Abstract
In living organisms, diffusing chemicals react with soft tissue to actuate a range of mechanical actions, such as periodic pulsations or net motion. Inspired by this biological behaviour, researchers have created chemically active ‘microswimmers’ that translate chemical input into mechanical work. Because typical microswimmers are hard spheres (that is, zero-dimensional objects) and rigid or flexible rods (1D objects), their movements are constrained relative to higher dimensional, soft matter. In recent years, these limitations have motivated research on 2D active sheets that undergo shape changes or directed motion in response to chemical cues in solution; the combination of dimensionality, chemical activity and structural flexibility leads to new, rich dynamic behaviour. In one class of materials, chemical reactions generate internal stresses in the 2D sheets that trigger the shape transformations; in the second class, the release of energy from chemical reactions drives a fluid flow, which not only transports but also morphs the shape of the sheet. Consequently, these reconfigurable, self-propelled sheets can perform self-sustained operations that were unattainable with previously studied active particles, including self-morphing and self-oscillating behaviour. The latter functionalities can lead to the creation of portable, chemical machines and the discovery of new modes of dynamic self-assembly.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Computer modeling reveals modalities to actuate mutable, active matter
Nature Communications Open Access 16 May 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).
Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1, 323–345 (2010).
Nojoomi, A., Jeon, J. & Yum, K. 2D material programming for 3D shaping. Nat. Commun. 12, 603 (2021).
Menzel, A. M. Tuned, driven, and active soft matter. Phys. Rep. 554, 1–45 (2015).
Ghosh, S., Somasundar, A. & Sen, A. Enzymes as active matter. Annu. Rev. Condens. Matter Phys. 12, 177–200 (2021).
Bechinger, C. et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).
Aranson, I. S. Active colloids. Phys. Usp. 56, 79–92 (2013).
Zöttl, A. & Stark, H. Emergent behavior in active colloids. J. Phys. Condens. Matter 28, 253001 (2016).
Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009).
Singh, R., Adhikari, R. & Cates, M. E. Competing chemical and hydrodynamic interactions in autophoretic colloidal suspensions. J. Chem. Phys. 151, 044901 (2019).
Solovev, A. A. et al. Self-propelled nanotools. ACS Nano 6, 1751–1756 (2012).
Elgeti, J., Winkler, R. G. & Gompper, G. Physics of microswimmers — single particle motion and collective behavior: a review. Rep. Prog. Phys. 78, 056601 (2015).
Winkler, R. G., Elgeti, J. & Gompper, G. Active polymers — Emergent conformational and dynamical properties: a brief review. J. Phys. Soc. Jpn. 86, 101014 (2017).
Sanchez, T., Chen, D. T. N., Decamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).
Biswas, B. et al. Linking catalyst-coated isotropic colloids into ‘active’ flexible chains enhances their diffusivity. ACS Nano 11, 10025–10031 (2017).
Pandey, A., Kumar, S. P. B., Adhikari, R., Kumar, P. B. S. & Adhikari, R. Flow-induced nonequilibrium self-assembly in suspensions of stiff, apolar, active filaments. Soft Matter 12, 9068–9076 (2016).
Jayaraman, G. et al. Autonomous motility of active filaments due to spontaneous flow-symmetry breaking. Phys. Rev. Lett. 109, 158302 (2012).
Winkler, R. G. & Gompper, G. The physics of active polymers and filaments. J. Chem. Phys. 153, 040901 (2020).
Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).
Wang, W., Duan, W., Ahmed, S., Mallouk, T. E. & Sen, A. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8, 531–534 (2013).
Sengupta, S., Ibele, M. E. & Sen, A. Fantastic voyage: designing self-powered nanorobots. Angew. Chem. Int. Ed. 51, 8434–8445 (2012).
Ismagilov, R. F., Schwartz, A., Bowden, N. & Whitesides, G. M. Autonomous movement and self-assembly. Angew. Chem. Int. Ed. 41, 652–654 (2002).
Zhao, G., Sanchez, S., Schmidt, O. G. & Pumera, M. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. Nanoscale 5, 2909–2914 (2013).
Ma, X., Hortelao, A. C., Miguel-López, A. & Sánchez, S. Bubble-free propulsion of ultrasmall tubular nanojets powered by biocatalytic reactions. J. Am. Chem. Soc. 138, 13782–13785 (2016).
Laskar, A., Shklyaev, O. E. & Balazs, A. C. Designing self-propelled, chemically active sheets: wrappers, flappers, and creepers. Sci. Adv. 4, eaav1745 (2018).
Manna, R. K., Shklyaev, O. E., Stone, H. A. & Balazs, A. C. Chemically controlled shape-morphing of elastic sheets. Mater. Horiz. 7, 2314–2327 (2020).
Laskar, A., Shklyaev, O. E. & Balazs, A. C. Collaboration and competition between active sheets for self-propelled particles. Proc. Natl Acad. Sci. USA 116, 9257–9262 (2019).
McCracken, J. M. et al. Ionic hydrogels with biomimetic 4D-printed mechanical gradients: models for soft-bodied aquatic organisms. Adv. Funct. Mater. 29, 1806723 (2019).
Kim, S. Y. et al. Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae. Nat. Commun. 10, 3464 (2019).
Zhang, Y. et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2, 17019 (2017).
Wang, X. et al. Untethered and ultrafast soft-bodied robots. Commun. Mater. 1, 67 (2020).
Rothemund, P. et al. A soft, bistable valve for autonomous control of soft actuators. Sci. Robot. 3, eaar7986 (2018).
Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).
Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).
Cui, J. et al. Nanomagnetic encoding of shape-morphing micromachines. Nature 575, 164–168 (2019).
Huang, H. W., Sakar, M. S., Petruska, A. J., Pané, S. & Nelson, B. J. Soft micromachines with programmable motility and morphology. Nat. Commun. 7, 12263 (2016).
Chen, L. et al. An untethered soft chemo-mechanical robot with composite structure and optimized control. Extrem. Mech. Lett. 27, 27–33 (2019).
Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).
Arab Hassani, F., Jin, H., Yokota, T., Someya, T. & Thakor, N. V. Soft sensors for a sensing-actuation system with high bladder voiding efficiency. Sci. Adv. 6, eaba0412 (2020).
Rich, S. I., Wood, R. J. & Majidi, C. Untethered soft robotics. Nat. Electron. 1, 102–112 (2018).
Treml, B. E. et al. Autonomous motility of polymer films. Adv. Mater. 30, 1705616 (2018).
Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).
Ideses, Y. et al. Spontaneous buckling of contractile poroelastic actomyosin sheets. Nat. Commun. 9, 2461 (2018).
Loiseau, E. et al. Shape remodeling and blebbing of active cytoskeletal vesicles. Sci. Adv. 2, e1500465 (2016).
Senoussi, A. et al. Tunable corrugated patterns in an active nematic sheet. Proc. Natl Acad. Sci. USA 116, 22464–22470 (2019).
Pearce, D. J. G., Gat, S., Livne, G., Bernheim-Groswasser, A. & Kruse, K. Programming active metamaterials using topological defects. Preprint at arXiv https://arxiv.org/abs/2010.13141 (2020).
Laskar, A., Shklyaev, O. E. & Balazs, A. C. Self-morphing, chemically driven gears and machines. Matter 4, 600–617 (2021).
Manna, R. K., Shklyaev, O. E. & Balazs, A. C. Chemical pumps and flexible sheets spontaneously form self-regulating oscillators in solution. Proc. Natl Acad. Sci. USA 118, e2022987118 (2021).
Athas, J. C. et al. Enzyme-triggered folding of hydrogels: toward a mimic of the venus flytrap. ACS Appl. Mater. Interfaces 8, 19066–19074 (2016).
Al-Izzi, S. C. & Morris, R. G. Active flows and deformable surfaces in development. Preprint at arXiv https://arxiv.org/abs/2103.12264 (2021).
Li, S., Matoz-Fernandez, D. A., Aggarwal, A. & de la Cruz, M. O. Chemically controlled pattern formation in self-oscillating elastic shells. Proc. Natl Acad. Sci. USA 118, e2025717118 (2021).
Tamate, R., Ueki, T. & Yoshida, R. Self-beating artificial cells: design of cross-linked polymersomes showing self-oscillating motion. Adv. Mater. 27, 837–842 (2015).
Keber, F. C. et al. Topology and dynamics of active nematic vesicles. Science 345, 1135–1139 (2014).
Miller, P. W., Stoop, N. & Dunkel, J. Geometry of wave propagation on active deformable surfaces. Phys. Rev. Lett. 120, 268001 (2018).
Miller, P. W. & Dunkel, J. Gait-optimized locomotion of wave-driven soft sheets. Soft Matter 16, 3991–3999 (2020).
Mietke, A., Jülicher, F. & Sbalzarini, I. F. Self-organized shape dynamics of active surfaces. Proc. Natl Acad. Sci. USA 116, 29–34 (2019).
Matoz-Fernandez, D. A., Davidson, F. A., Stanley-Wall, N. R. & Sknepnek, R. Wrinkle patterns in active viscoelastic thin sheets. Phys. Rev. Res. 2, 013165 (2020).
Metselaar, L., Yeomans, J. M. & Doostmohammadi, A. Topology and morphology of self-deforming active shells. Phys. Rev. Lett. 123, 208001 (2019).
Bächer, C. & Gekle, S. Computational modeling of active deformable membranes embedded in three-dimensional flows. Phys. Rev. E 99, 062418 (2019).
Das, S. et al. Harnessing catalytic pumps for directional delivery of microparticles in microchambers. Nat. Commun. 8, 14384 (2017).
Valdez, L., Shum, H., Ortiz-Rivera, I., Balazs, A. C. & Sen, A. Solutal and thermal buoyancy effects in self-powered phosphatase micropumps. Soft Matter 13, 2800–2807 (2017).
Lim, S., Ferent, A., Wang, X. S. & Peskin, C. S. Dynamics of a closed rod with twist and bend in fluid. SIAM J. Sci. Comput. 31, 273–302 (2008).
Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Clarendon Press, 1961).
Shum, H., Tripathi, A., Yeomans, J. M. & Balazs, A. C. Active ciliated surfaces expel model swimmers. Langmuir 29, 12770–12776 (2013).
Johnson, K. A. & Goody, R. S. The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50, 8264–8269 (2011).
Sengupta, S. et al. Self-powered enzyme micropumps. Nat. Chem. 6, 415–422 (2014).
Lin, Y. et al. Ultrathin cross-linked nanoparticle membranes. J. Am. Chem. Soc. 125, 12690–12691 (2003).
Lee, D. Y. et al. Macroscopic nanoparticle ribbons and fabrics. Adv. Mater. 25, 1248–1253 (2013).
Kim, J., Hanna, J. A., Byun, M., Santangelo, C. D. & Hayward, R. C. Designing responsive buckled surfaces by halftone gel lithography. Science 335, 1201–1205 (2012).
Na, J.-H. et al. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Adv. Mater. 27, 79–85 (2015).
Vargo, K. B., Parthasarathy, R. & Hammer, D. A. Self-assembly of tunable protein suprastructures from recombinant oleosin. Proc. Natl Acad. Sci. USA 109, 11657–11662 (2012).
Jeon, S. J., Hauser, A. W. & Hayward, R. C. Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc. Chem. Res. 50, 161–169 (2017).
Erol, O., Pantula, A., Liu, W. & Gracias, D. H. Transformer hydrogels: a review. Adv. Mater. Technol. 4, 1900043 (2019).
White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).
Oliver, K., Seddon, A. & Trask, R. S. Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms. J. Mater. Sci. 51, 10663–10689 (2016).
Zhang, X. et al. The pathway to intelligence: using stimuli-responsive materials as building blocks for constructing smart and functional systems. Adv. Mater. 31, 1804540 (2019).
van Manen, T., Janbaz, S. & Zadpoor, A. A. Programming the shape-shifting of flat soft matter. Mater. Today 21, 144–163 (2018).
Pinson, M. B. et al. Self-folding origami at any energy scale. Nat. Commun. 8, 15477 (2017).
Klein, Y., Efrati, E. & Sharon, E. Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 9, 1116–1120 (2007).
Lendlein, A. & Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002).
Lendlein, A., Jiang, H., Olive, J. & Langer, R. Light-induced shape-memory polymers. Science 434, 879–882 (2005).
Felton, S., Tolley, M., Demaine, E., Rus, D. & Wood, R. A method for building self-folding machines. Science 345, 644–646 (2014).
Agnarsson, I., Dhinojwala, A., Sahni, V. & Blackledge, T. A. Spider silk as a novel high performance biomimetic muscle driven by humidity. J. Exp. Biol. 212, 1990–1994 (2009).
Manikandan, G., Murali, A., Kumar, R. & Satapathy, D. K. Rapid moisture-responsive silk fibroin actuators. ACS Appl. Mater. Interfaces 13, 8880–8888 (2021).
Yao, Y. et al. Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability. Proc. Natl Acad. Sci. USA 115, 12950–12955 (2018).
Zhang, H., Guo, X., Wu, J., Fang, D. & Zhang, Y. Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves. Sci. Adv. 4, eaar8535 (2018).
Huang, L. et al. Ultrafast digital printing toward 4D shape changing materials. Adv. Mater. 29, 1605390 (2017).
Nojoomi, A., Arslan, H., Lee, K. & Yum, K. Bioinspired 3D structures with programmable morphologies and motions. Nat. Commun. 9, 3705 (2018).
Mailen, R. W. et al. Thermo-mechanical transformation of shape memory polymers from initially flat discs to bowls and saddles. Smart Mater. Struct. 28, 045011 (2019).
Rivera-Tarazona, L. K., Bhat, V. D., Kim, H., Campbell, Z. T. & Ware, T. H. Shape-morphing living composites. Sci. Adv. 6, eaax8582 (2020).
Siéfert, E., Reyssat, E., Bico, J. & Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 18, 24–28 (2019).
Thérien-Aubin, H., Wu, Z. L., Nie, Z. & Kumacheva, E. Multiple shape transformations of composite hydrogel sheets. J. Am. Chem. Soc. 135, 4834–4839 (2013).
Ma, M., Guo, L., Anderson, D. G. & Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339, 186–189 (2013).
Wu, Z. L. et al. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4, 1586–1587 (2013).
Hajiesmaili, E. & Clarke, D. R. Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nat. Commun. 10, 183 (2019).
Griniasty, I., Mostajeran, C. & Cohen, I. Multi-valued inverse design: multiple surface geometries from one flat sheet. Phys. Rev. Lett. 127, 128001 (2021).
Rath, A., Geethu, P. M., Mathesan, S., Satapathy, D. K. & Ghosh, P. Solvent triggered irreversible shape morphism of biopolymer films. Soft Matter 14, 1672–1680 (2018).
Kim, S., Laschi, C. & Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013).
Miskin, M. Z. et al. Graphene-based bimorphs for micron-sized, tautonomous origami machines. Proc. Natl Acad. Sci. USA 115, 466–470 (2018).
Pena-Francesch, A., Giltinan, J. & Sitti, M. Multifunctional and biodegradable self-propelled protein motors. Nat. Commun. 10, 3188 (2019).
Silmore, K. S., Strano, M. S. & Swan, J. W. Buckling, crumpling, and tumbling of semiflexible sheets in simple shear flow. Soft Matter 17, 4707–4718 (2021).
Ohm, C., Brehmer, M. & Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010).
Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).
Liebchen, B., Marenduzzo, D. & Cates, M. E. Phoretic interactions generically induce dynamic clusters and wave patterns in active colloids. Phys. Rev. Lett. 118, 268001 (2017).
Shklyaev, O. E., Shum, H., Yashin, V. V. & Balazs, A. C. Convective self-sustained motion in mixtures of chemically active and passive particles. Langmuir 33, 7873–7880 (2017).
Gregory, D. A. & Ebbens, S. J. Symmetrical catalytically active colloids collectively induce convective flow. Langmuir 34, 4307–4313 (2018).
Masoud, H. & Shelley, M. J. Collective surfing of chemically active particles. Phys. Rev. Lett. 112, 128304 (2014).
Ebbens, S. J. & Howse, J. R. In pursuit of propulsion at the nanoscale. Soft Matter 6, 726–738 (2010).
Okada, R., Kogure, T., Nagasawa, S. & Maeda, S. in 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014) 199–204 (IEEE, 2014).
Di Leonardo, R. et al. Bacterial ratchet motors. Proc. Natl Acad. Sci. USA 107, 9541–9545 (2010).
Sokolov, A., Apodaca, M. M., Grzybowski, B. A. & Aranson, I. S. Swimming bacteria power microscopic gears. Proc. Natl Acad. Sci. USA 107, 969–974 (2010).
Catchmark, J. M., Subramanian, S. & Sen, A. Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions. Small 1, 202–206 (2005).
Maggi, C. et al. Self-assembly of micromachining systems powered by Janus micromotors. Small 12, 446–451 (2016).
Yang, M. & Ripoll, M. A self-propelled thermophoretic microgear. Soft Matter 10, 1006–1011 (2014).
Aubret, A. & Palacci, J. Diffusiophoretic design of self-spinning microgears from colloidal microswimmers. Soft Matter 14, 9577–9588 (2018).
Brooks, A. M. et al. Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis. Nat. Commun. 10, 495 (2019).
Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).
Soto, F. et al. Smart materials for microrobots. Chem. Rev. https://doi.org/10.1021/acs.chemrev.0c00999 (2021).
Koh, J. S. et al. Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 349, 517–521 (2015).
Jenkins, A. Self-oscillation. Phys. Rep. 525, 167–222 (2013).
Yoshida, R. & Ueki, T. Evolution of self-oscillating polymer gels as autonomous polymer systems. NPG Asia Mater. 6, e107 (2014).
Kuksenok, O., Deb, D., Dayal, P. & Balazs, A. C. Modeling chemoresponsive polymer gels. Annu. Rev. Chem. Biomol. Eng. 5, 35–54 (2014).
Paschew, G. et al. Autonomous chemical oscillator circuit based on bidirectional chemical-microfluidic coupling. Adv. Mater. Technol. 1, 1600005 (2016).
Gelebart, A. H. et al. Making waves in a photoactive polymer film. Nature 546, 632–636 (2017).
Zeng, H. et al. Light-fuelled freestyle self-oscillators. Nat. Commun. 10, 5057 (2019).
Zhao, Y. et al. Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Robot. 4, eaax7112 (2019).
Altemose, A. et al. Chemically controlled spatiotemporal oscillations of colloidal assemblies. Angew. Chem. Int. Ed. 56, 7817–7821 (2017).
Maeda, S., Hara, Y., Sakai, T., Yoshida, R. & Hashimoto, S. Self-walking gel. Adv. Mater. 19, 3480–3484 (2007).
Yashin, V. V. & Balazs, A. C. Pattern formation and shape changes in self-oscillating polymer gels. Science 314, 798–802 (2006).
Horváth, J. Chemomechanical oscillations with a non-redox non-oscillatory reaction. Chem. Commun. 53, 4973–4976 (2017).
Osypova, A., Dübner, M. & Panzarasa, G. Oscillating reactions meet polymers at interfaces. Materials 13, 2957 (2020).
Levin, I., Deegan, R. & Sharon, E. Self-oscillating membranes: chemomechanical sheets show autonomous periodic shape transformation. Phys. Rev. Lett. 125, 178001 (2020).
He, X. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012).
Hua, M. et al. Swaying gel: chemo-mechanical self-oscillation based on dynamic buckling. Matter 4, 1029–1041 (2021).
Gu, Y., Hegde, V. & Bishop, K. J. M. Measurement and mitigation of free convection in microfluidic gradient generators. Lab Chip 18, 3371–3378 (2018).
Tansi, B. M. et al. Achieving independent control over surface and bulk fluid flows in microchambers. ACS Appl. Mater. Interfaces 13, 6870–6878 (2021).
Vutukuri, H. R. et al. Active particles induce large shape deformations in giant lipid vesicles. Nature 586, 52–56 (2020).
Snezhko, A. & Aranson, I. S. Magnetic manipulation of self-assembled colloidal asters. Nat. Mater. 10, 698–703 (2011).
Sanchez, S., Soler, L. & Katuri, J. Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 54, 1414–1444 (2015).
Manna, R. K., Kumar, P. B. S. & Adhikari, R. Colloidal transport by active filaments. J. Chem. Phys. 146, 024901 (2017).
Laskar, A. & Adhikari, R. Brownian microhydrodynamics of active filaments. Soft Matter 11, 9073–9085 (2015).
Laskar, A. & Adhikari, R. Filament actuation by an active colloid at low Reynolds number. New J. Phys. 19, 033021 (2017).
Nishiguchi, D., Iwasawa, J., Jiang, H. R. & Sano, M. Flagellar dynamics of chains of active Janus particles fueled by an AC electric field. New J. Phys. 20, 015002 (2018).
Chelakkot, R., Gopinath, A., Mahadevan, L. & Hagan, M. F. Flagellar dynamics of a connected chain of active, polar, Brownian particles. J. R. Soc. Interface 11, 20130884 (2014).
Saintillan, D., Shelley, M. J. & Zidovska, A. Extensile motor activity drives coherent motions in a model of interphase chromatin. Proc. Natl Acad. Sci. USA 115, 11442–11447 (2018).
Sanchez, T., Welch, D., Nicastro, D. & Dogic, Z. Cilia-like beating of active microtubule bundles. Science 333, 456–459 (2011).
Manna, R. K. & Kumar, P. B. S. Emergent topological phenomena in active polymeric fluids. Soft Matter 15, 477–486 (2019).
Isele-Holder, R. E., Jäger, J., Saggiorato, G., Elgeti, J. & Gompper, G. Dynamics of self-propelled filaments pushing a load. Soft Matter 12, 8495–8505 (2016).
Acknowledgements
The authors gratefully acknowledge funding from the Department of Energy under grant DE-FG02-90ER45438, the Department of Defense, Army Research Office under grant W911NF-17-1-0351 and the computational facilities at the Center for Research Computing at the University of Pittsburgh.
Author information
Authors and Affiliations
Contributions
All authors contributed to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Physics thanks the anonymous reviewer(s) for their contributions to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Manna, R.K., Laskar, A., Shklyaev, O.E. et al. Harnessing the power of chemically active sheets in solution. Nat Rev Phys 4, 125–137 (2022). https://doi.org/10.1038/s42254-021-00395-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-021-00395-2
This article is cited by
-
Computer modeling reveals modalities to actuate mutable, active matter
Nature Communications (2022)