Karpen, J. T., Antiochos, S. K., Wyper, P. F. & DeVore, C. R. First detection of plasmoids from breakout reconnection on the Sun. Astrophys. J. Lett. 885, L15 (2019).

    Article  ADS  Google Scholar 

  205. Karpen, J. T., Antiochos, S. K. & DeVore, C. R. The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J. 760, 81 (2012).

    Article  ADS  Google Scholar 

  206. Savrukhin, P. V. Generation of suprathermal electrons during magnetic reconnection at the sawtooth crash and disruption instability in the T-10 tokamak. Phys. Rev. Lett. 86, 3036–3039 (2001).

    Article  ADS  Google Scholar 

  207. DuBois, A. M. et al. Anisotropic electron tail generation during tearing mode magnetic reconnection. Phys. Rev. Lett. 118, 075001 (2017).

    Article  ADS  Google Scholar 

  208. Magee, R. M. et al. Anisotropic ion heating and tail generation during tearing mode magnetic reconnection in a high-temperature plasma. Phys. Rev. Lett. 107, 065005 (2011).

    Article  ADS  Google Scholar 

  209. Emslie, A. G. et al. Energy partition in two solar flare/CME events. J. Geophys. Res. Space Phys. 109, A10104 (2004).

    Article  ADS  Google Scholar 

  210. Krucker, S. et al. Measurements of the coronal acceleration region of a solar flare. Astrophys. J. 714, 1108 (2010).

    Article  ADS  Google Scholar 

  211. Øieroset, M., Lin, R. P., Phan, T.-D., Larson, D. E. & Bale, S. D. Evidence for electron acceleration up to ~300 keV in the magnetic reconnection diffusion region of Earth’s magnetotail. Phys. Rev. Lett. 89, 195001 (2002).

    Article  ADS  Google Scholar 

  212. Cerutti, B., Uzdensky, D. A. & Begelman, M. C. Extreme particle acceleration in magnetic reconnection layers: application to the gamma-ray flares in the Crab Nebula. Astrophys. J. 746, 148 (2012).

    Article  ADS  Google Scholar 

  213. Sironi, L. & Spitkovsky, A. Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. Lett. 783, L21 (2014).

    Article  ADS  Google Scholar 

  214. Philippov, A., Uzdensky, D. A., Spitkovsky, A. & Cerutti, B. Pulsar radio emission mechanism: radio nanoshots as a low-frequency afterglow of relativistic magnetic reconnection. Astrophys. J. Lett. 876, L6 (2019).

    Article  ADS  Google Scholar 

  215. Phan, T. et al. Electron bulk heating in magnetic reconnection at Earth’s magnetopause: dependence on the inflow Alfvén speed and magnetic shear. Geophys. Res. Lett. 40, 4475–4480 (2013).

    Article  ADS  Google Scholar 

  216. Dahlin, J. T. Prospectus on electron acceleration via magnetic reconnection. Phys. Plasmas 27, 100601 (2020).

    Article  ADS  Google Scholar 

  217. Li, X., Guo, F. & Liu, Y.-H. The acceleration of charged particles and formation of power-law energy spectra in nonrelativistic magnetic reconnection. Phys. Plasmas 28, 052905 (2021).

    Article  ADS  Google Scholar 

  218. Guo, F. et al. Recent progress on particle acceleration and reconnection physics during magnetic reconnection in the magnetically-dominated relativistic regime. Phys. Plasmas 27, 080501 (2020).

    Article  ADS  Google Scholar 

  219. Zenitani, S. & Hoshino, M. The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. Lett. 562, L63 (2001).

    Article  ADS  Google Scholar 

  220. Uzdensky, D. A., Cerutti, B. & Begelman, M. C. Reconnection-powered linear accelerator and gamma-ray flares in the crab nebula. Astrophys. J. 737, L40 (2011).

    Article  ADS  Google Scholar 

  221. Chien, A. et al. Direct measurement of non-thermal electron acceleration from magnetically driven reconnection in a laboratory plasma. Preprint at https://arxiv.org/abs/2201.10052 (2022).

  222. Zhang, H., Sironi, L. & Giannios, D. Fast particle acceleration in three-dimensional relativistic reconnection. Astrophys. J. 922, 261 (2021).

    Article  ADS  Google Scholar 

  223. Drake, J. F., Swisdak, M., Che, H. & Shay, M. A. Electron acceleration from contracting magnetic islands during reconnection. Nature 442, 553–556 (2006).

    Article  ADS  Google Scholar 

  224. Dahlin, J., Drake, J. & Swisdak, M. The mechanisms of electron heating and acceleration during magnetic reconnection. Phys. Plasmas 21, 092304 (2014).

    Article  ADS  Google Scholar 

  225. Guo, F., Li, H., Daughton, W. & Liu, Y.-H. Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection. Phys. Rev. Lett. 113, 155005 (2014).

    Article  ADS  Google Scholar 

  226. Egedal, J., Le, A. & Daughton, W. A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection. Phys. Plasmas 20, 061201 (2013).

    Article  ADS  Google Scholar 

  227. Hoshino, M., Mukai, T., Terasawa, T. & Shinohara, I. Suprathermal electron acceleration in magnetic reconnection. J. Geophys. Res. 106, 25979–25998 (2001).

    Article  ADS  Google Scholar 

  228. Northrop, T. Adiabatic charged-particle motion. Rev. Geophys. 1, 283–304 (1963).

    Article  ADS  Google Scholar 

  229. Li, X., Guo, F. & Li, H. Particle acceleration in kinetic simulations of nonrelativistic magnetic reconnection with different ion–electron mass ratios. Astrophys. J. 879, 5 (2019).

    Article  ADS  Google Scholar 

  230. Guo, F., Liu, Y.-H., Daughton, W. & Li, H. Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime. Astrophys. J. 806, 167 (2015).

    Article  ADS  Google Scholar 

  231. Zhong, Z. et al. Direct evidence for electron acceleration within ion-scale flux rope. Geophys. Res. Lett. 47, e2019GL085141 (2020).

    Article  ADS  Google Scholar 

  232. Parker, E. N. The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9–49 (1965).

    Article  ADS  Google Scholar 

  233. Montag, P., Egedal, J., Lichko, E. & Wetherton, B. Impact of compressibility and a guide field on Fermi acceleration during magnetic island coalescence. Phys. Plasmas 24, 062906 (2017).

    Article  ADS  Google Scholar 

  234. Li, X., Guo, F., Li, H. & Li, S. Large-scale compression acceleration during magnetic reconnection in a low-β plasma. Astrophys. J. 866, 4 (2018).

    Article  ADS  Google Scholar 

  235. Egedal, J., Daughton, W., Le, A. & Borg, A. L. Double layer electric fields aiding the production of energetic flat-top distributions and superthermal electrons within magnetic reconnection exhausts. Phys. Plasmas 22, 101208 (2015).

    Article  ADS  Google Scholar 

  236. Comisso, L. & Sironi, L. The interplay of magnetically dominated turbulence and magnetic reconnection in producing nonthermal particles. Astrophys. J. 886, 122 (2019).

    Article  ADS  Google Scholar 

  237. Haggerty, C., Shay, M., Drake, J., Phan, T. & McHugh, C. The competition of electron and ion heating during magnetic reconnection. Geophys. Res. Lett. 42, 9657–9665 (2015).

    Article  ADS  Google Scholar 

  238. Shay, M. et al. Electron heating during magnetic reconnection: a simulation scaling study. Phys. Plasmas 21, 122902 (2014).

    Article  ADS  Google Scholar 

  239. Wetherton, B. A., Egedal, J., Lê, A. & Daughton, W. Anisotropic electron fluid closure validated by in situ spacecraft observations in the far exhaust of guide-field reconnection. J. Geophys. Res. Space Phys. 126, e2020JA028604 (2021).

    Article  ADS  Google Scholar 

  240. Liu, Y-H., Drake, J. F. & Swisdak, M. The effects of strong temperature anisotropy on the kinetic structure of collisionless slow shocks and reconnection exhausts. I. Particle-in-cell simulations. Phys. Plasmas 18, 062110 (2011).

    Article  ADS  Google Scholar 

  241. Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., Retinò, A. & André, M. Energetic electron acceleration by unsteady magnetic reconnection. Nat. Phys. 9, 426–430 (2013).

    Article  Google Scholar 

  242. Birn, J., Runov, A. & Hesse, M. Energetic ions in dipolarization events. J. Geophys. Res. Space Phys. 120, 7698–7717 (2015).

    Article  ADS  Google Scholar 

  243. Borovikov, D. et al. Electron acceleration in contracting magnetic islands during solar flares. Astrophys. J. 835, 48 (2017).

    Article  ADS  Google Scholar 

  244. Chen, B. et al. Particle acceleration by a solar flare termination shock. Science 350, 1238–1242 (2015).

    Article  ADS  Google Scholar 

  245. McComas, D. J. et al. Probing the energetic particle environment near the Sun. Nature 576, 223–227 (2019).

    Article  ADS  Google Scholar 

  246. Fox, W. et al. Laboratory observations of electron energization and associated lower-hybrid and Trivelpiece–Gould wave turbulence during magnetic reconnection. Phys. Plasmas 17, 072303 (2010).

    Article  ADS  Google Scholar 

  247. Klimchuk, J. A. Key aspects of coronal heating. Phil. Trans. R. Soc. A 373, 20140256 (2015).

    Article  ADS  Google Scholar 

  248. Parker, E. N. Topological dissipation and the small-scale fields in turbulent gases. Astrophys. J. 174, 499–510 (1972).

    Article  ADS  Google Scholar 

  249. Browning, P. & Priest, E. Heating of coronal arcades by magnetic tearing turbulence, using the Taylor-Heyvaerts hypothesis. Astron. Astrophys. 159, 129–141 (1986).

    ADS  Google Scholar 

  250. Hood, A. W., Browning, P. K. & Van der Linden, R. A. M. Coronal heating by magnetic reconnection in loops with zero net current. Astron. Astrophys. 506, 913–925 (2009).

    Article  ADS  Google Scholar 

  251. Priest, E. R. & Syntelis, P. Chromospheric and coronal heating and jet acceleration due to reconnection driven by flux cancellation. I. At a three-dimensional current sheet. Astron. Astrophys. 647, A31 (2021).

    Article  ADS  Google Scholar 

  252. Velli, M. et al. Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories. Astron. Astrophys. 642, A4 (2020).

    Article  Google Scholar 

  253. Dungey, J. W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961).

    Article  ADS  Google Scholar 

  254. Spitkovsky, A. Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators. Astrophys. J. Lett. 648, L51–L54 (2006).

    Article  ADS  Google Scholar 

  255. Tanabe, H. et al. Investigation of merging/reconnection heating during solenoid-free startup of plasmas in the MAST spherical tokamak. Nucl. Fusion 57, 056037 (2017).

    Article  ADS  Google Scholar 

  256. Rechester, A. & Rosenbluth, M. Electron heat transport in a tokamak with destroyed magnetic surfaces. Phys. Rev. Lett. 40, 38–41 (1978).

    Article  ADS  Google Scholar 

  257. Jara-Almonte, J., Daughton, W. & Ji, H. Debye scale turbulence within the electron diffusion layer during magnetic reconnection. Phys. Plasmas 21, 032114 (2014).

    Article  ADS  Google Scholar 

  258. Fox, W., Porkolab, M., Egedal, J., Katz, N. & Le, A. Laboratory observation of electron phase-space holes during magnetic reconnection. Phys. Rev. Lett. 101, 255003 (2008).

    Article  ADS  Google Scholar 

  259. Che, H., Drake, J. F. & Swisdak, M. A current filamentation mechanism for breaking magnetic field lines during reconnection. Nature 474, 184–187 (2011).

    Article  ADS  Google Scholar 

  260. Goldman, M. V. et al. Čerenkov emission of quasiparallel whistlers by fast electron phase-space holes during magnetic reconnection. Phys. Rev. Lett. 112, 145002 (2014).

    Article  ADS  Google Scholar 

  261. Kennel, C. F. & Petschek, H. E. Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1–28 (1966).

    Article  ADS  Google Scholar 

  262. Yoo, J. et al. Whistler wave generation by anisotropic tail electrons during asymmetric magnetic reconnection in space and laboratory. Geophys. Res. Lett. 45, 8054–8061 (2018).

    Article  ADS  Google Scholar 

  263. Carter, T. A., Ji, H., Trintchouk, F., Yamada, M. & Kulsrud, R. M. Measurement of lower-hybrid drift turbulence in a reconnecting current sheet. Phys. Rev. Lett. 88, 015001 (2001).

    Article  ADS  Google Scholar 

  264. Ji, H. et al. Electromagnetic fluctuation during fast reconnection in a laboratory plasma. Phys. Rev. Lett. 92, 115001 (2004).

    Article  ADS  Google Scholar 

  265. Krall, N. & Liewer, P. Low-frequency instabilities in magnetic pulses. Phys. Rev. A 4, 2094–2103 (1971).

    Article  ADS  Google Scholar 

  266. McBride, J. B., Ott, E., Boris, J. P. & Orens, J. H. Theory and simulation of turbulent heating by the modified two-stream instability. Phys. Fluids 15, 2367–2383 (1972).

    Article  ADS  Google Scholar 

  267. Daughton, W. Two-fluid theory of the drift kink instability. J. Geophys. Res. 104, 28701–28708 (1999).

    Article  ADS  Google Scholar 

  268. Zhang, Q., Guo, F., Daughton, W., Li, X. & Li, H. Efficient nonthermal ion and electron acceleration enabled by the flux-rope kink instability in 3D nonrelativistic magnetic reconnection. Phys. Rev. Lett. 127, 185101 (2021).

    Article  ADS  Google Scholar 

  269. Wang, S. & Yokoyama, T. Diffusion regions and 3D energy mode development in spontaneous reconnection. Phys. Plasmas 26, 072109 (2019).

    Article  ADS  Google Scholar 

  270. Ji, H. et al. Major scientific challenges and opportunities in understanding magnetic reconnection and related explosive phenomena throughout the universe. Preprint at https://arxiv.org/abs/2004.00079 (2020).

  271. Nilson, P. M. et al. Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions. Phys. Rev. Lett. 97, 255001 (2006).

    Article  ADS  Google Scholar 

  272. Gekelman, W. et al. Spiky electric and magnetic field structures in flux rope experiments. Proc. Natl Acad. Sci. USA 116, 18239–18244 (2019).

    Article  ADS  Google Scholar 

  273. von Stechow, A., Grulke, O. & Klinger, T. Experimental multiple-scale investigation of guide-field reconnection dynamics. Plasma Phys. Control. Fusion 58, 014016 (2016).

    Article  ADS  Google Scholar 

  274. Gekelman, W. et al. Pulsating magnetic reconnection driven by three-dimensional flux-rope interactions. Phys. Rev. Lett. 116, 235101 (2016).

    Article  ADS  Google Scholar 

  275. Shi, P. et al. Laboratory observations of electron heating and non-Maxwellian distributions at the kinetic scale during electron-only magnetic reconnection. Phys. Rev. Lett. 128, 025002 (2022).

    Article  ADS  Google Scholar 

  276. Liu, D. K. et al. Development of Faraday rotation measurements on Keda Reconnection eXperiment (KRX) device. Rev. Sci. Instrum. 92, 053516 (2021).

    Article  ADS  Google Scholar 

  277. Hare, J. D., Bland, S. N., Burdiak, G. C. & Lebedev, S. V. PUFFIN: a new microsecond, mega-ampere pulser for magnetised HED plasma physics [abstract GP17.013]. Bull. Am. Phys. Soc. 65, 11 (2020).

    Google Scholar 

  278. Fiksel, G. et al. Magnetic reconnection between colliding magnetized laser-produced plasma plumes. Phys. Rev. Lett. 113, 105003 (2014).

    Article  ADS  Google Scholar 

  279. Peng, E. et al. The magnet system of the Space Plasma Environment Research Facility (SPERF): parameter design and electromagnetic analysis. Rev. Sci. Instrum. 92, 044709 (2021).

    Article  ADS  Google Scholar 

  280. Hesse, M. & Cassak, P. A. Magnetic reconnection in the space sciences: past, present, and future. J. Geophys. Res. Space Phys. 125, e2018JA025935 (2020).

    Article  ADS  Google Scholar 

  281. Kepko, L. in 2018 IEEE International Geoscience and Remote Sensing Symposium 285–288 (2018).

  282. Klein, K. & Spence, H. in 43rd COSPAR Scientific Assembly Vol. 43 989 (2021).

  283. Sitnov, M., Stephens, G., Motoba, T. & Swisdak, M. Data mining reconstruction of magnetotail reconnection and implications for its first-principle modeling. Front. Phys. 9, 90 (2021).

    Article  Google Scholar 

  284. Branduardi-Raymont, G. in 43rd COSPAR Scientific Assembly Vol. 43 787 (2021).

  285. Chen, B. et al. Measurement of magnetic field and relativistic electrons along a solar flare current sheet. Nat. Astron. 4, 1140–1147 (2020).

    Article  ADS  Google Scholar 

  286. Yang, L. et al. Fast magnetic reconnection with turbulence in high Lundquist number limit. Astrophys. J. Lett. 901, L22 (2020).

    Article  ADS  Google Scholar 

  287. Bird, R. et al. VPIC 2.0: Next generation particle-in-cell simulations. IEEE Trans. Parallel Distrib. Syst. 33, 952–963 (2022).

    Article  Google Scholar 

  288. Le, A., Egedal, J., Daughton, W., Fox, W. & Katz, N. Equations of state for collisionless guide-field reconnection. Phys. Rev. Lett. 102, 085001 (2009).

    Article  ADS  Google Scholar 

  289. Maulik, R., Garland, N. A., Burby, J. W., Tang, X.-Z. & Balaprakash, P. Neural network representability of fully ionized plasma fluid model closures. Phys. Plasmas 27, 072106 (2020).

    Article  ADS  Google Scholar 

  290. Widmer, F., Büchner, J. & Yokoi, N. Sub-grid-scale description of turbulent magnetic reconnection in magnetohydrodynamics. Phys. Plasmas 23, 042311 (2016).

    Article  ADS  Google Scholar 

  291. Winske, D., Yin, L., Omidi, N., Karimabadi, H. & Quest, K. in Space Plasma Simulation Vol. 615 (eds Büchner, J., Scholer, M. & Dum, C. T.) 136–165 (Springer, 2003).

  292. Karimabadi, H., Krauss-Varban, D., Huba, J. & Vu, H. On magnetic reconnection regimes and associated three-dimensional asymmetries: hybrid, Hall-less hybrid, and Hall-MHD simulations. J. Geophys. Res. Space Phys. 109, A09205 (2004).

    Article  ADS  Google Scholar 

  293. Loureiro, N., Schekochihin, A. & Zocco, A. Fast collisionless reconnection and electron heating in strongly magnetized plasmas. Phys. Rev. Lett. 111, 025002 (2013).

    Article  ADS  Google Scholar 

  294. TenBarge, J., Daughton, W., Karimabadi, H., Howes, G. & Dorland, W. Collisionless reconnection in the large guide field regime: gyrokinetic versus particle-in-cell simulations. Phys. Plasmas 21, 020708 (2014).

    Article  ADS  Google Scholar 

  295. Del Sarto, D. & Deriaz, E. A multigrid AMR algorithm for the study of magnetic reconnection. J. Comput. Phys. 351, 511–533 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  296. Markidis, S. & Lapenta, G. The energy conserving particle-in-cell method. J. Comput. Phys. 230, 7037–7052 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  297. Chen, G., Chacón, L. & Barnes, D. C. An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm. J. Comput. Phys. 230, 7018–7036 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  298. Stanier, A., Chacón, L. & Chen, G. A fully implicit, conservative, non-linear, electromagnetic hybrid particle-ion/fluid-electron algorithm. J. Comput. Phys. 376, 597–616 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

H.J., J.J.-A. and J.Y. acknowledge support by the US Department of Energy (DOE) via contract no. DE-AC0209CH11466, and W.D., A.L. and A.S. acknowledge support by the DOE Frontier Plasma Science Program. The authors thank S. Dorfman for providing the top-right panel of Fig. 2 and M. Yamada, A. Bhattacharjee, J. Egedal and F. Guo for their constructive comments on an initial draft of this Roadmap. W.D. acknowledges helpful discussions from the SolFER DRIVE Science Center collaboration.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the literature review, drafting of the text, figure production, discussing, editing and revising all aspects of this Roadmap.

Corresponding author

Correspondence to Hantao Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Collisional plasma

(Or collisionless) plasmas in which Coulomb collisions are important (unimportant) for the subject of interest, which, in this Roadmap, is magnetic reconnection.

Magneto-rotational instability

A plasma instability believed to generate turbulence to explain the observed fast accretion in magnetized astrophysical discs where angular speed increases, whereas specific angular momentum decreases radially.

Kelvin–Helmholtz instability

A linear instability driven by velocity shear in a fluid or plasma.

Magnetic Prandtl number

A dimensionless parameter in magnetic hydrodynamic fluids or plasmas to quantify the momentum diffusion relative to magnetic diffusion.

Sawtooth oscillations

Quasi-periodic, sawtooth-like oscillations in soft X-ray measurements of the core tokamak plasmas from rapid loss and gradual recovery of hot electron temperature due to an internal magnetic hydrodynamic instability.

Kink instability

A plasma instability that produces helical kinking of a current channel and is driven by excessively large electric currents for a given magnetic flux in the same direction.

Ballooning instability

A plasma instability that causes the magnetic field to balloon outwards towards the weak field direction due to excessively large plasma pressure gradient.

Torus instability

An expansion magnetic hydrodynamic instability of current-carrying torus in solar and laboratory plasmas due to rapid decrease of the required equilibrium transverse magnetic field in the expansion direction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, H., Daughton, W., Jara-Almonte, J. et al. Magnetic reconnection in the era of exascale computing and multiscale experiments. Nat Rev Phys 4, 263–282 (2022). https://doi.org/10.1038/s42254-021-00419-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00419-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing