Abstract
Integrated quantum photonics uses classical integrated photonic technologies and devices for quantum applications. As in classical photonics, chip-scale integration has become critical for scaling up and translating laboratory demonstrators to real-life technologies. Integrated quantum photonics efforts are centred around the development of quantum photonic integrated circuits, which can be monolithically, hybrid or heterogeneously integrated. In this Roadmap, we argue, through specific examples, for the value that integrated photonics brings to quantum technologies and discuss what applications may become possible in the future by overcoming the current roadblocks. We provide an overview of the research landscape and discuss the innovation and market potential. Our aim is to stimulate further research by outlining not only the scientific challenges of materials, devices and components associated with integrated photonics for quantum technologies but also those related to the development of the necessary manufacturing infrastructure and supply chains for delivering these technologies to the market.
Key points
-
Photonic quantum technologies have reached a number of important milestones in the last 20 years, culminating with the recent demonstrations of quantum advantage and space-to-ground quantum communication.
-
Scalability remains a strong challenge across all platforms, but photonic quantum technologies can benefit from the parallel developments in classical photonic integration.
-
More research is required as multiple challenges reside in the intrinsically hybrid nature of integrated photonic platforms, which require a variety of multiple materials, device design and integration strategies.
-
The complex innovation cycle for integrated photonic quantum technologies requires investments, the resolution of specific technological challenges, the development of the necessary infrastructure and further structuring towards a mature ecosystem.
-
There is an increasing demand for scientists and engineers with substantial knowledge of both quantum mechanics and its technological applications.
This is a preview of subscription content, access via your institution
Access options
Similar content being viewed by others
References
Georgescu, I. How the Bell tests changed quantum physics. Nat. Rev. Phys. 3, 674–676 (2021).
Scarani, V. Quantum Physics: a First Encounter: Interference, Entanglement, and Reality (Oxford Univ. Press, 2006).
Glauber, R. J. Nobel Lecture: One hundred years of light quanta. Rev. Mod. Phys. 78, 1267 (2006).
Scully, M. O., Englert, B.-G. & Walther, H. Quantum optical tests of complementarity. Nature 351, 111–116 (1991).
Aspect, A. Closing the door on Einstein and Bohr’s quantum debate. Physics 8, 123 (2015).
Pan, J. W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).
Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Phil. Trans. R. Soc. A 361, 1655–1674 (2003).
Deutsch, I. H. Harnessing the power of the second quantum revolution. PRX Quantum 1, 020101 (2020).
Lloyd, S. & Englund, D. Future Directions of Quantum Information Processing: a Workshop on the Emerging Science and Technology of Quantum Computation, Communication, and Measurement (Basic Research Office, 2017); https://basicresearch.defense.gov/Portals/61/Documents/future-directions/Future_Directions_Quantum.pdf?ver=2017-09-20-003031-450.
Steane, A. Quantum computing. Rep. Prog. Phys. 61, 117 (1998).
Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153 (2014).
Gisin, N. & Thew, R. Quantum communication. Nat. Photonics 1, 165–171 (2007).
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011).
Polino, E., Valeri, M., Spagnolo, N. & Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2, 024703 (2020).
Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).
Cao, Y., Romero, J. & Aspuru-Guzik, J. Potential of quantum computing for drug discovery. IBM J. Res. Dev. 62, 6:1–6:20 (2018).
Batra, K. et al. Quantum machine learning for drug discovery. J. Chem. Inf. Model. 28, 2641–2647 (2021).
Li, J. et al. Drug discovery approaches using quantum machine learning. Preprint at arXiv https://arxiv.org/abs/2104.00746 (2021).
Vikstål, P. et al. Applying the quantum approximate optimization algorithm to the tail-assignment problem. Phys. Rev. Appl. 14, 034009 (2020).
Egger, D. J. et al. Quantum computing for Finance: state of the art and future prospects. IEEE Trans. Quantum Eng. 1, 3101724 (2020).
Bongs, K. et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys. 1, 731–739 (2019).
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).
Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2018).
O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).
O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009).
Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284 (2020).
Bower, C. A., Menard, C. & Garrou, P. E. in 58th Electronic Components and Technology Conference (IEEE, 2008).
Gutierrez-Aitken, A. et al. in 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (IEEE, 2010).
Corbett, B. et al. Transfer print techniques for heterogeneous integration of photonic components. Prog. Quantum Electron. 52, 1–17 (2017).
Marin, C. & Gösele, U. (eds) Wafer Bonding: Applications and Technology Vol. 75 (Springer, 2013).
Lasky, J. B. Wafer bonding for silicon-on-insulator technologies. Appl. Phys. Lett. 48, 78–80 (1986).
Alcotte, R. et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater. 4, 046101 (2016).
Wang, Z. et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics 9, 837–842 (2015).
Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995).
Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).
Sven, A. et al. Atom-chip fountain gravimeter. Phys. Rev. Lett. 117, 203003 (2016).
Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).
Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics 14, 486–491 (2020).
Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).
Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).
Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O’Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).
Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012).
Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).
van Dijk, J. P. G., Charbon, E. & Sebastiano, F. The electronic interface for quantum processors. Microprocess. Microsyst. 66, 90–101 (2019).
Lo, H. K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photonics 8, 595–604 (2014).
Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).
Cirac, I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997).
Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).
Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M. D. & Jiang, L. Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014).
Glaudell, A. N., Waks, E. & Taylor, J. M. Serialized quantum error correction protocol for high-bandwidth quantum repeaters. New J. Phys. 18, 093008 (2016).
Fowler, A. G. et al. Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010).
Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).
Borregaard, J. et al. One-way quantum repeater based on near-deterministic photon-emitter interfaces. Phys. Rev. X 10, 021071 (2020).
Chen, Y.-A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021).
Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).
Monroe, C. Quantum information processing with atoms and photons. Nature 416, 238–246 (2002).
Gong, M. et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science 372, 948–952 (2021).
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–210 (2019).
Aaronson, S. & Arkhipov, A. in Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing 333–342 (Association for Computing Machinery, 2011).
Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).
Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).
Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).
Saggio, V. et al. Experimental quantum speed-up in reinforcement learning agents. Nature 591, 229–233 (2021).
Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).
Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).
Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).
Tillmann, M. et al. Experimental boson sampling. Nat. Photonics 7, 540–544 (2013).
Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics 7, 545–549 (2013).
Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).
Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 11, 447–452 (2017).
Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photonics 11, 361–365 (2017).
Wang, H. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional hilbert space. Phys. Rev. Lett. 123, 250503 (2019).
Lund, A. P. et al. Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502 (2014).
Bentivegna, M. et al. Experimental scattershot boson sampling. Sci. Adv. 1, e1400255 (2015).
Craig, S. et al. Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017).
Zhong, H.-S. et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021).
Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2000).
Paesani, S. et al. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019).
Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).
Politi, A., Matthews, J. C. F. & O’Brien, J. L. Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009).
Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photonics 2, 030901 (2017).
Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).
Pant, M., Towsley, D., Englund, D. & Guha, S. Percolation thresholds for photonic quantum computing. Nat. Commun. 10, 1070 (2019).
Wang, X. L. et al. 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120, 260502 (2018).
Adcock, J. C. et al. Programmable four-photon graph states on a silicon chip. Nat. Commun. 10, 3528 (2019).
Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020).
Ciampini, M. A. et al. Path-polarization hyperentangled and cluster states of photons on a chip. Light Sci. Appl. 5, e16064 (2016).
Vigliar, C. et al. Error protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).
Slussarenko, S. & Pryde, G. J. Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6, 041303 (2019).
Paesani, S. et al. Experimental Bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett. 118, 100503 (2017).
Santagati, R. et al. Witnessing eigenstates for quantum simulation of Hamiltonian spectra. Sci. Adv. 4, eaap9646 (2018).
Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).
Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).
Wang, J. et al. Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551–555 (2017).
Lahini, Y., Assaf Avidan, F. P., Marc Sorel, R. M., Demetrios, N. C. & Silberberg, Y. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).
Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322–328 (2013).
Gräfe, M. et al. Integrated photonic quantum walks. J. Opt. 18, 103002 (2016).
Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).
Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).
Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).
Figgatt, C. et al. Parallel entangling operations on a universal ion trap quantum computer. Nature 572, 368–372 (2019).
Choi, T. et al. Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. Phys. Rev. Lett. 112, 190502 (2014).
Mehta, K. K. et al. Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11, 1066–1070 (2016).
Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Nature 586, 533–537 (2020).
Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).
Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).
Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).
Awschalom, D. D. et al. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).
Gao, W. B., Imamoglu, A., Bernien, H. & Hanson, R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat. Photonics 9, 363–373 (2015).
Barzanjeh, S. et al. Microwave quantum illumination. Phys. Rev. Lett. 114, 080503 (2015).
Luong, D., Rajan, S. & Balaji, B. Entanglement-based quantum radar: from myth to reality. IEEE Aerosp. Electron. Syst. Mag. 35, 22–35 (2020).
Lanzagorta, M. in Proceedings SPIE 8734, Active and Passive Signatures IV 87340C (SPIE, 2013).
Acosta, V. M. et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys. Rev. B 80, 115202 (2009).
Wolf, T. et al. Subpicotesla diamond magnetometry. Phys. Rev. X 5, 041001 (2015).
Abobeih, M. H. et al. Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature 576, 411–415 (2019).
Huver, S. D., Wildfeuer, C. F. & Dowling, J. P. Entangled Fock states for robust quantum optical metrology, imaging, and sensing. Phys. Rev. A 78, 063828 (2008).
Wang, H. et al. Observation of intensity squeezing in resonance fluorescence from a solid-state device. Phys. Rev. Lett. 125, 153601 (2020).
Ferrari, S., Schuck, C. & Pernice, W. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics 7, 1725–1758 (2018).
Gyger, S. et al. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12, 1408 (2021).
Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).
Shadbolt, P. et al. Testing foundations of quantum mechanics with photons. Nat. Phys. 10, 278–286 (2014).
Peruzzo, A. et al. A quantum delayed-choice experiment. Science 338, 634–637 (2012).
Chen, X. et al. A generalized multipath delayed-choice experiment on a large-scale quantum nanophotonic chip. Nat. Commun. 12, 2712 (2021).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).
Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13, 158–169 (2019).
Verhagen, E. et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012).
Steinbrecher, G. R., Olson, J. P., Englund, D. & Carolan, J. Quantum optical neural networks. NPJ Quantum Inf. 5, 60 (2019).
Wu, Y. et al. Applications of topological photonics in integrated photonic devices. Adv. Opt. Mater. 5, 1700357 (2017).
Pirandola, S. Quantum reading of a classical digital memory. Phys. Rev. Lett. 106, 090504 (2011).
Liu, H. et al. Enhancing LIDAR performance metrics using continuous-wave photon-pair sources. Optica 6, 1349–1355 (2019).
Tan, S.-H. et al. Quantum illumination with Gaussian states. Phys. Rev. Lett. 101, 253601 (2008).
Carolan, J. et al. Variational quantum unsampling on a quantum photonic processor. Nat. Phys. 16, 322–327 (2020).
Israel, Y. et al. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat. Commun. 8, 14786 (2017).
Fink, M. et al. Entanglement-enhanced optical gyroscope. New J. Phys. 8, 053010 (2019).
Haas, J. et al. Chem/bio sensing with non-classical light and integrated photonics. Analyst 143, 593–605 (2018).
Schimpf, C. et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks. Appl. Phys. Lett. 118, 100502 (2021).
Chung, T. et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes. Nat. Photonics 10, 782–787 (2016).
European Commission. New Strategic Research Agenda on Quantum technologies (European Quantum Flagship, 2020); https://digital-strategy.ec.europa.eu/en/news/new-strategic-research-agenda-quantum-technologies.
Roberson, T. M. & White, A. G. Charting the Australian quantum landscape. Quantum Sci. Technol. 4, 020505 (2019).
Honjo, T., Inoue, K. & Takahashi, H. Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer. Opt. Lett. 29, 2797–2799 (2004).
Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19, 10387–10409 (2011).
Ministry of Education, Culture, Sports, Science and Technology. White Paper on Science and Technology: Possibilities and Options for a Future Society Expanded by Science and Technology (MEXT, 2020).
Awschalom, D. et al. Development of quantum interconnects (quics) for next-generation information technologies. PRX Quantum 2, 017002 (2021).
Monroe, C., Michael, G. R. & Taylor, J. The US National Quantum Initiative: from act to action. Science 364, 440–442 (2019).
Alexeev, Y. et al. Quantum computer systems for scientific discovery. PRX Quantum 2, 017001 (2021).
Kleese van Dam, K. From Long-distance Entanglement to Building a Nationwide Quantum Internet: Report of the DOE Quantum Internet Blueprint Workshop (Brookhaven National Laboratory, 2020).
Sussman, B., Corkum, P., Blais, A., Cory, D. & Damascelli, A. Quantum Canada. Quantum Sci. Technol. 4, 020503 (2019).
Baehr-Jones, T. W. & Michael, J. H. Polymer silicon hybrid systems: a platform for practical nonlinear optics. J. Phys. Chem. C 112, 8085–8090 (2008).
Zhang, Z. et al. Hybrid photonic integration on a polymer platform. Photonics 2, 1005–1026 (2015).
Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 820423 (S2QUIP), no. 860579 (MoSaiQ), no. 820404 (iqClock), no. 820474 (UNIQORN) and no. 899814 (Qurope). This research was supported by Science Foundation Ireland under grant nos. 15/IA/2864 and 12/RC/2276_P2. G.F. acknowledges support by the European Union funded ASCENT+ programme (grant agreement ID: 871130). Fl.S. thanks the Netherlands Organisation for Scientific Research (NWO) for grant no. NWA.QUANTUMNANO.2019.002, Quantum Inertial Navigation. I.A. acknowledges the Australian Research Council (CE200100010) and the Asian Office of Aerospace Research and Development (FA2386-20-1-4014) for the financial support. Q.G. and J.W. acknowledge the National Key R&D Program of China (nos. 2019YFA0308702 and 2018YFB2200403), the Natural Science Foundation of China (nos. 61975001 and 11527901), Beijing Natural Science Foundation (Z190005) and Key R&D Program of Guangdong Province (2018B030329001). Fa.S. acknowledges support by the ERC Advanced Grant QU-BOSS (QUantum advantage via nonlinear BOSon Sampling, grant agreement no. 884676). N.M. is grateful for support from JST CREST JPMJCR2004, MEXT Q-LEAP JPMXS0118067581 and JSPS KAKENHI JP20H02648.
Author information
Authors and Affiliations
Contributions
E.P., G.F. and K.D.J. conceived the perspective article. E.P., G.F. and K.D.J. drafted the initial manuscript, with contributions from J.W., Fa.S., C.S. and D.E. All authors have read, discussed and contributed to the writing, reviewing and editing of the manuscript before submission. K.D.J. coordinated and managed the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Physics thanks Juan Arrazola, Di Liang and the other, anonymous, reviewers for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
CQC2T: https://www.cqc2t.org/
EQUS: https://equs.org/
TMOS: https://tmos.org.au/
Glossary
- Silicon photonics
-
A materials platform for photonic integrated circuits. It uses silicon as the main optical medium and easily combines electronic and infrared optic elements.
- Monolithic integration
-
The creation of multiple components on (the same) chip, as in complementary metal–oxide–semiconductor electronic integrated chips in silicon. The creation of all different functionalities is achieved by the same production platform and materials associated to it, with no external addition. Better understood as opposed to hybrid or heterogeneous integration.
- Quantum repeater
-
A device capable of allowing transmission over long distances of quantum signals beyond the limits imposed by fibre losses (i.e. it allows repeating it over several network segments), without destroying the quantum superposition/features. Typical schemes share entanglement over several nodes and (often) necessitate quantum memories.
- Coherent receivers
-
Receivers of an optical signal that are capable of recognizing both the intensity and the phase terms of the impinging light.
- Feedforward operation
-
Feedforward is the process of monitoring a physical system and subsequently using the attained information to change the system, so as to control it towards a certain target state. For example, in quantum circuits, this implies taking a decision on how to modify a section of the circuit that will be active at a later stage after a specific previous outcome of another section of the circuit is known. Time constraints during operation are significant in this case.
- Cluster states
-
Refers to a specific type of highly entangled state of multiple qubits. The design is such that, after a measurement on a single qubit component is performed, entanglement between the other components is preserved. Cluster states are especially useful in the context of the one-way quantum computer.
- Quantum memory
-
A device capable (for a certain amount of time) of storing quantum information (or quantum state) and later release it on demand (it is, in short, the quantum-mechanical version of ordinary computer memory). They represent essential building blocks in quantum networks.
- Dynamic range
-
The range of values that a certain apparatus/detector can achieve for a specific application.
- Hybrid integration
-
The insertion in various ways of heterogeneous components to a specific chip platform, for example, by gluing external components or by other methods, such as wafer bonding, transfer print and so on.
- Heterogeneous integration
-
The direct deposition of various active materials (different from that of the chip, such as III–V semiconductors on silicon) on the chip wafers.
Rights and permissions
About this article
Cite this article
Pelucchi, E., Fagas, G., Aharonovich, I. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat Rev Phys 4, 194–208 (2022). https://doi.org/10.1038/s42254-021-00398-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-021-00398-z
This article is cited by
-
Integrated preparation and manipulation of high-dimensional flying structured photons
eLight (2024)
-
Polarization-entangled photon-pair source with van der Waals 3R-WS2 crystal
eLight (2024)
-
Activation of telecom emitters in silicon upon ion implantation and ns pulsed laser annealing
Communications Materials (2024)
-
Direct bandgap quantum wells in hexagonal Silicon Germanium
Nature Communications (2024)
-
Demonstration of hypergraph-state quantum information processing
Nature Communications (2024)