Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Time irreversibility in active matter, from micro to macro

Abstract

Active matter encompasses systems whose individual constituents dissipate energy to exert propelling forces on their environment. These systems exhibit dynamical phenomena with no counterpart in passive systems. In this Review, we disentangle the respective roles of the arrow of time and the non-Boltzmann nature of steady-state fluctuations in this rich phenomenology. We show that effective, time-reversible descriptions of active systems may be found at all scales and discuss how interactions, either between constituents or with external operators, may reveal the nonequilibrium nature of the microscopic source of energy. At a time when engineering active materials appears to be becoming possible, we argue that methods stemming from equilibrium statistical mechanics may guide the design of new active materials.

Key points

  • Active systems comprise entities that dissipate energy to exert forces on their environment. This energy flux drives them far from thermal equilibrium. As such, their steady state escapes Boltzmann statistics and their dynamics breaks time-reversal symmetry.

  • The entropy production rate is a versatile tool to quantify the departure of active systems from equilibrium.

  • At the single-particle level, the entropy production rate reveals violations of time-reversal symmetry that depend on the level of coarse graining.

  • The breakdown of time-reversal symmetry and the departure from the Boltzmann distribution are responsible for a rich phenomenology in active systems, with no counterparts in equilibrium.

  • In the presence of obstacles or external potentials, the departure from the Boltzmann distribution is reflected by a non-local steady-state distribution, accompanied by probability currents, even in the dilute limit.

  • Systems of interacting active particles exhibit rich collective behaviours. Depending on the level of coarse graining, some active systems may be mapped onto equilibrium ones, leading to generalized thermodynamics with non-trivial state functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Active matter systems are commonly found in nature and engineered in the laboratory.
Fig. 2: Difference between forces on passive and active particles in a fluid.
Fig. 3: Trajectories of a run-and-tumble particle experiencing thermal noise.
Fig. 4: Ratchet effects in active matter.
Fig. 5: Motility-induced phase separation.

Similar content being viewed by others

References

  1. Cates, M. E. Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? Rep. Prog. Phys. 75, 042601 (2012).

    Article  ADS  Google Scholar 

  2. Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012).

    Article  ADS  Google Scholar 

  3. Romanczuk, P., Bär, M., Ebeling, W., Lindner, B. & Schimansky-Geier, L. Active Brownian particles. Eur. Phys. J. Spec. Top. 202, 1–162 (2012).

    Article  Google Scholar 

  4. Marchetti, M. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143 (2013).

    Article  ADS  Google Scholar 

  5. Gonnella, G., Marenduzzo, D., Suma, A. & Tiribocchi, A. Motility-induced phase separation and coarsening in active matter. C. R. Phys. 16, 316–331 (2015).

    Article  Google Scholar 

  6. Cates, M. E. & Tailleur, J. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015).

    Article  ADS  Google Scholar 

  7. Bechinger, C. et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  8. Mora, T. et al. Local equilibrium in bird flocks. Nat. Phys. 12, 1153 (2016).

    Article  Google Scholar 

  9. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).

    Article  ADS  Google Scholar 

  10. Palacci, J., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. Sedimentation and effective temperature of active colloidal suspensions. Phys. Rev. Lett. 105, 088304 (2010).

    Article  ADS  Google Scholar 

  11. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).

    Article  ADS  Google Scholar 

  12. Berg, H. C. E. coli in Motion (Springer, 2008).

  13. Deseigne, J., Dauchot, O. & Chaté, H. Collective motion of vibrated polar disks. Phys. Rev. Lett. 105, 098001 (2010).

    Article  ADS  Google Scholar 

  14. Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013).

    Article  ADS  Google Scholar 

  15. Nishiguchi, D. & Sano, M. Mesoscopic turbulence and local order in Janus particles self-propelling under an ac electric field. Phys. Rev. E 92, 052309 (2015).

    Article  ADS  Google Scholar 

  16. Yan, J. et al. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095–1099 (2016).

    Article  ADS  Google Scholar 

  17. van der Linden, M. N., Alexander, L. C., Aarts, D. G. & Dauchot, O. Interrupted motility induced phase separation in aligning active colloids. Phys. Rev. Lett. 123, 098001 (2019).

    Article  ADS  Google Scholar 

  18. Attanasi, A. et al. Information transfer and behavioural inertia in starling flocks. Nat. Phys. 10, 691–696 (2014).

    Article  Google Scholar 

  19. Manacorda, A. & Puglisi, A. Lattice model to derive the fluctuating hydrodynamics of active particles with inertia. Phys. Rev. Lett. 119, 208003 (2017).

    Article  Google Scholar 

  20. de Blois, C., Reyssat, M., Michelin, S. & Dauchot, O. Flow field around a confined active droplet. Phys. Rev. Fluids 4, 054001 (2019).

    Article  ADS  Google Scholar 

  21. Mandal, S., Liebchen, B. & Löwen, H. Motility-induced temperature difference in coexisting phases. Phys. Rev. Lett. 123, 228001 (2019).

    Article  ADS  Google Scholar 

  22. Dai, C., Bruss, I. R. & Glotzer, S. C. Phase separation and state oscillation of active inertial particles. Soft Matter 16, 2847–2853 (2020).

    Article  ADS  Google Scholar 

  23. Löwen, H. Inertial effects of self-propelled particles: from active Brownian to active Langevin motion. J. Chem. Phys. 152, 040901 (2020).

    Article  ADS  Google Scholar 

  24. Nguyen, N. H., Klotsa, D., Engel, M. & Glotzer, S. C. Emergent collective phenomena in a mixture of hard shapes through active rotation. Phys. Rev. Lett. 112, 075701 (2014).

    Article  ADS  Google Scholar 

  25. Yeo, K., Lushi, E. & Vlahovska, P. M. Collective dynamics in a binary mixture of hydrodynamically coupled microrotors. Phys. Rev. Lett. 114, 188301 (2015).

    Article  ADS  Google Scholar 

  26. van Zuiden, B. C., Paulose, J., Irvine, W. T., Bartolo, D. & Vitelli, V. Spatiotemporal order and emergent edge currents in active spinner materials. Proc. Natl Acad. Sci. USA 113, 12919–12924 (2016).

    Article  ADS  Google Scholar 

  27. Goto, Y. & Tanaka, H. Purely hydrodynamic ordering of rotating disks at a finite Reynolds number. Nat. Commun. 6, 5994 (2015).

    Article  ADS  Google Scholar 

  28. Liebchen, B., Cates, M. E. & Marenduzzo, D. Pattern formation in chemically interacting active rotors with self-propulsion. Soft Matter 12, 7259–7264 (2016).

    Article  ADS  Google Scholar 

  29. Aragones, J. L., Steimel, J. P. & Alexander-Katz, A. Elasticity-induced force reversal between active spinning particles in dense passive media. Nat. Commun. 7, 11325 (2016).

    Article  ADS  Google Scholar 

  30. Kokot, G. et al. Active turbulence in a gas of self-assembled spinners. Proc. Natl Acad. Sci. USA 114, 12870–12875 (2017).

    Article  ADS  Google Scholar 

  31. Sabrina, S. et al. Shape-directed microspinners powered by ultrasound. ACS Nano 12, 2939–2947 (2018).

    Article  Google Scholar 

  32. Soni, V. et al. The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15, 1188–1194 (2019).

    Article  Google Scholar 

  33. Brooks, A. M. et al. Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis. Nat. Commun. 10, 495 (2019).

    Article  ADS  Google Scholar 

  34. Ganguly, C. & Chaudhuri, D. Stochastic thermodynamics of active Brownian particles. Phys. Rev. E 88, 032102 (2013).

    Article  ADS  Google Scholar 

  35. Guo, M. et al. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158, 822–832 (2014).

    Article  Google Scholar 

  36. Fodor, E. et al. How far from equilibrium is active matter? Phys. Rev. Lett. 117, 038103 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  37. Nardini, C. et al. Entropy production in field theories without time-reversal symmetry: quantifying the non-equilibrium character of active matter. Phys. Rev. X 7, 021007 (2017).

    Google Scholar 

  38. Mandal, D., Klymko, K. & DeWeese, M. R. Entropy production and fluctuation theorems for active matter. Phys. Rev. Lett. 119, 258001 (2017).

    Article  ADS  Google Scholar 

  39. Caprini, L., Marconi, U. M. B., Puglisi, A. & Vulpiani, A. Comment on “entropy production and fluctuation theorems for active matter”. Phys. Rev. Lett. 121, 139801 (2018).

    Article  ADS  Google Scholar 

  40. Roldán, É., Barral, J., Martin, P., Parrondo, J. M. & Jülicher, F. Arrow of time in active fluctuations. Preprint at https://arxiv.org/abs/1803.04743 (2018).

  41. Shankar, S. & Marchetti, M. C. Hidden entropy production and work fluctuations in an ideal active gas. Phys. Rev. E 98, 020604 (2018).

    Article  ADS  Google Scholar 

  42. Dadhichi, L. P., Maitra, A. & Ramaswamy, S. Origins and diagnostics of the nonequilibrium character of active systems. J. Stat. Mech. 2018, 123201 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, J., Horowitz, J. M., Gingrich, T. R. & Fakhri, N. Quantifying dissipation using fluctuating currents. Nat. Commun. 10, 1666 (2019).

    Article  ADS  Google Scholar 

  44. Szamel, G. Stochastic thermodynamics for self-propelled particles. Phys. Rev. E 100, 050603 (2019).

    Article  ADS  Google Scholar 

  45. Dabelow, L., Bo, S. & Eichhorn, R. Irreversibility in active matter systems: fluctuation theorem and mutual information. Phys. Rev. X 9, 021009 (2019).

    Google Scholar 

  46. Borthne, Ø. L., Fodor, É. & Cates, M. E. Time-reversal symmetry violations and entropy production in field theories of polar active matter. New J. Phys. 22, 123012 (2020).

    Article  MathSciNet  ADS  Google Scholar 

  47. Martin, D. & de Pirey, T. A. AOUP in the presence of Brownian noise: a perturbative approach. J. Stat. Mech. 2021, 043205 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  48. Mizuno, D., Tardin, C., Schmidt, C. F. & MacKintosh, F. C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007).

    Article  ADS  Google Scholar 

  49. Wilhelm, C. Out-of-equilibrium microrheology inside living cells. Phys. Rev. Lett. 101, 028101 (2008).

    Article  ADS  Google Scholar 

  50. Robert, D., Nguyen, T.-H., Gallet, F. & Wilhelm, C. In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLoS ONE 5, e10046 (2010).

    Article  ADS  Google Scholar 

  51. Fodor, É. et al. Activity-driven fluctuations in living cells. EPL 110, 48005 (2015).

    Article  ADS  Google Scholar 

  52. Fodor, É. et al. Nonequilibrium dissipation in living oocytes. EPL 116, 30008 (2016).

    Article  ADS  Google Scholar 

  53. Gladrow, J., Fakhri, N., MacKintosh, F., Schmidt, C. & Broedersz, C. Broken detailed balance of filament dynamics in active networks. Phys. Rev. Lett. 116, 248301 (2016).

    Article  ADS  Google Scholar 

  54. Battle, C. et al. Broken detailed balance at mesoscopic scales in active biological systems. Science 352, 604–607 (2016).

    Article  ADS  Google Scholar 

  55. Gnesotto, F., Mura, F., Gladrow, J. & Broedersz, C. P. Broken detailed balance and non-equilibrium dynamics in living systems: a review. Rep. Prog. Phys. 81, 066601 (2018).

    Article  ADS  Google Scholar 

  56. Dinis, L., Martin, P., Barral, J., Prost, J. & Joanny, J. Fluctuation-response theorem for the active noisy oscillator of the hair-cell bundle. Phys. Rev. Lett. 109, 160602 (2012).

    Article  ADS  Google Scholar 

  57. Ajdari, A. & Prost, J. Mouvement induit par un potentiel périodique de basse symétrie: diélectrophorese pulsée. C. R. Acad. Sci. 315, 1635–1639 (1992).

    Google Scholar 

  58. Jülicher, F., Ajdari, A. & Prost, J. Modeling molecular motors. Rev. Mod. Phys. 69, 1269 (1997).

    Article  ADS  Google Scholar 

  59. Pietzonka, P. & Seifert, U. Entropy production of active particles and for particles in active baths. J. Phys. A 51, 01LT01 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  60. Barato, A. C. & Seifert, U. Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett. 114, 158101 (2015).

    Article  MathSciNet  ADS  Google Scholar 

  61. Gingrich, T. R., Horowitz, J. M., Perunov, N. & England, J. L. Dissipation bounds all steady-state current fluctuations. Phys. Rev. Lett. 116, 120601 (2016).

    Article  ADS  Google Scholar 

  62. Seifert, U. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005).

    Article  ADS  Google Scholar 

  63. Cagnetta, F., Corberi, F., Gonnella, G. & Suma, A. Large fluctuations and dynamic phase transition in a system of self-propelled particles. Phys. Rev. Lett. 119, 158002 (2017).

    Article  ADS  Google Scholar 

  64. Nemoto, T., Fodor, É., Cates, M. E., Jack, R. L. & Tailleur, J. Optimizing active work: dynamical phase transitions, collective motion, and jamming. Phys. Rev. E 99, 022605 (2019).

    Article  ADS  Google Scholar 

  65. Puglisi, A. & Marini Bettolo Marconi, U. Clausius relation for active particles: what can we learn from fluctuations. Entropy 19, 356 (2017).

    Article  ADS  Google Scholar 

  66. Caprini, L., Marconi, U. M. B., Puglisi, A. & Vulpiani, A. The entropy production of Ornstein–Uhlenbeck active particles: a path integral method for correlations. J. Stat. Mech. 2019, 053203 (2019).

    Article  MathSciNet  Google Scholar 

  67. Schweitzer, F., Ebeling, W. & Tilch, B. Complex motion of Brownian particles with energy depots. Phys. Rev. Lett. 80, 5044 (1998).

    Article  ADS  Google Scholar 

  68. Angelani, L., Costanzo, A. & Di Leonardo, R. Active ratchets. EPL 96, 68002 (2011).

    Article  ADS  Google Scholar 

  69. Baek, Y., Solon, A. P., Xu, X., Nikola, N. & Kafri, Y. Generic long-range interactions between passive bodies in an active fluid. Phys. Rev. Lett. 120, 058002 (2018).

    Article  ADS  Google Scholar 

  70. Cates, M. E. & Tailleur, J. When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation. EPL 101, 20010 (2013).

    Article  ADS  Google Scholar 

  71. Chaudhuri, D. & Dhar, A. Active Brownian particle in harmonic trap: exact computation of moments, and re-entrant transition. J. Stat. Mech. 2021, 013207 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  72. Dhar, A., Kundu, A., Majumdar, S. N., Sabhapandit, S. & Schehr, G. Run-and-tumble particle in one-dimensional confining potentials: steady-state, relaxation, and first-passage properties. Phys. Rev. E 99, 032132 (2019).

    Article  ADS  Google Scholar 

  73. Elgeti, J. & Gompper, G. Self-propelled rods near surfaces. EPL 85, 38002 (2009).

    Article  ADS  Google Scholar 

  74. Enculescu, M. & Stark, H. Active colloidal suspensions exhibit polar order under gravity. Phys. Rev. Lett. 107, 058301 (2011).

    Article  ADS  Google Scholar 

  75. Fischer, A., Chatterjee, A. & Speck, T. Aggregation and sedimentation of active Brownian particles at constant affinity. J. Chem. Phys. 150, 064910 (2019).

    Article  ADS  Google Scholar 

  76. Hennes, M., Wolff, K. & Stark, H. Self-induced polar order of active Brownian particles in a harmonic trap. Phys. Rev. Lett. 112, 238104 (2014).

    Article  ADS  Google Scholar 

  77. Hermann, S. & Schmidt, M. Active ideal sedimentation: exact two-dimensional steady states. Soft Matter 14, 1614–1621 (2018).

    Article  ADS  Google Scholar 

  78. Koumakis, N., Maggi, C. & Di Leonardo, R. Directed transport of active particles over asymmetric energy barriers. Soft Matter 10, 5695–5701 (2014).

    Article  ADS  Google Scholar 

  79. Krishnamurthy, S., Ghosh, S., Chatterji, D., Ganapathy, R. & Sood, A. A micrometre-sized heat engine operating between bacterial reservoirs. Nat. Phys. 12, 1134–1138 (2016).

    Article  Google Scholar 

  80. Kuhr, J.-T., Blaschke, J., Rühle, F. & Stark, H. Collective sedimentation of squirmers under gravity. Soft Matter 13, 7548–7555 (2017).

    Article  ADS  Google Scholar 

  81. Malakar, K., Das, A., Kundu, A., Kumar, K. V. & Dhar, A. Steady state of an active Brownian particle in a two-dimensional harmonic trap. Phys. Rev. E 101, 022610 (2020).

    Article  ADS  Google Scholar 

  82. Nash, R., Adhikari, R., Tailleur, J. & Cates, M. Run-and-tumble particles with hydrodynamics: sedimentation, trapping, and upstream swimming. Phys. Rev. Lett. 104, 258101 (2010).

    Article  ADS  Google Scholar 

  83. Nikola, N. et al. Active particles with soft and curved walls: equation of state, ratchets, and instabilities. Phys. Rev. Lett. 117, 098001 (2016).

    Article  ADS  Google Scholar 

  84. Solon, A. P., Cates, M. & Tailleur, J. Active Brownian particles and run-and-tumble particles: a comparative study. Eur. Phys. J. Spec. Top. 224, 1231–1262 (2015).

    Article  Google Scholar 

  85. Tailleur, J. & Cates, M. Sedimentation, trapping, and rectification of dilute bacteria. EPL 86, 60002 (2009).

    Article  ADS  Google Scholar 

  86. Wagner, C. G., Hagan, M. F. & Baskaran, A. Steady-state distributions of ideal active Brownian particles under confinement and forcing. J. Stat. Mech. 2017, 043203 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  87. Takatori, S. C., De Dier, R., Vermant, J. & Brady, J. F. Acoustic trapping of active matter. Nat. Commun. 7, 10694 (2016).

    Article  ADS  Google Scholar 

  88. Saragosti, J. et al. Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc. Natl Acad. Sci. USA 108, 16235–16240 (2011).

    Article  ADS  Google Scholar 

  89. Galajda, P., Keymer, J., Chaikin, P. & Austin, R. A wall of funnels concentrates swimming bacteria. J. Bacteriol. 189, 8704–8707 (2007).

    Article  Google Scholar 

  90. Di Leonardo, R. et al. Bacterial ratchet motors. Proc. Natl Acad. Sci. USA 107, 9541–9545 (2010).

    Article  ADS  Google Scholar 

  91. Sokolov, A., Apodaca, M. M., Grzybowski, B. A. & Aranson, I. S. Swimming bacteria power microscopic gears. Proc. Natl Acad. Sci. USA 107, 969–974 (2010).

    Article  ADS  Google Scholar 

  92. Dauchot, O. & Démery, V. Dynamics of a self-propelled particle in a harmonic trap. Phys. Rev. Lett. 122, 068002 (2019).

    Article  ADS  Google Scholar 

  93. Ginot, F. et al. Sedimentation of self-propelled Janus colloids: polarization and pressure. New J. Phys. 20, 115001 (2018).

    Article  ADS  Google Scholar 

  94. Ginot, F. et al. Nonequilibrium equation of state in suspensions of active colloids. Phys. Rev. X 5, 011004 (2015).

    Google Scholar 

  95. Schnitzer, M. J. Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  96. Tailleur, J. & Cates, M. Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 100, 218103 (2008).

    Article  ADS  Google Scholar 

  97. Szamel, G. Self-propelled particle in an external potential: existence of an effective temperature. Phys. Rev. E 90, 012111 (2014).

    Article  ADS  Google Scholar 

  98. Van den Broeck, C. & Hänggi, P. Activation rates for nonlinear stochastic flows driven by non-Gaussian noise. Phys. Rev. A 30, 2730 (1984).

    Article  ADS  Google Scholar 

  99. Solon, A. P. et al. Pressure is not a state function for generic active fluids. Nat. Phys. 11, 673–678 (2015).

    Article  Google Scholar 

  100. Wolff, K., Hahn, A. M. & Stark, H. Sedimentation and polar order of active bottom-heavy particles. Eur. Phys. J. E 36, 43 (2013).

    Article  Google Scholar 

  101. Han, M., Yan, J., Granick, S. & Luijten, E. Effective temperature concept evaluated in an active colloid mixture. Proc. Natl Acad. Sci. USA 114, 7513–7518 (2017).

    Article  ADS  Google Scholar 

  102. Bray, A., McKane, A. & Newman, T. Path integrals and non-Markov processes. II. Escape rates and stationary distributions in the weak-noise limit. Phys. Rev. A 41, 657 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  103. McKane, A., Luckock, H. & Bray, A. Path integrals and non-Markov processes. I. General formalism. Phys. Rev. A 41, 644 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  104. Woillez, E., Kafri, Y. & Lecomte, V. Nonlocal stationary probability distributions and escape rates for an active Ornstein–Uhlenbeck particle. J. Stat. Mech. 2020, 063204 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  105. Kłosek-Dygas, M., Matkowsky, B. & Schuss, Z. Colored noise in dynamical systems. SIAM J. Appl. Math. 48, 425–441 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  106. Bonilla, L. L. Active Ornstein-Uhlenbeck particles. Phys. Rev. E 100, 022601 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  107. Martin, D. et al. Statistical mechanics of active Ornstein-Uhlenbeck particles. Phys. Rev. E 103, 032607 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  108. Fox, R. F. Functional-calculus approach to stochastic differential equations. Phys. Rev. A 33, 467–476 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  109. Fox, R. F. Uniform convergence to an effective Fokker-Planck equation for weakly colored noise. Phys. Rev. A 34, 4525–4527 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  110. Jung, P. & Hänggi, P. Dynamical systems: a unified colored-noise approximation. Phys. Rev. A 35, 4464–4466 (1987).

    Article  ADS  Google Scholar 

  111. Cao, L., Wu, D.-j & Luo, X.-l Effects of saturation in the transient process of a dye laser. III. The case of colored noise with large and small correlation time. Phys. Rev. A 47, 57–70 (1993).

    Article  ADS  Google Scholar 

  112. Maggi, C., Marconi, U. M. B., Gnan, N. & Di Leonardo, R. Multidimensional stationary probability distribution for interacting active particles. Sci. Rep. 5, 10742 (2015).

    Article  ADS  Google Scholar 

  113. Wittmann, R. et al. Effective equilibrium states in the colored-noise model for active matter I. Pairwise forces in the Fox and unified colored noise approximations. J. Stat. Mech. 2017, 113207 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  114. Wittmann, R., Marconi, U. M. B., Maggi, C. & Brader, J. M. Effective equilibrium states in the colored-noise model for active matter II. A unified framework for phase equilibria, structure and mechanical properties. J. Stat. Mech. 2017, 113208 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  115. Farage, T. F., Krinninger, P. & Brader, J. M. Effective interactions in active Brownian suspensions. Phys. Rev. E 91, 042310 (2015).

    Article  ADS  Google Scholar 

  116. Marconi, U. M. B. & Maggi, C. Towards a statistical mechanical theory of active fluids. Soft Matter 11, 8768–8781 (2015).

    Article  ADS  Google Scholar 

  117. Yang, X., Manning, M. L. & Marchetti, M. C. Aggregation and segregation of confined active particles. Soft Matter 10, 6477–6484 (2014).

    Article  ADS  Google Scholar 

  118. Ezhilan, B., Alonso-Matilla, R. & Saintillan, D. On the distribution and swim pressure of run-and-tumble particles in confinement. J. Fluid Mech. 781 (2015).

  119. Elgeti, J. & Gompper, G. Wall accumulation of self-propelled spheres. EPL 101, 48003 (2013).

    Article  ADS  Google Scholar 

  120. Sartori, P. et al. Wall accumulation of bacteria with different motility patterns. Phys. Rev. E 97, 022610 (2018).

    Article  ADS  Google Scholar 

  121. Speck, T. & Jayaram, A. Vorticity determines the force on bodies immersed in active fluids. Phys. Rev. Lett. 126, 138002 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  122. Granek, O., Baek, Y., Kafri, Y. & Solon, A. P. Bodies in an interacting active fluid: far-field influence of a single body and interaction between two bodies. J. Stat. Mech. 2020, 063211 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  123. Ro, S., Kafri, Y., Kardar, M. & Tailleur, J. Disorder-induced long-ranged correlations in scalar active matter. Phys. Rev. Lett. 126, 048003 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  124. Dor, Y. B., Ro, S., Kafri, Y., Kardar, M. & Tailleur, J. Disordered boundaries destroy bulk phase separation in scalar active matter. Preprint at https://arxiv.org/abs/2108.13409v4 (2021).

  125. Pototsky, A. & Stark, H. Active Brownian particles in two-dimensional traps. EPL 98, 50004 (2012).

    Article  ADS  Google Scholar 

  126. Basu, U., Majumdar, S. N., Rosso, A., Sabhapandit, S. & Schehr, G. Exact stationary state of a run-and-tumble particle with three internal states in a harmonic trap. J. Phys. A Math. Theor. 53, 09LT01 (2020).

    Article  MathSciNet  Google Scholar 

  127. Smoluchowski, M. Experimentell nachweisbare, der üblichen thermodynamik widersprechende molekularphänomene. Pisma Mariana Smoluchowskiego 2, 226–251 (1927).

    MATH  Google Scholar 

  128. Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman lectures on physics; vol. I. Am. J. Phys. 33, 750–752 (1965).

    Article  ADS  Google Scholar 

  129. Magnasco, M. O. Forced thermal ratchets. Phys. Rev. Lett. 71, 1477 (1993).

    Article  ADS  Google Scholar 

  130. Parrondo, J. M. & Español, P. Criticism of Feynman’s analysis of the ratchet as an engine. Am. J. Phys. 64, 1125–1130 (1996).

    Article  ADS  Google Scholar 

  131. Sekimoto, K. Kinetic characterization of heat bath and the energetics of thermal ratchet models. J. Phys. Soc. Jpn 66, 1234–1237 (1997).

    Article  ADS  Google Scholar 

  132. Hänggi, P. & Marchesoni, F. Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387 (2009).

    Article  ADS  Google Scholar 

  133. Ai, B.-q, Chen, Q.-y, He, Y.-f, Li, F.-g & Zhong, W.-r Rectification and diffusion of self-propelled particles in a two-dimensional corrugated channel. Phys. Rev. E 88, 062129 (2013).

    Article  ADS  Google Scholar 

  134. Pototsky, A., Hahn, A. M. & Stark, H. Rectification of self-propelled particles by symmetric barriers. Phys. Rev. E 87, 042124 (2013).

    Article  ADS  Google Scholar 

  135. Ghosh, P. K., Misko, V. R., Marchesoni, F. & Nori, F. Self-propelled Janus particles in a ratchet: numerical simulations. Phys. Rev. Lett. 110, 268301 (2013).

    Article  ADS  Google Scholar 

  136. Yariv, E. & Schnitzer, O. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach. Phys. Rev. E 90, 032115 (2014).

    Article  ADS  Google Scholar 

  137. Stenhammar, J., Wittkowski, R., Marenduzzo, D. & Cates, M. E. Light-induced self-assembly of active rectification devices. Sci. Adv. 2, e1501850 (2016).

    Article  ADS  Google Scholar 

  138. McDermott, D., Reichhardt, C. J. O. & Reichhardt, C. Collective ratchet effects and reversals for active matter particles on quasi-one-dimensional asymmetric substrates. Soft Matter 12, 8606–8615 (2016).

    Article  ADS  Google Scholar 

  139. Reichhardt, C. O. & Reichhardt, C. Ratchet effects in active matter systems. Annu. Rev. Condens. Matter Phys. 8, 51–75 (2017).

    Article  ADS  Google Scholar 

  140. Maggi, C., Saglimbeni, F., Dipalo, M., De Angelis, F. & Di Leonardo, R. Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects. Nat. Commun. 6, 7855 (2015).

    Article  ADS  Google Scholar 

  141. Arlt, J., Martinez, V. A., Dawson, A., Pilizota, T. & Poon, W. C. Painting with light-powered bacteria. Nat. Commun. 9, 768 (2018).

    Article  ADS  Google Scholar 

  142. Arlt, J., Martinez, V. A., Dawson, A., Pilizota, T. & Poon, W. C. Dynamics-dependent density distribution in active suspensions. Nat. Commun. 10, 2321 (2019).

    Article  ADS  Google Scholar 

  143. Frangipane, G. et al. Dynamic density shaping of photokinetic E. coli. eLife 7, e36608 (2018).

    Article  Google Scholar 

  144. Van Kampen, N. Relative stability in nonuniform temperature. IBM J. Res. Dev. 32, 107–111 (1988).

    Article  Google Scholar 

  145. Grafke, T., Cates, M. E. & Vanden-Eijnden, E. Spatiotemporal self-organization of fluctuating bacterial colonies. Phys. Rev. Lett. 119, 188003 (2017).

    Article  ADS  Google Scholar 

  146. Onsager, L. & Machlup, S. Fluctuations and irreversible processes. Phys. Rev. 91, 1505 (1953).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  147. Machlup, S. & Onsager, L. Fluctuations and irreversible process. II. Systems with kinetic energy. Phys. Rev. 91, 1512 (1953).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  148. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. & Landim, C. Macroscopic fluctuation theory for stationary non-equilibrium states. J. Stat. Phys. 107, 635–675 (2002).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  149. Tailleur, J., Kurchan, J. & Lecomte, V. Mapping out-of-equilibrium into equilibrium in one-dimensional transport models. J. Phys. A Math. Theor. 41, 505001 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  150. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. & Landim, C. Macroscopic fluctuation theory. Rev. Mod. Phys. 87, 593 (2015).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  151. Bodineau, T. & Derrida, B. Distribution of current in nonequilibrium diffusive systems and phase transitions. Phys. Rev. E 72, 066110 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  152. Bodineau, T., Derrida, B., Lecomte, V. & Van Wijland, F. Long range correlations and phase transitions in non-equilibrium diffusive systems. J. Stat. Phys. 133, 1013–1031 (2008).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  153. Bunin, G., Kafri, Y. & Podolsky, D. Cusp singularities in boundary-driven diffusive systems. J. Stat. Phys. 152, 112–135 (2013).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  154. Baek, Y. & Kafri, Y. Singularities in large deviation functions. J. Stat. Mech. 2015, P08026 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  155. Richard, D., Löwen, H. & Speck, T. Nucleation pathway and kinetics of phase-separating active Brownian particles. Soft Matter 12, 5257–5264 (2016).

    Article  ADS  Google Scholar 

  156. Redner, G. S., Wagner, C. G., Baskaran, A. & Hagan, M. F. Classical nucleation theory description of active colloid assembly. Phys. Rev. Lett. 117, 148002 (2016).

    Article  ADS  Google Scholar 

  157. Levis, D., Codina, J. & Pagonabarraga, I. Active Brownian equation of state: metastability and phase coexistence. Soft Matter 13, 8113–8119 (2017).

    Article  ADS  Google Scholar 

  158. Angelani, L., Di Leonardo, R. & Paoluzzi, M. First-passage time of run-and-tumble particles. Eur. Phys. J. E 37, 59 (2014).

    Article  Google Scholar 

  159. Demaerel, T. & Maes, C. Active processes in one dimension. Phys. Rev. E 97, 032604 (2018).

    Article  ADS  Google Scholar 

  160. Caprini, L., Marini Bettolo Marconi, U., Puglisi, A. & Vulpiani, A. Active escape dynamics: the effect of persistence on barrier crossing. J. Chem. Phys. 150, 024902 (2019).

    Article  ADS  Google Scholar 

  161. Dor, Y. B., Woillez, E., Kafri, Y., Kardar, M. & Solon, A. P. Ramifications of disorder on active particles in one dimension. Phys. Rev. E 100, 052610 (2019).

    Article  ADS  Google Scholar 

  162. Le Doussal, P., Majumdar, S. N. & Schehr, G. Velocity and diffusion constant of an active particle in a one-dimensional force field. EPL 130, 40002 (2020).

    Article  Google Scholar 

  163. Woillez, E., Zhao, Y., Kafri, Y., Lecomte, V. & Tailleur, J. Activated escape of a self-propelled particle from a metastable state. Phys. Rev. Lett. 122, 258001 (2019).

    Article  ADS  Google Scholar 

  164. Agarwal, G. S. Fluctuation-dissipation theorems for systems in non-thermal equilibrium and applications. Z. Phys. A Hadrons Nucl. 252, 25–38 (1972).

    Article  Google Scholar 

  165. Prost, J., Joanny, J.-F. & Parrondo, J. M. Generalized fluctuation-dissipation theorem for steady-state systems. Phys. Rev. Lett. 103, 090601 (2009).

    Article  ADS  Google Scholar 

  166. Baiesi, M. & Maes, C. An update on the nonequilibrium linear response. New J. Phys. 15, 013004 (2013).

    Article  MATH  ADS  Google Scholar 

  167. Loi, D., Mossa, S. & Cugliandolo, L. F. Effective temperature of active matter. Phys. Rev. E 77, 051111 (2008).

    Article  ADS  Google Scholar 

  168. Morozov, K. I. & Pismen, L. M. Motor-driven effective temperature and viscoelastic response of active matter. Phys. Rev. E 81, 061922 (2010).

    Article  ADS  Google Scholar 

  169. Loi, D., Mossa, S. & Cugliandolo, L. F. Non-conservative forces and effective temperatures in active polymers. Soft Matter 7, 10193–10209 (2011).

    Article  ADS  Google Scholar 

  170. Wang, S. & Wolynes, P. G. Communication: Effective temperature and glassy dynamics of active matter. J. Chem. Phys. 135, 051101 (2011).

    Article  ADS  Google Scholar 

  171. Loi, D., Mossa, S. & Cugliandolo, L. F. Effective temperature of active complex matter. Soft Matter 7, 3726–3729 (2011).

    Article  ADS  Google Scholar 

  172. Bohec, P. et al. Probing active forces via a fluctuation-dissipation relation: application to living cells. EPL 102, 50005 (2013).

    Article  ADS  Google Scholar 

  173. Suma, A. et al. Dynamics of a homogeneous active dumbbell system. Phys. Rev. E 90, 052130 (2014).

    Article  ADS  Google Scholar 

  174. Levis, D. & Berthier, L. From single-particle to collective effective temperatures in an active fluid of self-propelled particles. EPL 111, 60006 (2015).

    Article  ADS  Google Scholar 

  175. Cugliandolo, L. F., Gonnella, G. & Petrelli, I. Effective temperature in active Brownian particles. Fluct. Noise Lett. 18, 1940008 (2019).

    Article  ADS  Google Scholar 

  176. Fodor, É. et al. Spatial fluctuations at vertices of epithelial layers: quantification of regulation by rho pathway. Biophys. J. 114, 939–946 (2018).

    Article  ADS  Google Scholar 

  177. Bohec, P., Tailleur, J., van Wijland, F., Richert, A. & Gallet, F. Distribution of active forces in the cell cortex. Soft Matter 15, 6952–6966 (2019).

    Article  ADS  Google Scholar 

  178. Maes, C. Fluctuating motion in an active environment. Phys. Rev. Lett. 125, 208001 (2020).

    Article  ADS  Google Scholar 

  179. Dal Cengio, S., Levis, D. & Pagonabarraga, I. Fluctuation–dissipation relations in the absence of detailed balance: formalism and applications to active matter. J. Stat. Mech. 2021, 043201 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  180. Dal Cengio, S., Levis, D. & Pagonabarraga, I. Linear response theory and Green-Kubo relations for active matter. Phys. Rev. Lett. 123, 238003 (2019).

    Article  ADS  Google Scholar 

  181. Caprini, L., Marconi, U. M. B. & Vulpiani, A. Linear response and correlation of a self-propelled particle in the presence of external fields. J. Stat. Mech. 2018, 033203 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  182. Poujade, M. et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104, 15988–15993 (2007).

    Article  ADS  Google Scholar 

  183. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  184. Toner, J. & Tu, Y. Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys. Rev. Lett. 75, 4326 (1995).

    Article  ADS  Google Scholar 

  185. Mallmin, E., Blythe, R. A. & Evans, M. R. Exact spectral solution of two interacting run-and-tumble particles on a ring lattice. J. Stat. Mech. 2019, 013204 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  186. Redner, G. S., Baskaran, A. & Hagan, M. F. Reentrant phase behavior in active colloids with attraction. Phys. Rev. E 88, 012305 (2013).

    Article  ADS  Google Scholar 

  187. Fily, Y. & Marchetti, M. C. Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. E 108, 235702 (2012).

    Google Scholar 

  188. Redner, G. S., Hagan, M. F. & Baskaran, A. Structure and dynamics of a phase-separating active colloidal fluid. Phys. Rev. Lett. 110, 055701 (2013).

    Article  ADS  Google Scholar 

  189. Speck, T., Bialké, J., Menzel, A. M. & Löwen, H. Effective Cahn-Hilliard equation for the phase separation of active Brownian particles. Phys. Rev. Lett. 112, 218304 (2014).

    Article  ADS  Google Scholar 

  190. Takatori, S. C. & Brady, J. F. Towards a thermodynamics of active matter. Phys. Rev. E 91, 032117 (2015).

    Article  ADS  Google Scholar 

  191. Paliwal, S., Prymidis, V., Filion, L. & Dijkstra, M. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles. J. Chem. Phys. 147, 084902 (2017).

    Article  ADS  Google Scholar 

  192. Paliwal, S., Rodenburg, J., van Roij, R. & Dijkstra, M. Chemical potential in active systems: predicting phase equilibrium from bulk equations of state? New J. Phys. 20, 015003 (2018).

    Article  ADS  Google Scholar 

  193. Solon, A. P., Stenhammar, J., Cates, M. E., Kafri, Y. & Tailleur, J. Generalized thermodynamics of phase equilibria in scalar active matter. Phys. Rev. E 97, 020602 (2018).

    Article  ADS  Google Scholar 

  194. Solon, A. P., Stenhammar, J., Cates, M. E., Kafri, Y. & Tailleur, J. Generalized thermodynamics of motility-induced phase separation: phase equilibria, laplace pressure, and change of ensembles. New J. Phys. 20, 075001 (2018).

    Article  ADS  Google Scholar 

  195. Lavergne, F. A., Wendehenne, H., Bäuerle, T. & Bechinger, C. Group formation and cohesion of active particles with visual perception–dependent motility. Science 364, 70–74 (2019).

    Article  ADS  Google Scholar 

  196. Bäuerle, T., Fischer, A., Speck, T. & Bechinger, C. Self-organization of active particles by quorum sensing rules. Nat. Commun. 9, 3232 (2018).

    Article  ADS  Google Scholar 

  197. O’Byrne, J. & Tailleur, J. Lamellar to micellar phases and beyond: when tactic active systems admit free energy functionals. Phys. Rev. Lett. 125, 208003 (2020).

    Article  ADS  Google Scholar 

  198. Thompson, A., Tailleur, J., Cates, M. & Blythe, R. Lattice models of nonequilibrium bacterial dynamics. J. Stat. Mech. 2011, P02029 (2011).

    Article  Google Scholar 

  199. Bialké, J., Löwen, H. & Speck, T. Microscopic theory for the phase separation of self-propelled repulsive disks. EPL 103, 30008 (2013).

    Article  ADS  Google Scholar 

  200. Klamser, J. U., Kapfer, S. C. & Krauth, W. Thermodynamic phases in two-dimensional active matter. Nat. Commun. 9, 5045 (2018).

    Article  ADS  Google Scholar 

  201. Digregorio, P. et al. Full phase diagram of active Brownian disks: from melting to motility-induced phase separation. Phys. Rev. Lett. 121, 098003 (2018).

    Article  ADS  Google Scholar 

  202. Arnoulx de Pirey, T., Lozano, G. & van Wijland, F. Active hard spheres in infinitely many dimensions. Phys. Rev. Lett. 123, 260602 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  203. Tjhung, E., Nardini, C. & Cates, M. E. Cluster phases and bubbly phase separation in active fluids: reversal of the Ostwald process. Phys. Rev. X 8, 031080 (2018).

    Google Scholar 

  204. Caporusso, C. B., Digregorio, P., Levis, D., Cugliandolo, L. F. & Gonnella, G. Motility-induced microphase and macrophase separation in a two-dimensional active Brownian particle system. Phys. Rev. Lett. 125, 178004 (2020).

    Article  ADS  Google Scholar 

  205. Shi, X.-q, Fausti, G., Chaté, H., Nardini, C. & Solon, A. Self-organized critical coexistence phase in repulsive active particles. Phys. Rev. Lett. 125, 168001 (2020).

    Article  ADS  Google Scholar 

  206. Mahdisoltani, S., Zinati, R. B. A., Duclut, C., Gambassi, A. & Golestanian, R. Nonequilibrium polarity-induced chemotaxis: emergent Galilean symmetry and exact scaling exponents. Phys. Rev. Res. 3, 013100 (2021).

    Article  Google Scholar 

  207. Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435 (1977).

    Article  ADS  Google Scholar 

  208. O’Byrne, J. Non-equilibrium currents in stochastic field theories: a geometric insight. Preprint at https://arxiv.org/abs/2108.13535 (2021).

  209. Wittkowski, R. et al. Scalar φ4 field theory for active-particle phase separation. Nat. Commun. 5, 4351 (2014).

    Article  ADS  Google Scholar 

  210. Solon, A. P., Chaté, H. & Tailleur, J. From phase to microphase separation in flocking models: the essential role of nonequilibrium fluctuations. Phys. Rev. Lett. 114, 068101 (2015).

    Article  ADS  Google Scholar 

  211. Kardar, M., Parisi, G. & Zhang, Y.-C. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889 (1986).

    Article  MATH  ADS  Google Scholar 

  212. Saha, S., Golestanian, R. & Ramaswamy, S. Clusters, asters, and collective oscillations in chemotactic colloids. Phys. Rev. E 89, 062316 (2014).

    Article  ADS  Google Scholar 

  213. Rein, M. & Speck, T. Applicability of effective pair potentials for active Brownian particles. Eur. Phys. J. E 39, 84 (2016).

    Article  Google Scholar 

  214. Klamser, J. U., Kapfer, S. C. & Krauth, W. A kinetic-Monte Carlo perspective on active matter. J. Chem. Phys. 150, 144113 (2019).

    Article  ADS  Google Scholar 

  215. Bialek, W. et al. Statistical mechanics for natural flocks of birds. Proc. Natl Acad. Sci. USA 109, 4786–4791 (2012).

    Article  ADS  Google Scholar 

  216. Sumino, Y. et al. Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483, 448–452 (2012).

    Article  ADS  Google Scholar 

  217. Sanchez, T., Chen, D. T., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    Article  ADS  Google Scholar 

  218. Schaller, V., Weber, C., Semmrich, C., Frey, E. & Bausch, A. R. Polar patterns of driven filaments. Nature 467, 73–77 (2010).

    Article  ADS  Google Scholar 

  219. Schaller, V., Weber, C. A., Hammerich, B., Frey, E. & Bausch, A. R. Frozen steady states in active systems. Proc. Natl Acad. Sci. USA 108, 19183–19188 (2011).

    Article  ADS  Google Scholar 

  220. Wensink, H. H. et al. Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. USA 109, 14308–14313 (2012).

    Article  MATH  ADS  Google Scholar 

  221. Chen, C., Liu, S., Shi, X.-q, Chaté, H. & Wu, Y. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions. Nature 542, 210–214 (2017).

    Article  ADS  Google Scholar 

  222. Andrieux, D. et al. Entropy production and time asymmetry in nonequilibrium fluctuations. Phys. Rev. Lett. 98, 150601 (2007).

    Article  ADS  Google Scholar 

  223. Roldán, É. & Parrondo, J. M. Entropy production and Kullback-Leibler divergence between stationary trajectories of discrete systems. Phys. Rev. E 85, 031129 (2012).

    Article  ADS  Google Scholar 

  224. Kim, D.-K., Bae, Y., Lee, S. & Jeong, H. Learning entropy production via neural networks. Phys. Rev. Lett. 125, 140604 (2020).

    Article  ADS  Google Scholar 

  225. Guo, B. et al. Play. Pause. Rewind. Measuring local entropy production and extractable work in active matter. Preprint at https://arxiv.org/abs/2105.12707v1 (2021).

  226. Turci, F. & Wilding, N. B. Phase separation and multibody effects in three-dimensional active Brownian particles. Phys. Rev. Lett. 126, 038002 (2021).

    Article  ADS  Google Scholar 

  227. Bag, S. & Mandal, R. Interaction from structure using machine learning: in and out of equilibrium. Soft Matter 17, 8322–8330 (2021).

    Article  ADS  Google Scholar 

  228. Cichos, F., Gustavsson, K., Mehlig, B. & Volpe, G. Machine learning for active matter. Nat. Mach. Intell. 2, 94–103 (2020).

    Article  Google Scholar 

  229. Colen, J. et al. Machine learning active-nematic hydrodynamics. Proc. Natl Acad. Sci. USA 118, e2016708118 (2021).

    Article  MathSciNet  Google Scholar 

  230. Reichhardt, C. & Reichhardt, C. O. Active microrheology in active matter systems: mobility, intermittency, and avalanches. Phys. Rev. E 91, 032313 (2015).

    Article  ADS  Google Scholar 

  231. Bi, D., Yang, X., Marchetti, M. C. & Manning, M. L. Motility-driven glass and jamming transitions in biological tissues. Phys. Rev. X 6, 021011 (2016).

    Google Scholar 

  232. Mandal, R., Bhuyan, P. J., Chaudhuri, P., Dasgupta, C. & Rao, M. Extreme active matter at high densities. Nat. Commun. 11, 2581 (2020).

    Article  ADS  Google Scholar 

  233. Wu, X.-L. & Libchaber, A. Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84, 3017–3020 (2000).

    Article  ADS  Google Scholar 

  234. Granek, O., Kafri, Y. & Tailleur, J. The anomalous transport of tracers in active baths. Preprint at https://arxiv.org/abs/2108.11970 (2021).

  235. Kaiser, A. & Löwen, H. Unusual swelling of a polymer in a bacterial bath. J. Chem. Phys. 141, 044903 (2014).

    Article  ADS  Google Scholar 

  236. Mallory, S. A., Valeriani, C. & Cacciuto, A. Anomalous dynamics of an elastic membrane in an active fluid. Phys. Rev. E 92, 012314 (2015).

    Article  ADS  Google Scholar 

  237. Shin, J., Cherstvy, A. G., Kim, W. K. & Metzler, R. Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles. New J. Phys. 17, 113008 (2015).

    Article  ADS  Google Scholar 

  238. Takatori, S. C., Yan, W. & Brady, J. F. Swim pressure: stress generation in active matter. Phys. Rev. Lett. 113, 028103 (2014).

    Article  ADS  Google Scholar 

  239. Zakine, R. et al. Surface tensions between active fluids and solid interfaces: bare vs dressed. Phys. Rev. Lett. 124, 248003 (2020).

    Article  MathSciNet  ADS  Google Scholar 

  240. Zakine, R., Solon, A., Gingrich, T. & van Wijland, F. Stochastic Stirling engine operating in contact with active baths. Entropy 19, 193 (2017).

    Article  ADS  Google Scholar 

  241. Martin, D., Nardini, C., Cates, M. E. & Fodor, É. Extracting maximum power from active colloidal heat engines. EPL 121, 60005 (2018).

    Article  ADS  Google Scholar 

  242. Fodor, É. & Cates, M. E. Active engines: thermodynamics moves forward. EPL 134, 10003 (2021).

    Article  ADS  Google Scholar 

  243. Horowitz, J. M. & Gingrich, T. R. Thermodynamic uncertainty relations constrain non-equilibrium fluctuations. Nat. Phys. 16, 15–20 (2020).

    Article  Google Scholar 

  244. Souslov, A., Dasbiswas, K., Fruchart, M., Vaikuntanathan, S. & Vitelli, V. Topological waves in fluids with odd viscosity. Phys. Rev. Lett. 122, 128001 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  245. Li, Y.-W. & Ciamarra, M. P. Phase behavior of Lennard-Jones particles in two dimensions. Phys. Rev. E 102, 062101 (2020).

    Article  ADS  Google Scholar 

  246. Thutupalli, S., Geyer, D., Singh, R., Adhikari, R. & Stone, H. A. Flow-induced phase separation of active particles is controlled by boundary conditions. Proc. Natl Acad. Sci. USA 115, 5403–5408 (2018).

    Article  ADS  Google Scholar 

  247. Wan, M., Reichhardt, C. O., Nussinov, Z. & Reichhardt, C. Rectification of swimming bacteria and self-driven particle systems by arrays of asymmetric barriers. Phys. Rev. Lett. 101, 018102 (2008).

    Article  ADS  Google Scholar 

  248. Gardiner, C. W. et al. Handbook of Stochastic Methods Vol. 3 (Springer, 1985).

  249. Van Kampen, N. G. Stochastic Processes in Physics and Chemistry Vol. 1 (Elsevier, 1992).

  250. Maes, C. Frenesy: time-symmetric dynamical activity in nonequilibria. Phys. Rep. 850, 1–33 (2020).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  251. Risken, H. in The Fokker-Planck Equation 63–95 (Springer, 1996).

  252. Tanase-Nicola, S. & Kurchan, J. Statistical-mechanical formulation of Lyapunov exponents. J. Phys. A 36, 10299 (2003).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  253. Witten, E. et al. Supersymmetry and Morse theory. J. Differ. Geom. 17, 661–692 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  254. Hatano, T. & Sasa, S.-i Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463 (2001).

    Article  ADS  Google Scholar 

  255. Maes, C. The fluctuation theorem as a Gibbs property. J. Stat. Mech. 95, 367–392 (1999).

    MathSciNet  MATH  Google Scholar 

  256. Lebowitz, J. L. & Spohn, H. A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  257. Kurchan, J. Fluctuation theorem for stochastic dynamics. J. Phys. A 31, 3719 (1998).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  258. Maes, C. Local detailed balance. SciPost Phys. Lect. Notes https://doi.org/10.21468/SciPostPhysLectNotes.32 (2021).

  259. Evans, D. J., Cohen, E. G. D. & Morriss, G. P. Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401 (1993).

    Article  MATH  ADS  Google Scholar 

  260. Gallavotti, G. & Cohen, E. G. D. Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  261. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997).

    Article  ADS  Google Scholar 

  262. Crooks, G. E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721 (1999).

    Article  ADS  Google Scholar 

  263. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).

    Article  ADS  Google Scholar 

  264. Jiang, D.-Q., Qian, M. & Qian, M.-P. Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems (Springer, 2004).

  265. Soto, R. & Golestanian, R. Run-and-tumble dynamics in a crowded environment: persistent exclusion process for swimmers. Phys. Rev. E 89, 012706 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.O., J.T. and F.v.W. acknowledge support from ANR grant THEMA; Y.K. acknowledges support from an Israel Science Foundation grant (1331/17) and an NSF-BSF grant (2016624). The authors thank M. Pica Ciamarra and Y. Li for sharing the data that were used to calibrate the simulations shown in Fig. 5a. The authors benefited from participation in the 2020 KITP program on Active Matter supported by the grant NSF PHY-1748958.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to J. Tailleur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Demian Levis, Nikta Fakhri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Byrne, J., Kafri, Y., Tailleur, J. et al. Time irreversibility in active matter, from micro to macro. Nat Rev Phys 4, 167–183 (2022). https://doi.org/10.1038/s42254-021-00406-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00406-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing