Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Roadmap
  • Published:

The potential and global outlook of integrated photonics for quantum technologies

Abstract

Integrated quantum photonics uses classical integrated photonic technologies and devices for quantum applications. As in classical photonics, chip-scale integration has become critical for scaling up and translating laboratory demonstrators to real-life technologies. Integrated quantum photonics efforts are centred around the development of quantum photonic integrated circuits, which can be monolithically, hybrid or heterogeneously integrated. In this Roadmap, we argue, through specific examples, for the value that integrated photonics brings to quantum technologies and discuss what applications may become possible in the future by overcoming the current roadblocks. We provide an overview of the research landscape and discuss the innovation and market potential. Our aim is to stimulate further research by outlining not only the scientific challenges of materials, devices and components associated with integrated photonics for quantum technologies but also those related to the development of the necessary manufacturing infrastructure and supply chains for delivering these technologies to the market.

Key points

  • Photonic quantum technologies have reached a number of important milestones in the last 20 years, culminating with the recent demonstrations of quantum advantage and space-to-ground quantum communication.

  • Scalability remains a strong challenge across all platforms, but photonic quantum technologies can benefit from the parallel developments in classical photonic integration.

  • More research is required as multiple challenges reside in the intrinsically hybrid nature of integrated photonic platforms, which require a variety of multiple materials, device design and integration strategies.

  • The complex innovation cycle for integrated photonic quantum technologies requires investments, the resolution of specific technological challenges, the development of the necessary infrastructure and further structuring towards a mature ecosystem.

  • There is an increasing demand for scientists and engineers with substantial knowledge of both quantum mechanics and its technological applications.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: qPIC architecture.
Fig. 2: The potential of the innovation cycle for photonic quantum technologies.

Similar content being viewed by others

References

  1. Georgescu, I. How the Bell tests changed quantum physics. Nat. Rev. Phys. 3, 674–676 (2021).

    Article  Google Scholar 

  2. Scarani, V. Quantum Physics: a First Encounter: Interference, Entanglement, and Reality (Oxford Univ. Press, 2006).

  3. Glauber, R. J. Nobel Lecture: One hundred years of light quanta. Rev. Mod. Phys. 78, 1267 (2006).

    Article  ADS  Google Scholar 

  4. Scully, M. O., Englert, B.-G. & Walther, H. Quantum optical tests of complementarity. Nature 351, 111–116 (1991).

    Article  ADS  Google Scholar 

  5. Aspect, A. Closing the door on Einstein and Bohr’s quantum debate. Physics 8, 123 (2015).

    Article  Google Scholar 

  6. Pan, J. W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  ADS  Google Scholar 

  7. Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Phil. Trans. R. Soc. A 361, 1655–1674 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  8. Deutsch, I. H. Harnessing the power of the second quantum revolution. PRX Quantum 1, 020101 (2020).

    Article  Google Scholar 

  9. Lloyd, S. & Englund, D. Future Directions of Quantum Information Processing: a Workshop on the Emerging Science and Technology of Quantum Computation, Communication, and Measurement (Basic Research Office, 2017); https://basicresearch.defense.gov/Portals/61/Documents/future-directions/Future_Directions_Quantum.pdf?ver=2017-09-20-003031-450.

  10. Steane, A. Quantum computing. Rep. Prog. Phys. 61, 117 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  11. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153 (2014).

    Article  ADS  Google Scholar 

  12. Gisin, N. & Thew, R. Quantum communication. Nat. Photonics 1, 165–171 (2007).

    Article  ADS  Google Scholar 

  13. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  14. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011).

    Article  ADS  Google Scholar 

  15. Polino, E., Valeri, M., Spagnolo, N. & Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2, 024703 (2020).

    Article  ADS  Google Scholar 

  16. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  ADS  Google Scholar 

  17. Cao, Y., Romero, J. & Aspuru-Guzik, J. Potential of quantum computing for drug discovery. IBM J. Res. Dev. 62, 6:1–6:20 (2018).

    Article  Google Scholar 

  18. Batra, K. et al. Quantum machine learning for drug discovery. J. Chem. Inf. Model. 28, 2641–2647 (2021).

    Article  Google Scholar 

  19. Li, J. et al. Drug discovery approaches using quantum machine learning. Preprint at arXiv https://arxiv.org/abs/2104.00746 (2021).

  20. Vikstål, P. et al. Applying the quantum approximate optimization algorithm to the tail-assignment problem. Phys. Rev. Appl. 14, 034009 (2020).

    Article  ADS  Google Scholar 

  21. Egger, D. J. et al. Quantum computing for Finance: state of the art and future prospects. IEEE Trans. Quantum Eng. 1, 3101724 (2020).

    Article  Google Scholar 

  22. Bongs, K. et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys. 1, 731–739 (2019).

    Article  Google Scholar 

  23. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  24. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2018).

    Article  ADS  Google Scholar 

  26. O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

    Article  ADS  Google Scholar 

  27. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  28. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284 (2020).

    Article  ADS  Google Scholar 

  29. Bower, C. A., Menard, C. & Garrou, P. E. in 58th Electronic Components and Technology Conference (IEEE, 2008).

  30. Gutierrez-Aitken, A. et al. in 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (IEEE, 2010).

  31. Corbett, B. et al. Transfer print techniques for heterogeneous integration of photonic components. Prog. Quantum Electron. 52, 1–17 (2017).

    Article  ADS  Google Scholar 

  32. Marin, C. & Gösele, U. (eds) Wafer Bonding: Applications and Technology Vol. 75 (Springer, 2013).

  33. Lasky, J. B. Wafer bonding for silicon-on-insulator technologies. Appl. Phys. Lett. 48, 78–80 (1986).

    Article  ADS  Google Scholar 

  34. Alcotte, R. et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater. 4, 046101 (2016).

    Article  ADS  Google Scholar 

  35. Wang, Z. et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics 9, 837–842 (2015).

    Article  ADS  Google Scholar 

  36. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995).

    Article  ADS  Google Scholar 

  37. Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

    Article  Google Scholar 

  38. Sven, A. et al. Atom-chip fountain gravimeter. Phys. Rev. Lett. 117, 203003 (2016).

    Article  Google Scholar 

  39. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article  ADS  Google Scholar 

  40. Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics 14, 486–491 (2020).

    Article  ADS  Google Scholar 

  41. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  ADS  Google Scholar 

  42. Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O’Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  ADS  Google Scholar 

  44. Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012).

    Article  ADS  Google Scholar 

  45. Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).

    Article  ADS  Google Scholar 

  46. van Dijk, J. P. G., Charbon, E. & Sebastiano, F. The electronic interface for quantum processors. Microprocess. Microsyst. 66, 90–101 (2019).

    Article  Google Scholar 

  47. Lo, H. K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photonics 8, 595–604 (2014).

    Article  ADS  Google Scholar 

  48. Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).

    Article  ADS  Google Scholar 

  49. Cirac, I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997).

    Article  ADS  Google Scholar 

  50. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).

    Article  ADS  Google Scholar 

  51. Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M. D. & Jiang, L. Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014).

    Article  ADS  Google Scholar 

  52. Glaudell, A. N., Waks, E. & Taylor, J. M. Serialized quantum error correction protocol for high-bandwidth quantum repeaters. New J. Phys. 18, 093008 (2016).

    Article  ADS  Google Scholar 

  53. Fowler, A. G. et al. Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010).

    Article  ADS  Google Scholar 

  54. Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).

    Article  ADS  Google Scholar 

  55. Borregaard, J. et al. One-way quantum repeater based on near-deterministic photon-emitter interfaces. Phys. Rev. X 10, 021071 (2020).

    Google Scholar 

  56. Chen, Y.-A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021).

    Article  ADS  Google Scholar 

  57. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  58. Monroe, C. Quantum information processing with atoms and photons. Nature 416, 238–246 (2002).

    Article  ADS  Google Scholar 

  59. Gong, M. et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science 372, 948–952 (2021).

    Article  Google Scholar 

  60. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–210 (2019).

    Article  ADS  Google Scholar 

  61. Aaronson, S. & Arkhipov, A. in Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing 333–342 (Association for Computing Machinery, 2011).

  62. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  63. Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

    Article  ADS  Google Scholar 

  64. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  ADS  Google Scholar 

  65. Saggio, V. et al. Experimental quantum speed-up in reinforcement learning agents. Nature 591, 229–233 (2021).

    Article  ADS  Google Scholar 

  66. Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).

    Article  ADS  Google Scholar 

  67. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    Article  ADS  Google Scholar 

  68. Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    Article  ADS  Google Scholar 

  69. Tillmann, M. et al. Experimental boson sampling. Nat. Photonics 7, 540–544 (2013).

    Article  ADS  Google Scholar 

  70. Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics 7, 545–549 (2013).

    Article  ADS  Google Scholar 

  71. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Article  Google Scholar 

  72. Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 11, 447–452 (2017).

    Article  ADS  Google Scholar 

  73. Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photonics 11, 361–365 (2017).

    Article  ADS  Google Scholar 

  74. Wang, H. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    Article  ADS  Google Scholar 

  75. Lund, A. P. et al. Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502 (2014).

    Article  ADS  Google Scholar 

  76. Bentivegna, M. et al. Experimental scattershot boson sampling. Sci. Adv. 1, e1400255 (2015).

    Article  ADS  Google Scholar 

  77. Craig, S. et al. Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017).

    Article  Google Scholar 

  78. Zhong, H.-S. et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021).

    Article  ADS  Google Scholar 

  79. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2000).

    Article  ADS  Google Scholar 

  80. Paesani, S. et al. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019).

    Article  Google Scholar 

  81. Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  82. Politi, A., Matthews, J. C. F. & O’Brien, J. L. Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  83. Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photonics 2, 030901 (2017).

    Article  ADS  Google Scholar 

  84. Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    Article  ADS  Google Scholar 

  85. Pant, M., Towsley, D., Englund, D. & Guha, S. Percolation thresholds for photonic quantum computing. Nat. Commun. 10, 1070 (2019).

    Article  ADS  Google Scholar 

  86. Wang, X. L. et al. 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120, 260502 (2018).

    Article  ADS  Google Scholar 

  87. Adcock, J. C. et al. Programmable four-photon graph states on a silicon chip. Nat. Commun. 10, 3528 (2019).

    Article  ADS  Google Scholar 

  88. Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020).

    Article  Google Scholar 

  89. Ciampini, M. A. et al. Path-polarization hyperentangled and cluster states of photons on a chip. Light Sci. Appl. 5, e16064 (2016).

    Article  Google Scholar 

  90. Vigliar, C. et al. Error protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).

    Article  Google Scholar 

  91. Slussarenko, S. & Pryde, G. J. Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6, 041303 (2019).

    Article  ADS  Google Scholar 

  92. Paesani, S. et al. Experimental Bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett. 118, 100503 (2017).

    Article  ADS  Google Scholar 

  93. Santagati, R. et al. Witnessing eigenstates for quantum simulation of Hamiltonian spectra. Sci. Adv. 4, eaap9646 (2018).

    Article  ADS  Google Scholar 

  94. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article  ADS  Google Scholar 

  95. Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).

    Article  Google Scholar 

  96. Wang, J. et al. Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551–555 (2017).

    Article  Google Scholar 

  97. Lahini, Y., Assaf Avidan, F. P., Marc Sorel, R. M., Demetrios, N. C. & Silberberg, Y. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

    Article  ADS  Google Scholar 

  98. Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322–328 (2013).

    Article  ADS  Google Scholar 

  99. Gräfe, M. et al. Integrated photonic quantum walks. J. Opt. 18, 103002 (2016).

    Article  ADS  Google Scholar 

  100. Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    Article  ADS  Google Scholar 

  101. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article  ADS  Google Scholar 

  102. Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  103. Figgatt, C. et al. Parallel entangling operations on a universal ion trap quantum computer. Nature 572, 368–372 (2019).

    Article  ADS  Google Scholar 

  104. Choi, T. et al. Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. Phys. Rev. Lett. 112, 190502 (2014).

    Article  ADS  Google Scholar 

  105. Mehta, K. K. et al. Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11, 1066–1070 (2016).

    Article  ADS  Google Scholar 

  106. Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Nature 586, 533–537 (2020).

    Article  ADS  Google Scholar 

  107. Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).

    Article  ADS  Google Scholar 

  108. Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  109. Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

    Article  ADS  Google Scholar 

  110. Awschalom, D. D. et al. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    Article  ADS  Google Scholar 

  111. Gao, W. B., Imamoglu, A., Bernien, H. & Hanson, R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat. Photonics 9, 363–373 (2015).

    Article  ADS  Google Scholar 

  112. Barzanjeh, S. et al. Microwave quantum illumination. Phys. Rev. Lett. 114, 080503 (2015).

    Article  ADS  Google Scholar 

  113. Luong, D., Rajan, S. & Balaji, B. Entanglement-based quantum radar: from myth to reality. IEEE Aerosp. Electron. Syst. Mag. 35, 22–35 (2020).

    Article  Google Scholar 

  114. Lanzagorta, M. in Proceedings SPIE 8734, Active and Passive Signatures IV 87340C (SPIE, 2013).

  115. Acosta, V. M. et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys. Rev. B 80, 115202 (2009).

    Article  ADS  Google Scholar 

  116. Wolf, T. et al. Subpicotesla diamond magnetometry. Phys. Rev. X 5, 041001 (2015).

    Google Scholar 

  117. Abobeih, M. H. et al. Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature 576, 411–415 (2019).

    Article  ADS  Google Scholar 

  118. Huver, S. D., Wildfeuer, C. F. & Dowling, J. P. Entangled Fock states for robust quantum optical metrology, imaging, and sensing. Phys. Rev. A 78, 063828 (2008).

    Article  ADS  Google Scholar 

  119. Wang, H. et al. Observation of intensity squeezing in resonance fluorescence from a solid-state device. Phys. Rev. Lett. 125, 153601 (2020).

    Article  ADS  Google Scholar 

  120. Ferrari, S., Schuck, C. & Pernice, W. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics 7, 1725–1758 (2018).

    Article  Google Scholar 

  121. Gyger, S. et al. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12, 1408 (2021).

    Article  ADS  Google Scholar 

  122. Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).

    Article  ADS  Google Scholar 

  123. Shadbolt, P. et al. Testing foundations of quantum mechanics with photons. Nat. Phys. 10, 278–286 (2014).

    Article  Google Scholar 

  124. Peruzzo, A. et al. A quantum delayed-choice experiment. Science 338, 634–637 (2012).

    Article  ADS  Google Scholar 

  125. Chen, X. et al. A generalized multipath delayed-choice experiment on a large-scale quantum nanophotonic chip. Nat. Commun. 12, 2712 (2021).

    Article  ADS  Google Scholar 

  126. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  127. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  128. Verhagen, E. et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012).

    Article  ADS  Google Scholar 

  129. Steinbrecher, G. R., Olson, J. P., Englund, D. & Carolan, J. Quantum optical neural networks. NPJ Quantum Inf. 5, 60 (2019).

    Article  ADS  Google Scholar 

  130. Wu, Y. et al. Applications of topological photonics in integrated photonic devices. Adv. Opt. Mater. 5, 1700357 (2017).

    Article  Google Scholar 

  131. Pirandola, S. Quantum reading of a classical digital memory. Phys. Rev. Lett. 106, 090504 (2011).

    Article  ADS  Google Scholar 

  132. Liu, H. et al. Enhancing LIDAR performance metrics using continuous-wave photon-pair sources. Optica 6, 1349–1355 (2019).

    Article  ADS  Google Scholar 

  133. Tan, S.-H. et al. Quantum illumination with Gaussian states. Phys. Rev. Lett. 101, 253601 (2008).

    Article  ADS  Google Scholar 

  134. Carolan, J. et al. Variational quantum unsampling on a quantum photonic processor. Nat. Phys. 16, 322–327 (2020).

    Article  Google Scholar 

  135. Israel, Y. et al. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat. Commun. 8, 14786 (2017).

    Article  ADS  Google Scholar 

  136. Fink, M. et al. Entanglement-enhanced optical gyroscope. New J. Phys. 8, 053010 (2019).

    Article  Google Scholar 

  137. Haas, J. et al. Chem/bio sensing with non-classical light and integrated photonics. Analyst 143, 593–605 (2018).

    Article  ADS  Google Scholar 

  138. Schimpf, C. et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks. Appl. Phys. Lett. 118, 100502 (2021).

    Article  ADS  Google Scholar 

  139. Chung, T. et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes. Nat. Photonics 10, 782–787 (2016).

    Article  ADS  Google Scholar 

  140. European Commission. New Strategic Research Agenda on Quantum technologies (European Quantum Flagship, 2020); https://digital-strategy.ec.europa.eu/en/news/new-strategic-research-agenda-quantum-technologies.

  141. Roberson, T. M. & White, A. G. Charting the Australian quantum landscape. Quantum Sci. Technol. 4, 020505 (2019).

    Article  ADS  Google Scholar 

  142. Honjo, T., Inoue, K. & Takahashi, H. Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer. Opt. Lett. 29, 2797–2799 (2004).

    Article  ADS  Google Scholar 

  143. Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19, 10387–10409 (2011).

    Article  ADS  Google Scholar 

  144. Ministry of Education, Culture, Sports, Science and Technology. White Paper on Science and Technology: Possibilities and Options for a Future Society Expanded by Science and Technology (MEXT, 2020).

  145. Awschalom, D. et al. Development of quantum interconnects (quics) for next-generation information technologies. PRX Quantum 2, 017002 (2021).

    Article  Google Scholar 

  146. Monroe, C., Michael, G. R. & Taylor, J. The US National Quantum Initiative: from act to action. Science 364, 440–442 (2019).

    Article  ADS  Google Scholar 

  147. Alexeev, Y. et al. Quantum computer systems for scientific discovery. PRX Quantum 2, 017001 (2021).

    Article  Google Scholar 

  148. Kleese van Dam, K. From Long-distance Entanglement to Building a Nationwide Quantum Internet: Report of the DOE Quantum Internet Blueprint Workshop (Brookhaven National Laboratory, 2020).

  149. Sussman, B., Corkum, P., Blais, A., Cory, D. & Damascelli, A. Quantum Canada. Quantum Sci. Technol. 4, 020503 (2019).

    Article  ADS  Google Scholar 

  150. Baehr-Jones, T. W. & Michael, J. H. Polymer silicon hybrid systems: a platform for practical nonlinear optics. J. Phys. Chem. C 112, 8085–8090 (2008).

    Article  Google Scholar 

  151. Zhang, Z. et al. Hybrid photonic integration on a polymer platform. Photonics 2, 1005–1026 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 820423 (S2QUIP), no. 860579 (MoSaiQ), no. 820404 (iqClock), no. 820474 (UNIQORN) and no. 899814 (Qurope). This research was supported by Science Foundation Ireland under grant nos. 15/IA/2864 and 12/RC/2276_P2. G.F. acknowledges support by the European Union funded ASCENT+ programme (grant agreement ID: 871130). Fl.S. thanks the Netherlands Organisation for Scientific Research (NWO) for grant no. NWA.QUANTUMNANO.2019.002, Quantum Inertial Navigation. I.A. acknowledges the Australian Research Council (CE200100010) and the Asian Office of Aerospace Research and Development (FA2386-20-1-4014) for the financial support. Q.G. and J.W. acknowledge the National Key R&D Program of China (nos. 2019YFA0308702 and 2018YFB2200403), the Natural Science Foundation of China (nos. 61975001 and 11527901), Beijing Natural Science Foundation (Z190005) and Key R&D Program of Guangdong Province (2018B030329001). Fa.S. acknowledges support by the ERC Advanced Grant QU-BOSS (QUantum advantage via nonlinear BOSon Sampling, grant agreement no. 884676). N.M. is grateful for support from JST CREST JPMJCR2004, MEXT Q-LEAP JPMXS0118067581 and JSPS KAKENHI JP20H02648.

Author information

Authors and Affiliations

Authors

Contributions

E.P., G.F. and K.D.J. conceived the perspective article. E.P., G.F. and K.D.J. drafted the initial manuscript, with contributions from J.W., Fa.S., C.S. and D.E. All authors have read, discussed and contributed to the writing, reviewing and editing of the manuscript before submission. K.D.J. coordinated and managed the project.

Corresponding author

Correspondence to Klaus D. Jöns.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Juan Arrazola, Di Liang and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CQC2T: https://www.cqc2t.org/

EQUS: https://equs.org/

TMOS: https://tmos.org.au/

Glossary

Silicon photonics

A materials platform for photonic integrated circuits. It uses silicon as the main optical medium and easily combines electronic and infrared optic elements.

Monolithic integration

The creation of multiple components on (the same) chip, as in complementary metal–oxide–semiconductor electronic integrated chips in silicon. The creation of all different functionalities is achieved by the same production platform and materials associated to it, with no external addition. Better understood as opposed to hybrid or heterogeneous integration.

Quantum repeater

A device capable of allowing transmission over long distances of quantum signals beyond the limits imposed by fibre losses (i.e. it allows repeating it over several network segments), without destroying the quantum superposition/features. Typical schemes share entanglement over several nodes and (often) necessitate quantum memories.

Coherent receivers

Receivers of an optical signal that are capable of recognizing both the intensity and the phase terms of the impinging light.

Feedforward operation

Feedforward is the process of monitoring a physical system and subsequently using the attained information to change the system, so as to control it towards a certain target state. For example, in quantum circuits, this implies taking a decision on how to modify a section of the circuit that will be active at a later stage after a specific previous outcome of another section of the circuit is known. Time constraints during operation are significant in this case.

Cluster states

Refers to a specific type of highly entangled state of multiple qubits. The design is such that, after a measurement on a single qubit component is performed, entanglement between the other components is preserved. Cluster states are especially useful in the context of the one-way quantum computer.

Quantum memory

A device capable (for a certain amount of time) of storing quantum information (or quantum state) and later release it on demand (it is, in short, the quantum-mechanical version of ordinary computer memory). They represent essential building blocks in quantum networks.

Dynamic range

The range of values that a certain apparatus/detector can achieve for a specific application.

Hybrid integration

The insertion in various ways of heterogeneous components to a specific chip platform, for example, by gluing external components or by other methods, such as wafer bonding, transfer print and so on.

Heterogeneous integration

The direct deposition of various active materials (different from that of the chip, such as III–V semiconductors on silicon) on the chip wafers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelucchi, E., Fagas, G., Aharonovich, I. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat Rev Phys 4, 194–208 (2022). https://doi.org/10.1038/s42254-021-00398-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00398-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing