Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Harnessing the power of chemically active sheets in solution

Abstract

In living organisms, diffusing chemicals react with soft tissue to actuate a range of mechanical actions, such as periodic pulsations or net motion. Inspired by this biological behaviour, researchers have created chemically active ‘microswimmers’ that translate chemical input into mechanical work. Because typical microswimmers are hard spheres (that is, zero-dimensional objects) and rigid or flexible rods (1D objects), their movements are constrained relative to higher dimensional, soft matter. In recent years, these limitations have motivated research on 2D active sheets that undergo shape changes or directed motion in response to chemical cues in solution; the combination of dimensionality, chemical activity and structural flexibility leads to new, rich dynamic behaviour. In one class of materials, chemical reactions generate internal stresses in the 2D sheets that trigger the shape transformations; in the second class, the release of energy from chemical reactions drives a fluid flow, which not only transports but also morphs the shape of the sheet. Consequently, these reconfigurable, self-propelled sheets can perform self-sustained operations that were unattainable with previously studied active particles, including self-morphing and self-oscillating behaviour. The latter functionalities can lead to the creation of portable, chemical machines and the discovery of new modes of dynamic self-assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemically active sheets in solution.
Fig. 2: Chemically active sheets morph into 3D shapes.
Fig. 3: Self-propulsion of chemically active sheets in solution.
Fig. 4: Autonomous rotation of chemically active sheets.
Fig. 5: Self-oscillations of chemically active sheets.
Fig. 6: Self-oscillations of elastic sheets, powered by chemically driven fluid flow.

Similar content being viewed by others

References

  1. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    ADS  Google Scholar 

  2. Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1, 323–345 (2010).

    ADS  Google Scholar 

  3. Nojoomi, A., Jeon, J. & Yum, K. 2D material programming for 3D shaping. Nat. Commun. 12, 603 (2021).

    ADS  Google Scholar 

  4. Menzel, A. M. Tuned, driven, and active soft matter. Phys. Rep. 554, 1–45 (2015).

    MathSciNet  ADS  Google Scholar 

  5. Ghosh, S., Somasundar, A. & Sen, A. Enzymes as active matter. Annu. Rev. Condens. Matter Phys. 12, 177–200 (2021).

    Google Scholar 

  6. Bechinger, C. et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).

    MathSciNet  ADS  Google Scholar 

  7. Aranson, I. S. Active colloids. Phys. Usp. 56, 79–92 (2013).

    ADS  Google Scholar 

  8. Zöttl, A. & Stark, H. Emergent behavior in active colloids. J. Phys. Condens. Matter 28, 253001 (2016).

    ADS  Google Scholar 

  9. Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009).

    MathSciNet  ADS  Google Scholar 

  10. Singh, R., Adhikari, R. & Cates, M. E. Competing chemical and hydrodynamic interactions in autophoretic colloidal suspensions. J. Chem. Phys. 151, 044901 (2019).

    ADS  Google Scholar 

  11. Solovev, A. A. et al. Self-propelled nanotools. ACS Nano 6, 1751–1756 (2012).

    Google Scholar 

  12. Elgeti, J., Winkler, R. G. & Gompper, G. Physics of microswimmers — single particle motion and collective behavior: a review. Rep. Prog. Phys. 78, 056601 (2015).

    MathSciNet  ADS  Google Scholar 

  13. Winkler, R. G., Elgeti, J. & Gompper, G. Active polymers — Emergent conformational and dynamical properties: a brief review. J. Phys. Soc. Jpn. 86, 101014 (2017).

    ADS  Google Scholar 

  14. Sanchez, T., Chen, D. T. N., Decamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    ADS  Google Scholar 

  15. Biswas, B. et al. Linking catalyst-coated isotropic colloids into ‘active’ flexible chains enhances their diffusivity. ACS Nano 11, 10025–10031 (2017).

    Google Scholar 

  16. Pandey, A., Kumar, S. P. B., Adhikari, R., Kumar, P. B. S. & Adhikari, R. Flow-induced nonequilibrium self-assembly in suspensions of stiff, apolar, active filaments. Soft Matter 12, 9068–9076 (2016).

    ADS  Google Scholar 

  17. Jayaraman, G. et al. Autonomous motility of active filaments due to spontaneous flow-symmetry breaking. Phys. Rev. Lett. 109, 158302 (2012).

    ADS  Google Scholar 

  18. Winkler, R. G. & Gompper, G. The physics of active polymers and filaments. J. Chem. Phys. 153, 040901 (2020).

    Google Scholar 

  19. Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

    Google Scholar 

  20. Wang, W., Duan, W., Ahmed, S., Mallouk, T. E. & Sen, A. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8, 531–534 (2013).

    Google Scholar 

  21. Sengupta, S., Ibele, M. E. & Sen, A. Fantastic voyage: designing self-powered nanorobots. Angew. Chem. Int. Ed. 51, 8434–8445 (2012).

    Google Scholar 

  22. Ismagilov, R. F., Schwartz, A., Bowden, N. & Whitesides, G. M. Autonomous movement and self-assembly. Angew. Chem. Int. Ed. 41, 652–654 (2002).

    Google Scholar 

  23. Zhao, G., Sanchez, S., Schmidt, O. G. & Pumera, M. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. Nanoscale 5, 2909–2914 (2013).

    ADS  Google Scholar 

  24. Ma, X., Hortelao, A. C., Miguel-López, A. & Sánchez, S. Bubble-free propulsion of ultrasmall tubular nanojets powered by biocatalytic reactions. J. Am. Chem. Soc. 138, 13782–13785 (2016).

    Google Scholar 

  25. Laskar, A., Shklyaev, O. E. & Balazs, A. C. Designing self-propelled, chemically active sheets: wrappers, flappers, and creepers. Sci. Adv. 4, eaav1745 (2018).

    ADS  Google Scholar 

  26. Manna, R. K., Shklyaev, O. E., Stone, H. A. & Balazs, A. C. Chemically controlled shape-morphing of elastic sheets. Mater. Horiz. 7, 2314–2327 (2020).

    Google Scholar 

  27. Laskar, A., Shklyaev, O. E. & Balazs, A. C. Collaboration and competition between active sheets for self-propelled particles. Proc. Natl Acad. Sci. USA 116, 9257–9262 (2019).

    ADS  Google Scholar 

  28. McCracken, J. M. et al. Ionic hydrogels with biomimetic 4D-printed mechanical gradients: models for soft-bodied aquatic organisms. Adv. Funct. Mater. 29, 1806723 (2019).

    Google Scholar 

  29. Kim, S. Y. et al. Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae. Nat. Commun. 10, 3464 (2019).

    ADS  Google Scholar 

  30. Zhang, Y. et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2, 17019 (2017).

    ADS  Google Scholar 

  31. Wang, X. et al. Untethered and ultrafast soft-bodied robots. Commun. Mater. 1, 67 (2020).

    Google Scholar 

  32. Rothemund, P. et al. A soft, bistable valve for autonomous control of soft actuators. Sci. Robot. 3, eaar7986 (2018).

    Google Scholar 

  33. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    ADS  Google Scholar 

  34. Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).

    ADS  Google Scholar 

  35. Cui, J. et al. Nanomagnetic encoding of shape-morphing micromachines. Nature 575, 164–168 (2019).

    ADS  Google Scholar 

  36. Huang, H. W., Sakar, M. S., Petruska, A. J., Pané, S. & Nelson, B. J. Soft micromachines with programmable motility and morphology. Nat. Commun. 7, 12263 (2016).

    ADS  Google Scholar 

  37. Chen, L. et al. An untethered soft chemo-mechanical robot with composite structure and optimized control. Extrem. Mech. Lett. 27, 27–33 (2019).

    ADS  Google Scholar 

  38. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    ADS  Google Scholar 

  39. Arab Hassani, F., Jin, H., Yokota, T., Someya, T. & Thakor, N. V. Soft sensors for a sensing-actuation system with high bladder voiding efficiency. Sci. Adv. 6, eaba0412 (2020).

    ADS  Google Scholar 

  40. Rich, S. I., Wood, R. J. & Majidi, C. Untethered soft robotics. Nat. Electron. 1, 102–112 (2018).

    Google Scholar 

  41. Treml, B. E. et al. Autonomous motility of polymer films. Adv. Mater. 30, 1705616 (2018).

    Google Scholar 

  42. Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    ADS  Google Scholar 

  43. Ideses, Y. et al. Spontaneous buckling of contractile poroelastic actomyosin sheets. Nat. Commun. 9, 2461 (2018).

    ADS  Google Scholar 

  44. Loiseau, E. et al. Shape remodeling and blebbing of active cytoskeletal vesicles. Sci. Adv. 2, e1500465 (2016).

    ADS  Google Scholar 

  45. Senoussi, A. et al. Tunable corrugated patterns in an active nematic sheet. Proc. Natl Acad. Sci. USA 116, 22464–22470 (2019).

    ADS  Google Scholar 

  46. Pearce, D. J. G., Gat, S., Livne, G., Bernheim-Groswasser, A. & Kruse, K. Programming active metamaterials using topological defects. Preprint at arXiv https://arxiv.org/abs/2010.13141 (2020).

  47. Laskar, A., Shklyaev, O. E. & Balazs, A. C. Self-morphing, chemically driven gears and machines. Matter 4, 600–617 (2021).

    Google Scholar 

  48. Manna, R. K., Shklyaev, O. E. & Balazs, A. C. Chemical pumps and flexible sheets spontaneously form self-regulating oscillators in solution. Proc. Natl Acad. Sci. USA 118, e2022987118 (2021).

    Google Scholar 

  49. Athas, J. C. et al. Enzyme-triggered folding of hydrogels: toward a mimic of the venus flytrap. ACS Appl. Mater. Interfaces 8, 19066–19074 (2016).

    Google Scholar 

  50. Al-Izzi, S. C. & Morris, R. G. Active flows and deformable surfaces in development. Preprint at arXiv https://arxiv.org/abs/2103.12264 (2021).

  51. Li, S., Matoz-Fernandez, D. A., Aggarwal, A. & de la Cruz, M. O. Chemically controlled pattern formation in self-oscillating elastic shells. Proc. Natl Acad. Sci. USA 118, e2025717118 (2021).

    MathSciNet  Google Scholar 

  52. Tamate, R., Ueki, T. & Yoshida, R. Self-beating artificial cells: design of cross-linked polymersomes showing self-oscillating motion. Adv. Mater. 27, 837–842 (2015).

    Google Scholar 

  53. Keber, F. C. et al. Topology and dynamics of active nematic vesicles. Science 345, 1135–1139 (2014).

    ADS  Google Scholar 

  54. Miller, P. W., Stoop, N. & Dunkel, J. Geometry of wave propagation on active deformable surfaces. Phys. Rev. Lett. 120, 268001 (2018).

    ADS  Google Scholar 

  55. Miller, P. W. & Dunkel, J. Gait-optimized locomotion of wave-driven soft sheets. Soft Matter 16, 3991–3999 (2020).

    ADS  Google Scholar 

  56. Mietke, A., Jülicher, F. & Sbalzarini, I. F. Self-organized shape dynamics of active surfaces. Proc. Natl Acad. Sci. USA 116, 29–34 (2019).

    ADS  Google Scholar 

  57. Matoz-Fernandez, D. A., Davidson, F. A., Stanley-Wall, N. R. & Sknepnek, R. Wrinkle patterns in active viscoelastic thin sheets. Phys. Rev. Res. 2, 013165 (2020).

    Google Scholar 

  58. Metselaar, L., Yeomans, J. M. & Doostmohammadi, A. Topology and morphology of self-deforming active shells. Phys. Rev. Lett. 123, 208001 (2019).

    ADS  Google Scholar 

  59. Bächer, C. & Gekle, S. Computational modeling of active deformable membranes embedded in three-dimensional flows. Phys. Rev. E 99, 062418 (2019).

    ADS  Google Scholar 

  60. Das, S. et al. Harnessing catalytic pumps for directional delivery of microparticles in microchambers. Nat. Commun. 8, 14384 (2017).

    ADS  Google Scholar 

  61. Valdez, L., Shum, H., Ortiz-Rivera, I., Balazs, A. C. & Sen, A. Solutal and thermal buoyancy effects in self-powered phosphatase micropumps. Soft Matter 13, 2800–2807 (2017).

    ADS  Google Scholar 

  62. Lim, S., Ferent, A., Wang, X. S. & Peskin, C. S. Dynamics of a closed rod with twist and bend in fluid. SIAM J. Sci. Comput. 31, 273–302 (2008).

    MathSciNet  MATH  Google Scholar 

  63. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Clarendon Press, 1961).

  64. Shum, H., Tripathi, A., Yeomans, J. M. & Balazs, A. C. Active ciliated surfaces expel model swimmers. Langmuir 29, 12770–12776 (2013).

    Google Scholar 

  65. Johnson, K. A. & Goody, R. S. The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50, 8264–8269 (2011).

    Google Scholar 

  66. Sengupta, S. et al. Self-powered enzyme micropumps. Nat. Chem. 6, 415–422 (2014).

    Google Scholar 

  67. Lin, Y. et al. Ultrathin cross-linked nanoparticle membranes. J. Am. Chem. Soc. 125, 12690–12691 (2003).

    Google Scholar 

  68. Lee, D. Y. et al. Macroscopic nanoparticle ribbons and fabrics. Adv. Mater. 25, 1248–1253 (2013).

    Google Scholar 

  69. Kim, J., Hanna, J. A., Byun, M., Santangelo, C. D. & Hayward, R. C. Designing responsive buckled surfaces by halftone gel lithography. Science 335, 1201–1205 (2012).

    MathSciNet  MATH  ADS  Google Scholar 

  70. Na, J.-H. et al. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Adv. Mater. 27, 79–85 (2015).

    Google Scholar 

  71. Vargo, K. B., Parthasarathy, R. & Hammer, D. A. Self-assembly of tunable protein suprastructures from recombinant oleosin. Proc. Natl Acad. Sci. USA 109, 11657–11662 (2012).

    ADS  Google Scholar 

  72. Jeon, S. J., Hauser, A. W. & Hayward, R. C. Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc. Chem. Res. 50, 161–169 (2017).

    Google Scholar 

  73. Erol, O., Pantula, A., Liu, W. & Gracias, D. H. Transformer hydrogels: a review. Adv. Mater. Technol. 4, 1900043 (2019).

    Google Scholar 

  74. White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).

    ADS  Google Scholar 

  75. Oliver, K., Seddon, A. & Trask, R. S. Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms. J. Mater. Sci. 51, 10663–10689 (2016).

    ADS  Google Scholar 

  76. Zhang, X. et al. The pathway to intelligence: using stimuli-responsive materials as building blocks for constructing smart and functional systems. Adv. Mater. 31, 1804540 (2019).

    Google Scholar 

  77. van Manen, T., Janbaz, S. & Zadpoor, A. A. Programming the shape-shifting of flat soft matter. Mater. Today 21, 144–163 (2018).

    Google Scholar 

  78. Pinson, M. B. et al. Self-folding origami at any energy scale. Nat. Commun. 8, 15477 (2017).

    ADS  Google Scholar 

  79. Klein, Y., Efrati, E. & Sharon, E. Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 9, 1116–1120 (2007).

    MathSciNet  MATH  ADS  Google Scholar 

  80. Lendlein, A. & Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002).

    ADS  Google Scholar 

  81. Lendlein, A., Jiang, H., Olive, J. & Langer, R. Light-induced shape-memory polymers. Science 434, 879–882 (2005).

    Google Scholar 

  82. Felton, S., Tolley, M., Demaine, E., Rus, D. & Wood, R. A method for building self-folding machines. Science 345, 644–646 (2014).

    ADS  Google Scholar 

  83. Agnarsson, I., Dhinojwala, A., Sahni, V. & Blackledge, T. A. Spider silk as a novel high performance biomimetic muscle driven by humidity. J. Exp. Biol. 212, 1990–1994 (2009).

    Google Scholar 

  84. Manikandan, G., Murali, A., Kumar, R. & Satapathy, D. K. Rapid moisture-responsive silk fibroin actuators. ACS Appl. Mater. Interfaces 13, 8880–8888 (2021).

    Google Scholar 

  85. Yao, Y. et al. Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability. Proc. Natl Acad. Sci. USA 115, 12950–12955 (2018).

    ADS  Google Scholar 

  86. Zhang, H., Guo, X., Wu, J., Fang, D. & Zhang, Y. Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves. Sci. Adv. 4, eaar8535 (2018).

    ADS  Google Scholar 

  87. Huang, L. et al. Ultrafast digital printing toward 4D shape changing materials. Adv. Mater. 29, 1605390 (2017).

    Google Scholar 

  88. Nojoomi, A., Arslan, H., Lee, K. & Yum, K. Bioinspired 3D structures with programmable morphologies and motions. Nat. Commun. 9, 3705 (2018).

    ADS  Google Scholar 

  89. Mailen, R. W. et al. Thermo-mechanical transformation of shape memory polymers from initially flat discs to bowls and saddles. Smart Mater. Struct. 28, 045011 (2019).

    ADS  Google Scholar 

  90. Rivera-Tarazona, L. K., Bhat, V. D., Kim, H., Campbell, Z. T. & Ware, T. H. Shape-morphing living composites. Sci. Adv. 6, eaax8582 (2020).

    ADS  Google Scholar 

  91. Siéfert, E., Reyssat, E., Bico, J. & Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 18, 24–28 (2019).

    ADS  Google Scholar 

  92. Thérien-Aubin, H., Wu, Z. L., Nie, Z. & Kumacheva, E. Multiple shape transformations of composite hydrogel sheets. J. Am. Chem. Soc. 135, 4834–4839 (2013).

    Google Scholar 

  93. Ma, M., Guo, L., Anderson, D. G. & Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339, 186–189 (2013).

    ADS  Google Scholar 

  94. Wu, Z. L. et al. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4, 1586–1587 (2013).

    ADS  Google Scholar 

  95. Hajiesmaili, E. & Clarke, D. R. Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nat. Commun. 10, 183 (2019).

    ADS  Google Scholar 

  96. Griniasty, I., Mostajeran, C. & Cohen, I. Multi-valued inverse design: multiple surface geometries from one flat sheet. Phys. Rev. Lett. 127, 128001 (2021).

    ADS  Google Scholar 

  97. Rath, A., Geethu, P. M., Mathesan, S., Satapathy, D. K. & Ghosh, P. Solvent triggered irreversible shape morphism of biopolymer films. Soft Matter 14, 1672–1680 (2018).

    ADS  Google Scholar 

  98. Kim, S., Laschi, C. & Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013).

    Google Scholar 

  99. Miskin, M. Z. et al. Graphene-based bimorphs for micron-sized, tautonomous origami machines. Proc. Natl Acad. Sci. USA 115, 466–470 (2018).

    ADS  Google Scholar 

  100. Pena-Francesch, A., Giltinan, J. & Sitti, M. Multifunctional and biodegradable self-propelled protein motors. Nat. Commun. 10, 3188 (2019).

    ADS  Google Scholar 

  101. Silmore, K. S., Strano, M. S. & Swan, J. W. Buckling, crumpling, and tumbling of semiflexible sheets in simple shear flow. Soft Matter 17, 4707–4718 (2021).

    ADS  Google Scholar 

  102. Ohm, C., Brehmer, M. & Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010).

    Google Scholar 

  103. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).

    ADS  Google Scholar 

  104. Liebchen, B., Marenduzzo, D. & Cates, M. E. Phoretic interactions generically induce dynamic clusters and wave patterns in active colloids. Phys. Rev. Lett. 118, 268001 (2017).

    ADS  Google Scholar 

  105. Shklyaev, O. E., Shum, H., Yashin, V. V. & Balazs, A. C. Convective self-sustained motion in mixtures of chemically active and passive particles. Langmuir 33, 7873–7880 (2017).

    Google Scholar 

  106. Gregory, D. A. & Ebbens, S. J. Symmetrical catalytically active colloids collectively induce convective flow. Langmuir 34, 4307–4313 (2018).

    Google Scholar 

  107. Masoud, H. & Shelley, M. J. Collective surfing of chemically active particles. Phys. Rev. Lett. 112, 128304 (2014).

    ADS  Google Scholar 

  108. Ebbens, S. J. & Howse, J. R. In pursuit of propulsion at the nanoscale. Soft Matter 6, 726–738 (2010).

    ADS  Google Scholar 

  109. Okada, R., Kogure, T., Nagasawa, S. & Maeda, S. in 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014) 199–204 (IEEE, 2014).

  110. Di Leonardo, R. et al. Bacterial ratchet motors. Proc. Natl Acad. Sci. USA 107, 9541–9545 (2010).

    ADS  Google Scholar 

  111. Sokolov, A., Apodaca, M. M., Grzybowski, B. A. & Aranson, I. S. Swimming bacteria power microscopic gears. Proc. Natl Acad. Sci. USA 107, 969–974 (2010).

    ADS  Google Scholar 

  112. Catchmark, J. M., Subramanian, S. & Sen, A. Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions. Small 1, 202–206 (2005).

    Google Scholar 

  113. Maggi, C. et al. Self-assembly of micromachining systems powered by Janus micromotors. Small 12, 446–451 (2016).

    ADS  Google Scholar 

  114. Yang, M. & Ripoll, M. A self-propelled thermophoretic microgear. Soft Matter 10, 1006–1011 (2014).

    ADS  Google Scholar 

  115. Aubret, A. & Palacci, J. Diffusiophoretic design of self-spinning microgears from colloidal microswimmers. Soft Matter 14, 9577–9588 (2018).

    ADS  Google Scholar 

  116. Brooks, A. M. et al. Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis. Nat. Commun. 10, 495 (2019).

    ADS  Google Scholar 

  117. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).

    ADS  Google Scholar 

  118. Soto, F. et al. Smart materials for microrobots. Chem. Rev. https://doi.org/10.1021/acs.chemrev.0c00999 (2021).

    Article  Google Scholar 

  119. Koh, J. S. et al. Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 349, 517–521 (2015).

    ADS  Google Scholar 

  120. Jenkins, A. Self-oscillation. Phys. Rep. 525, 167–222 (2013).

    MathSciNet  MATH  ADS  Google Scholar 

  121. Yoshida, R. & Ueki, T. Evolution of self-oscillating polymer gels as autonomous polymer systems. NPG Asia Mater. 6, e107 (2014).

    Google Scholar 

  122. Kuksenok, O., Deb, D., Dayal, P. & Balazs, A. C. Modeling chemoresponsive polymer gels. Annu. Rev. Chem. Biomol. Eng. 5, 35–54 (2014).

    Google Scholar 

  123. Paschew, G. et al. Autonomous chemical oscillator circuit based on bidirectional chemical-microfluidic coupling. Adv. Mater. Technol. 1, 1600005 (2016).

    Google Scholar 

  124. Gelebart, A. H. et al. Making waves in a photoactive polymer film. Nature 546, 632–636 (2017).

    ADS  Google Scholar 

  125. Zeng, H. et al. Light-fuelled freestyle self-oscillators. Nat. Commun. 10, 5057 (2019).

    ADS  Google Scholar 

  126. Zhao, Y. et al. Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Robot. 4, eaax7112 (2019).

    Google Scholar 

  127. Altemose, A. et al. Chemically controlled spatiotemporal oscillations of colloidal assemblies. Angew. Chem. Int. Ed. 56, 7817–7821 (2017).

    Google Scholar 

  128. Maeda, S., Hara, Y., Sakai, T., Yoshida, R. & Hashimoto, S. Self-walking gel. Adv. Mater. 19, 3480–3484 (2007).

    Google Scholar 

  129. Yashin, V. V. & Balazs, A. C. Pattern formation and shape changes in self-oscillating polymer gels. Science 314, 798–802 (2006).

    MathSciNet  ADS  Google Scholar 

  130. Horváth, J. Chemomechanical oscillations with a non-redox non-oscillatory reaction. Chem. Commun. 53, 4973–4976 (2017).

    Google Scholar 

  131. Osypova, A., Dübner, M. & Panzarasa, G. Oscillating reactions meet polymers at interfaces. Materials 13, 2957 (2020).

    ADS  Google Scholar 

  132. Levin, I., Deegan, R. & Sharon, E. Self-oscillating membranes: chemomechanical sheets show autonomous periodic shape transformation. Phys. Rev. Lett. 125, 178001 (2020).

    ADS  Google Scholar 

  133. He, X. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012).

    ADS  Google Scholar 

  134. Hua, M. et al. Swaying gel: chemo-mechanical self-oscillation based on dynamic buckling. Matter 4, 1029–1041 (2021).

    Google Scholar 

  135. Gu, Y., Hegde, V. & Bishop, K. J. M. Measurement and mitigation of free convection in microfluidic gradient generators. Lab Chip 18, 3371–3378 (2018).

    Google Scholar 

  136. Tansi, B. M. et al. Achieving independent control over surface and bulk fluid flows in microchambers. ACS Appl. Mater. Interfaces 13, 6870–6878 (2021).

    Google Scholar 

  137. Vutukuri, H. R. et al. Active particles induce large shape deformations in giant lipid vesicles. Nature 586, 52–56 (2020).

    ADS  Google Scholar 

  138. Snezhko, A. & Aranson, I. S. Magnetic manipulation of self-assembled colloidal asters. Nat. Mater. 10, 698–703 (2011).

    ADS  Google Scholar 

  139. Sanchez, S., Soler, L. & Katuri, J. Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 54, 1414–1444 (2015).

    Google Scholar 

  140. Manna, R. K., Kumar, P. B. S. & Adhikari, R. Colloidal transport by active filaments. J. Chem. Phys. 146, 024901 (2017).

    ADS  Google Scholar 

  141. Laskar, A. & Adhikari, R. Brownian microhydrodynamics of active filaments. Soft Matter 11, 9073–9085 (2015).

    ADS  Google Scholar 

  142. Laskar, A. & Adhikari, R. Filament actuation by an active colloid at low Reynolds number. New J. Phys. 19, 033021 (2017).

    ADS  Google Scholar 

  143. Nishiguchi, D., Iwasawa, J., Jiang, H. R. & Sano, M. Flagellar dynamics of chains of active Janus particles fueled by an AC electric field. New J. Phys. 20, 015002 (2018).

    ADS  Google Scholar 

  144. Chelakkot, R., Gopinath, A., Mahadevan, L. & Hagan, M. F. Flagellar dynamics of a connected chain of active, polar, Brownian particles. J. R. Soc. Interface 11, 20130884 (2014).

    Google Scholar 

  145. Saintillan, D., Shelley, M. J. & Zidovska, A. Extensile motor activity drives coherent motions in a model of interphase chromatin. Proc. Natl Acad. Sci. USA 115, 11442–11447 (2018).

    Google Scholar 

  146. Sanchez, T., Welch, D., Nicastro, D. & Dogic, Z. Cilia-like beating of active microtubule bundles. Science 333, 456–459 (2011).

    ADS  Google Scholar 

  147. Manna, R. K. & Kumar, P. B. S. Emergent topological phenomena in active polymeric fluids. Soft Matter 15, 477–486 (2019).

    ADS  Google Scholar 

  148. Isele-Holder, R. E., Jäger, J., Saggiorato, G., Elgeti, J. & Gompper, G. Dynamics of self-propelled filaments pushing a load. Soft Matter 12, 8495–8505 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the Department of Energy under grant DE-FG02-90ER45438, the Department of Defense, Army Research Office under grant W911NF-17-1-0351 and the computational facilities at the Center for Research Computing at the University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Anna C. Balazs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks the anonymous reviewer(s) for their contributions to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, R.K., Laskar, A., Shklyaev, O.E. et al. Harnessing the power of chemically active sheets in solution. Nat Rev Phys 4, 125–137 (2022). https://doi.org/10.1038/s42254-021-00395-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00395-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing