Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Recommendation
  • Published:

Making clean electrical contacts on 2D transition metal dichalcogenides

Abstract

2D semiconductors, particularly transition metal dichalcogenides (TMDs), have emerged as highly promising for new electronic technologies. However, a key challenge in fabricating devices out of 2D semiconductors is the need for ultra-clean contacts with resistances approaching the quantum limit. The lack of high-quality, low-contact-resistance P-type and N-type contacts on 2D TMDs has limited progress towards the next generation of low-power devices, such as the tunnel field-effect transistors. In this Expert Recommendation, we summarize strategies and provide guidance for making clean van der Waals contacts on monolayered TMD semiconductors. We also discuss the physics of contacts in 2D semiconductors and prospects for achieving quantum conductance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Band energy diagrams of metal–semiconductor junctions under thermal equilibrium.
Fig. 2: Mechanisms responsible for Fermi-level pinning in metal–2D TMD semiconductor junctions.
Fig. 3: Contact resistance versus carrier concentration for monolayer MoS2 with different contacts and varying size of van der Waals gap.

Similar content being viewed by others

References

  1. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2021).

  2. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  ADS  Google Scholar 

  3. Sangwan, V. K. & Hersam, M. C. Electronic transport in two-dimensional materials. Annu. Rev. Phys. Chem. 69, 299–325 (2018).

    Article  ADS  Google Scholar 

  4. Zheng, Y., Gao, J., Han, C. & Chen, W. Ohmic contact engineering for two-dimensional materials. Cell Rep. Phys. Sci. 2, 100298 (2021).

    Article  Google Scholar 

  5. Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018).

    Article  Google Scholar 

  6. Morkoç, H. et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76, 1363–1398 (1994).

    Article  ADS  Google Scholar 

  7. Rai, A. et al. Progress in contact, doping and mobility engineering of MoS2: an atomically thin 2D semiconductor. Crystals 8, 316 (2018).

    Article  Google Scholar 

  8. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  ADS  Google Scholar 

  9. Kim, C. et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588–1596 (2017).

    Article  Google Scholar 

  10. Mleczko, M. J. et al. Contact engineering high-performance n-type MoTe2 transistors. Nano Lett. 19, 6352–6362 (2019).

    Article  ADS  Google Scholar 

  11. Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    Article  ADS  Google Scholar 

  12. McDonnell, S., Addou, R., Buie, C., Wallace, R. M. & Hinkle, C. L. Defect-dominated doping and contact resistance in MoS2. ACS Nano 8, 2880–2888 (2014).

    Article  Google Scholar 

  13. Jain, A. et al. One-dimensional edge contacts to a monolayer semiconductor. Nano Lett. 19, 6914–6923 (2019).

    Article  ADS  Google Scholar 

  14. Yang, Z. et al. A Fermi-level-pinning-free 1D electrical contact at the intrinsic 2D MoS2–metal junction. Adv. Mater. 31, 1808231 (2019).

    Article  Google Scholar 

  15. Cheng, Z. et al. Immunity to contact scaling in MoS2 transistors using in situ edge contacts. Nano Lett. 19, 5077–5085 (2019).

    Article  ADS  Google Scholar 

  16. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  ADS  Google Scholar 

  17. Liu, Y., Stradins, P. & Wei, S. H. Van der Waals metal-semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2, e1600069 (2016).

    Article  ADS  Google Scholar 

  18. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  ADS  Google Scholar 

  19. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  ADS  Google Scholar 

  20. Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).

    Article  Google Scholar 

  21. Wang, J. et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 28, 8302–8308 (2016).

    Article  Google Scholar 

  22. Cui, X. et al. Lowerature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 17, 4781–4786 (2017).

    Article  ADS  Google Scholar 

  23. Li, X. X. et al. Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2 transistor. Nat. Commun. 8, 970 (2017).

    Article  ADS  Google Scholar 

  24. Pierret, R. F. Semiconductor Device Fundamentals (Pearson, 1996).

  25. Mott, N. F. Note on the contact between a metal and an insulator or semi-conductor. Math. Proc. Camb. Philos. Soc. 34, 568–572 (1938).

    Article  ADS  Google Scholar 

  26. Cowley, A. M. & Sze, S. M. Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 36, 3212–3220 (1965).

    Article  ADS  Google Scholar 

  27. Liu, X. et al. P-type polar transition of chemically doped multilayer MoS2 transistor. Adv. Mater. 28, 2345–2351 (2016).

    Article  ADS  Google Scholar 

  28. Fang, H. et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13, 1991–1995 (2013).

    Article  ADS  Google Scholar 

  29. Zhang, S. et al. Controllable, wide-ranging n-doping and p-doping of monolayer group 6 transition-metal disulfides and diselenides. Adv. Mater. 30, 1802991 (2018).

    Article  Google Scholar 

  30. Kang, D. H. et al. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 9, 1099–1107 (2015).

    Article  Google Scholar 

  31. Najmaei, S. et al. Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. Nano Lett. 14, 1354–1361 (2014).

    Article  ADS  Google Scholar 

  32. Li, Y., Xu, C. Y., Hu, P. & Zhen, L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 7, 7795–7804 (2013).

    Article  Google Scholar 

  33. Liang, T. et al. Intrinsically substitutional carbon doping in CVD-grown monolayer MoS2 and the band structure modulation. ACS Appl. Electron. Mater. 4, 1055–1064 (2020).

    Article  Google Scholar 

  34. Li, M. et al. P-type doping in large-area monolayer MoS2 by chemical vapor deposition. ACS Appl. Mater. Interfaces 12, 6276–6282 (2020).

    Article  Google Scholar 

  35. Gao, J. et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 28, 9735–9743 (2016).

    Article  Google Scholar 

  36. Rai, A. et al. Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation. Nano Lett. 15, 4329–4336 (2015).

    Article  ADS  Google Scholar 

  37. Chen, K. et al. Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density. APL Mater. 2, 092504 (2014).

    Article  ADS  Google Scholar 

  38. Gao, H. et al. Tuning electrical conductance of MoS2 monolayers through substitutional doping. Nano Lett. 20, 4095–4101 (2020).

    Article  ADS  Google Scholar 

  39. Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    Article  ADS  Google Scholar 

  40. Wu, R. J. et al. Visualizing the metal-MoS2 contacts in two-dimensional field-effect transistors with atomic resolution. Phys. Rev. Mater. 3, 111001 (2019).

    Article  Google Scholar 

  41. Gong, C., Colombo, L., Wallace, R. M. & Cho, K. The unusual mechanism of partial Fermi level pinning at metal–MoS2 interfaces. Nano Lett. 14, 1714–1720 (2014).

    Article  ADS  Google Scholar 

  42. Smyth, C. M., Addou, R., Hinkle, C. L. & Wallace, R. M. Origins of Fermi-level pinning between molybdenum dichalcogenides (MoSe2, MoTe2) and bulk metal contacts: interface chemistry and band alignment. J. Phys. Chem. C 123, 23919–23930 (2019).

    Article  Google Scholar 

  43. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    Article  ADS  Google Scholar 

  44. Van Der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

    Article  ADS  Google Scholar 

  45. Azizi, A. et al. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 5, 4867 (2014).

    Article  ADS  Google Scholar 

  46. McDonnell, S., Smyth, C., Hinkle, C. L. & Wallace, R. M. MoS2–titanium contact interface reactions. ACS Appl. Mater. Interfaces 8, 8289–8294 (2016).

    Article  Google Scholar 

  47. Smyth, C. M., Addou, R., McDonnell, S., Hinkle, C. L. & Wallace, R. M. Contact metal–MoS2 interfacial reactions and potential implications on MoS2-based device performance. J. Phys. Chem. C 120, 14719–14729 (2016).

    Article  Google Scholar 

  48. Freedy, K. M. et al. Thermal stability of titanium contacts to MoS2. ACS Appl. Mater. Interfaces 11, 35389–35393 (2019).

    Article  Google Scholar 

  49. Mirabelli, G. et al. Effects of annealing temperature and ambient on metal/PtSe2 contact alloy formation. ACS Omega 4, 17487–17493 (2019).

    Article  Google Scholar 

  50. Zeng, Y., Domask, A. C. & Mohney, S. E. Condensed phase diagrams for the metal–W–S systems and their relevance for contacts to WS2. Mater. Sci. Eng. B 212, 78–88 (2016).

    Article  Google Scholar 

  51. Agyapong, A. D., Cooley, K. A. & Mohney, S. E. Reactivity of contact metals on monolayer WS2. J. Appl. Phys. 128, 055306 (2020).

    Article  ADS  Google Scholar 

  52. Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

    Article  ADS  Google Scholar 

  53. Jeong, T. Y. et al. Spectroscopic studies of atomic defects and bandgap renormalization in semiconducting monolayer transition metal dichalcogenides. Nat. Commun. 10, 3825 (2019).

    Article  ADS  Google Scholar 

  54. Edelberg, D. et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 19, 4371–4379 (2019).

    Article  ADS  Google Scholar 

  55. Park, J. H. et al. Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv. 3, e1701661 (2017).

    Article  ADS  Google Scholar 

  56. Fang, N., Toyoda, S., Taniguchi, T., Watanabe, K. & Nagashio, K. Full energy spectra of interface state densities for n- and p-type MoS2 field-effect transistors. Adv. Funct. Mater. 29, 1904465 (2019).

    Article  Google Scholar 

  57. Trainer, D. J. et al. The effects of atomic-scale strain relaxation on the electronic properties of monolayer MoS2. ACS Nano 13, 8284–8291 (2019).

    Article  Google Scholar 

  58. Lioubtchenko, D. V., Markov, I. A. & Briantseva, T. A. GaAs surface modifications under Au evaporating flux. Appl. Surf. Sci. 211, 335–340 (2003).

    Article  ADS  Google Scholar 

  59. Haick, H., Ambrico, M., Ghabboun, J., Ligonzo, T. & Cahen, D. Contacting organic molecules by metal evaporation. Phys. Chem. Chem. Phys. 6, 4538–4541 (2004).

    Article  Google Scholar 

  60. Metzger, R. M., Xu, T. & Peterson, I. R. Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes. J. Phys. Chem. B 105, 7280–7290 (2001).

    Article  Google Scholar 

  61. Xu, T., Peterson, I. R., Lakshmikantham, M. V. & Metzger, R. M. Rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide between gold electrodes. Angew. Chem. Int. Ed. 40, 1749–1752 (2001).

    Article  Google Scholar 

  62. Johnson, M. S., Horton, C. L., Gonawala, S., Verani, C. N. & Metzger, R. M. Observation of current rectification by a new asymmetric iron(iii) surfactant in a eutectic GaIn|LB monolayer|Au sandwich. Dalton Trans. 47, 6344–6350 (2018).

    Article  Google Scholar 

  63. Johnson, M. S., Wickramasinghe, L., Verani, C. & Metzger, R. M. Confirmation of the rectifying behavior in a pentacoordinate [N2O2] iron(iii) surfactant using a “eutectic GaIn|LB monolayer|Au” assembly. J. Phys. Chem. C 120, 10578–10583 (2016).

    Article  Google Scholar 

  64. Cademartiri, L. et al. Electrical resistance of AgTS–S(CH2)n−1CH3//Ga2O3/EGaIn tunneling junctions. J. Phys. Chem. C 116, 10848–10860 (2012).

    Article  Google Scholar 

  65. Shimizu, K. T., Fabbri, J. D., Jelincic, J. J. & Melosh, N. A. Soft deposition of large-area metal contacts for molecular electronics. Adv. Mater. 18, 1499–1504 (2006).

    Article  Google Scholar 

  66. Hsu, J. W. P. Soft lithography contacts to organics. Mater. Today 8, 42–54 (2005).

    Article  Google Scholar 

  67. Bonifas, A. P. & McCreery, R. L. Soft Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition. Nat. Nanotechnol. 5, 612–617 (2010).

    Article  ADS  Google Scholar 

  68. Ko, S.-P. et al. Capacitance–voltage analysis of electrical properties for WSe2 field effect transistors with high-k encapsulation layer. Nanotechnology 29, 065703 (2018).

    Article  ADS  Google Scholar 

  69. Wang, J. et al. Steep slope p-type 2D WSe2 field-effect transistors with van der Waals contact and negative capacitance. In 2018 IEEE International Electron Devices Meeting (IEDM) 22–3 (IEEE, 2018).

  70. Went, C. M. et al. A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics. Sci. Adv. 5, eaax6061 (2019).

    Article  ADS  Google Scholar 

  71. Material deposition chart (Kurt J. Lesker Company, 2021); https://www.lesker.com/newweb/deposition_materials/materialdepositionchart.cfm?pgid=0

  72. Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  ADS  Google Scholar 

  73. Desai, S. B. et al. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592–4597 (2014).

    Article  ADS  Google Scholar 

  74. Song, S. et al. Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188–193 (2016).

    Article  ADS  Google Scholar 

  75. Zhang, C. et al. Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 13, 152–158 (2018).

    Article  ADS  Google Scholar 

  76. Gong, C. et al. Metal contacts on physical vapor deposited monolayer MoS2. ACS Nano 7, 11350–11357 (2013).

    Article  Google Scholar 

  77. Sun, Y. et al. Probing local strain at MX2–metal boundaries with surface plasmon-enhanced Raman scattering. Nano Lett. 14, 5329–5334 (2014).

    Article  ADS  Google Scholar 

  78. Gołasa, K. et al. The disorder-induced Raman scattering in Au/MoS2 heterostructures. AIP Adv. 5, 077120 (2015).

    Article  ADS  Google Scholar 

  79. Garcia-Basabe, Y. et al. Species selective charge transfer dynamics in a P3HT/MoS2 van der Waals heterojunction: fluorescence lifetime microscopy and core hole clock spectroscopy approaches. Phys. Chem. Chem. Phys. 21, 23521–23532 (2019).

    Article  Google Scholar 

  80. Tinoco, M., Maduro, L., Masaki, M., Okunishi, E. & Conesa-Boj, S. Strain-dependent edge structures in MoS2 layers. Nano Lett. 17, 7021–7026 (2017).

    Article  ADS  Google Scholar 

  81. Farmanbar, M. & Brocks, G. First-principles study of van der Waals interactions and lattice mismatch at MoS2/metal interfaces. Phys. Rev. B 93, 085304 (2016).

    Article  ADS  Google Scholar 

  82. Tung, R. T. Formation of an electric dipole at metal-semiconductor interfaces. Phys. Rev. B 64, 205310 (2001).

    Article  ADS  Google Scholar 

  83. Wang, Q., Shao, Y. & Shi, X. Mechanism of charge redistribution at the metal–semiconductor and semiconductor–semiconductor interfaces of metal–bilayer MoS2 junctions. J. Chem. Phys. 152, 244701 (2020).

    Article  ADS  Google Scholar 

  84. Dong, H. et al. Schottky barrier height of Pd/MoS2 contact by large area photoemission spectroscopy. ACS Appl. Mater. Interfaces 9, 38977–38983 (2017).

    Article  Google Scholar 

  85. Matković, A. et al. Interfacial band engineering of MoS2/gold interfaces using pyrimidine-containing self-assembled monolayers: toward contact-resistance-free bottom-contacts. Adv. Electron. Mater. 6, 2000110 (2020).

    Article  Google Scholar 

  86. Joo, M. K. et al. Electron excess doping and effective Schottky barrier reduction on the MoS2/h-BN heterostructure. Nano Lett. 16, 6383–6389 (2016).

    Article  ADS  Google Scholar 

  87. Ghibaudo, G. New method for the extraction of MOSFET parameters. Electron. Lett. 24, 543–545 (1988).

    Article  ADS  Google Scholar 

  88. Chang, H. Y., Zhu, W. & Akinwande, D. On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Appl. Phys. Lett. 104, 113504 (2014).

    Article  ADS  Google Scholar 

  89. Choi, H. H. et al. Accurate extraction of charge carrier mobility in 4-probe field-effect transistors. Adv. Funct. Mater. 28, 1707105 (2018).

    Article  Google Scholar 

  90. de la Rosa, C. J. L. et al. Insight on the characterization of MoS2 based devices and requirements for logic device integration. ECS J. Solid State Sci. Technol. 5, Q3072–Q3081 (2016).

    Article  Google Scholar 

  91. English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).

    Article  ADS  Google Scholar 

  92. Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (2010).

    Article  MathSciNet  Google Scholar 

  93. Somvanshi, D. et al. Nature of carrier injection in metal/2D-semiconductor interface and its implications for the limits of contact resistance. Phys. Rev. B 96, 205423 (2017).

    Article  Google Scholar 

  94. Jena, D., Banerjee, K. & Xing, G. H. 2D crystal semiconductors: intimate contacts. Nat. Mater. 13, 1076–1078 (2014).

    Article  ADS  Google Scholar 

  95. Li, S. L., Tsukagoshi, K., Orgiu, E. & Samorì, P. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 45, 118–151 (2016).

    Article  Google Scholar 

  96. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

    Article  ADS  Google Scholar 

  97. Das, S., Chen, H. Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    Article  ADS  Google Scholar 

  98. Jahangir, I., Uddin, M. A., Singh, A. K., Koley, G. & Chandrashekhar, M. V. S. Richardson constant and electrostatics in transfer-free CVD grown few-layer MoS2/graphene barristor with Schottky barrier modulation >0.6eV. Appl. Phys. Lett. 111, 142101 (2017).

    Article  ADS  Google Scholar 

  99. Fontaine, C., Okumura, T. & Tu, K. N. Interfacial reaction and Schottky barrier between Pt and GaAs. J. Appl. Phys. 54, 1404–1412 (1983).

    Article  ADS  Google Scholar 

  100. Park, W. et al. Contact resistance reduction using Fermi level de-pinning layer for MoS2 FETs. In 2014 IEEE International Electron Devices Meeting, 5–1 (IEEE, 2014).

  101. Chen, R. S., Tang, C. C., Shen, W. C. & Huang, Y. S. Thickness-dependent electrical conductivities and ohmic contacts in transition metal dichalcogenides multilayers. Nanotechnology 25, 415706 (2014).

    Article  Google Scholar 

  102. He, Q. et al. Quest for p-type two-dimensional semiconductors. ACS Nano 13, 12294–12300 (2019).

    Article  Google Scholar 

  103. Chuang, S. et al. MoS2 P-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014).

    Article  ADS  Google Scholar 

  104. Choi, H. et al. Edge contact for carrier injection and transport in MoS2 field-effect transistors. ACS Nano 13, 13169–13175 (2019).

    Article  Google Scholar 

  105. Moon, B. H. et al. Junction-structure-dependent Schottky barrier inhomogeneity and device ideality of monolayer MoS2 field-effect transistors. ACS Appl. Mater. Interfaces 9, 11240–11246 (2017).

    Article  Google Scholar 

  106. Yu, Z. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).

    Article  Google Scholar 

  107. Cui, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 27, 5230–5234 (2015).

    Article  Google Scholar 

  108. Feng, W., Zheng, W., Cao, W. & Hu, P. Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv. Mater. 26, 6587–6593 (2014).

    Article  Google Scholar 

  109. Chamlagain, B. et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. ACS Nano 8, 5079–5088 (2014).

    Article  Google Scholar 

  110. Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 11043 (2014).

    Google Scholar 

  111. Lee, M. et al. Direct evidence of electronic interaction at the atomic-layer-deposited MoS2 monolayer/SiO2 interface. ACS Appl. Mater. Interfaces 12, 53852–53859 (2020).

    Article  ADS  Google Scholar 

  112. Ji, H. et al. Suppression of interfacial current fluctuation in MoTe2 transistors with different dielectrics. ACS Appl. Mater. Interfaces 8, 19092–19099 (2016).

    Article  Google Scholar 

  113. Somvanshi, D., Ber, E., Bailey, C. S., Pop, E. & Yalon, E. Improved current density and contact resistance in bilayer MoSe2 field effect transistors by AlOx capping. ACS Appl. Mater. Interfaces 12, 36355–36361 (2020).

    Article  Google Scholar 

  114. Leonhardt, A. et al. Material-selective doping of 2D TMDC through AlxOy encapsulation. ACS Appl. Mater. Interfaces 11, 42697–42707 (2019).

    Article  Google Scholar 

  115. Alharbi, A. & Shahrjerdi, D. Analyzing the effect of high-k dielectric-mediated doping on contact resistance in top-gated monolayer MoS2 transistors. IEEE Trans. Electron. Devices 65, 4084–4092 (2018).

    Article  ADS  Google Scholar 

  116. Li, Y. et al. Photoluminescence of monolayer MoS2 on LaAlO3 and SrTiO3 substrates. Nanoscale 6, 15248–15254 (2014).

    Article  ADS  Google Scholar 

  117. Zheng, X. et al. Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2 films. Appl. Phys. Lett. 118, 093103 (2021).

    Article  ADS  Google Scholar 

  118. Goodman, A. J. et al. Substrate-dependent exciton diffusion and annihilation in chemically treated MoS2 and WS2. J. Phys. Chem. C 124, 12175–12184 (2020).

    Article  Google Scholar 

  119. Ajayi, O. A. et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater. 4, 031011 (2017).

    Article  Google Scholar 

  120. Utama, M. I. B. et al. A dielectric-defined lateral heterojunction in a monolayer semiconductor. Nat. Electron. 2, 60–65 (2019).

    Article  Google Scholar 

  121. Park, S. et al. Demonstration of the key substrate-dependent charge transfer mechanisms between monolayer MoS2 and molecular dopants. Commun. Phys. 2, 109 (2019).

    Article  Google Scholar 

  122. Mootheri, V. et al. Understanding ambipolar transport in MoS2 field effect transistors: the substrate is the key. Nanotechnology 32, 135202 (2021).

    Article  ADS  Google Scholar 

  123. Jang, J. & Hwang, D. K. Understanding the charge transport mechanism in MoS2 transistors with graphene electrodes. J. Korean Phys. Soc. 77, 1008–1011 (2020).

    Article  ADS  Google Scholar 

  124. Gambino, J. P. & Colgan, E. G. Silicides and ohmic contacts. Mater. Chem. Phys. 52, 99–146 (1998).

    Article  Google Scholar 

  125. Nishimura, T., Kita, K. & Toriumi, A. Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface. Appl. Phys. Lett. 91, 123123 (2007).

    Article  ADS  Google Scholar 

  126. Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. NPJ 2D Mater. Appl. 2, 6 (2018).

    Article  Google Scholar 

  127. Rodder, M. A. & Dodabalapur, A. Modeling of a back-gated monolayer MoS2 FET by extraction of an accurate threshold voltage and gate-bias-dependent source/drain resistance. IEEE J. Electron. Devices Soc. 5, 384–389 (2017).

    Article  Google Scholar 

  128. Guimarães, M. H. D. et al. Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10, 6392–6399 (2016).

    Article  Google Scholar 

  129. Chou, A. S. et al. High on-state current in chemical vapor deposited monolayer MoS2 nFETs with Sn ohmic contacts. IEEE Electron. Device Lett. 42, 272–275 (2021).

    Article  ADS  Google Scholar 

  130. Smithe, K. K. H., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 4, 011009 (2017).

    Article  Google Scholar 

  131. Smithe, K. K. H., Suryavanshi, S. V., Muñoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from Royal Society Wolfson Research Merit Award (WRM\FT\180009), Leverhulme Trust grant RPG-2019-227 and EPSRC grants EP/T026200/1 and EP/T001038/1.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and M.C. wrote and edited this paper.

Corresponding author

Correspondence to Manish Chhowalla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Vinod Sangwan and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chhowalla, M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat Rev Phys 4, 101–112 (2022). https://doi.org/10.1038/s42254-021-00389-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00389-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing