Abstract
Light–matter interaction in 2D and topological materials provides a fascinating control knob for inducing emergent, non-equilibrium properties and achieving new functionalities in the ultrafast timescale (from femtosecond to picosecond). Over the past decade, intriguing light-induced phenomena, such as Bloch–Floquet states and photo-induced phase transitions, have been reported experimentally, but many still await experimental realization. In this Review, we discuss recent progress on the light-induced phenomena, in which the light field could act as a time-periodic field to drive Floquet states, induce structural and topological phase transitions in quantum materials, couple with spin and various pseudospins, and induce nonlinear optical responses that are affected by the geometric phase. Perspectives on the opportunities of proposed light-induced phenomena, as well as open experimental challenges, are also discussed.
Key points
-
Light–matter interaction plays critical roles in emerging exotic phenomena in 2D materials and topological materials not only as an experimental probe but also as a control knob for inducing emergent non-equilibrium properties that are otherwise not possible to be achieved in the equilibrium state.
-
Light, regarded as a time-periodic electric field, can induce the photo-dressing Floquet states, which can be further utilized to dynamically engineer the electronic properties of quantum materials, especially topological properties, dubbed Floquet engineering.
-
By resonantly exciting electrons or lattices, light–matter interaction can dynamically change the energy landscape of 2D and topological materials, leading to the light-induced phase transitions, such as the emergence of light-induced superconductivity or hidden states.
-
By coupling the angular momentum of light with spins and pseudospins, light–matter interaction can be used to detect and manipulate various quantum degrees of freedom for new concepts of device applications.
-
By coupling to geometric phase of the Bloch wavefunctions, light–matter interaction can be used as a powerful probe of geometric-phase-related properties and to manipulate the material’s response, leading to rich, nonlinear optical responses.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).
Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).
Yao, W., Aeschlimann, M. & Zhou, S. Progress on band structure engineering of twisted bilayer and two-dimensional moiré heterostructures. Chin. Phys. B 29, 127304 (2020).
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Lv, B. Q., Qian, T. & Ding, H. Experimental perspective on three-dimensional topological semimetals. Rev. Mod. Phys. 93, 025002 (2021).
Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).
Chang, G. et al. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).
Tang, P., Zhou, Q. & Zhang, S. C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).
Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).
Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).
Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155–1160 (2016).
Wang, C. et al. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94, 241119(R) (2016).
Yan, M. et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat. Commun. 8, 257 (2017).
Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).
Rudner, M. S. & Lindner, N. H. Band structure engineering and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. 2, 229–244 (2020).
Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009).
Perfetti, L. et al. Time evolution of the electronic structure of 1T–TaS2 through the insulator–metal transition. Phys. Rev. Lett. 97, 067402 (2006).
Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).
Cavalleri, A. Photo-induced superconductivity. Contemp. Phys. 59, 31–46 (2017).
Zhang, M. Y. et al. Light-induced subpicosecond lattice symmetry switch in MoTe2. Phys. Rev. X 9, 021036 (2019).
Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).
Vaswani, C. et al. Light-driven Raman coherence as a nonthermal route to ultrafast topology switching in a Dirac semimetal. Phys. Rev. X 10, 021013 (2020).
McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2011).
Jozwiak, C. et al. Photoelectron spin-flipping and texture manipulation in a topological insulator. Nat. Phys. 9, 293–298 (2013).
Jung, S. W. et al. Black phosphorus as a bipolar pseudospin semiconductor. Nat. Mater. 19, 277–281 (2020).
Sie, E. J. et al. Large, valley-exclusive Bloch–Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017).
Xu, S. Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).
Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).
Patankar, S. et al. Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs. Phys. Rev. B 98, 165113 (2018).
Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).
Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019).
Luo, L. et al. A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe5. Nat. Mater. 20, 329–334 (2021).
Qi, Y. et al. Photoinduced concurrent intralayer and interlayer structural transitions and associated topological transitions in MTe2 (M=Mo, W). Preprint at arXiv https://arxiv.org/abs/2105.14175 (2021).
Guan, M. X., Wang, E., You, P. W., Sun, J. T. & Meng, S. Manipulating Weyl quasiparticles by orbital-selective photoexcitation in WTe2. Nat. Commun. 12, 1885 (2021).
Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).
Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).
Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 5266 (2018).
Liu, J., Xia, F., Xiao, D., Garcia de Abajo, F. J. & Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020).
Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021).
Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders College Publishing, 1976).
Sambe, H. Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Phys. Rev. A 7, 2203–2213 (1973).
Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008).
López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: gap appearance and nonlinear effects. Phys. Rev. B 78, 201406(R) (2008).
Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).
López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: gaps and band structure. Philos. Mag. 90, 2977–2988 (2010).
Kibis, O. V. Metal-insulator transition in graphene induced by circularly polarized photons. Phys. Rev. B 81, 165433 (2010).
Kitagawa, T., Oka, T., Brataas, A., Fu, L. & Demler, E. Transport properties of nonequilibrium systems under the application of light: photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B 84, 235108 (2011).
Calvo, H. L., Pastawski, H. M., Roche, S. & Torres, L. E. F. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011).
Seetharam, K. I., Bardyn, C.-E., Lindner, N. H., Rudner, M. S. & Refael, G. Controlled population of Floquet–Bloch states via coupling to Bose and Fermi baths. Phys. Rev. X 5, 041050 (2015).
Inoue, J. & Tanaka, A. Photoinduced transition between conventional and topological insulators in two-dimensional electronic systems. Phys. Rev. Lett. 105, 017401 (2010).
Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013).
Usaj, G., Perez-Piskunow, P. M., Foa Torres, L. E. F. & Balseiro, C. A. Irradiated graphene as a tunable Floquet topological insulator. Phys. Rev. B 90, 115423 (2014).
Perez-Piskunow, P. M., Usaj, G., Balseiro, C. A. & Torres, L. E. F. F. Floquet chiral edge states in graphene. Phys. Rev. B 89, 121401(R) (2014).
Sentef, M. A. et al. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 6, 7047 (2015).
Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).
Lindner, N. H., Bergman, D. L., Refael, G. & Galitski, V. Topological Floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013).
Cayssol, J., Dóra, B., Simon, F. & Moessner, R. Floquet topological insulators. Phys. Status Solidi RRL 7, 101–108 (2013).
Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139–226 (2015).
Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).
Giovannini, U. D. & Hübener, H. Floquet analysis of excitations in materials. J. Phys. Mater. 3, 012001 (2019).
Wang, Y. et al. Theoretical understanding of photon spectroscopies in correlated materials in and out of equilibrium. Nat. Rev. Mater. 3, 312–323 (2018).
Parameswaran, S. A. & Vasseur, R. Many-body localization, symmetry and topology. Rep. Prog. Phys. 81, 082501 (2018).
de la Torre, A. et al. Nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).
Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).
Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).
Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).
Kundu, A., Fertig, H. A. & Seradjeh, B. Effective theory of Floquet topological transitions. Phys. Rev. Lett. 113, 236803 (2014).
McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).
Sato, S. A. et al. Microscopic theory for the light-induced anomalous Hall effect in graphene. Phys. Rev. B 99, 214302 (2019).
Nuske, M. et al. Floquet dynamics in light-driven solids. Phys. Rev. Res. 2, 043408 (2020).
Sato, S. A. et al. Light-induced anomalous Hall effect in massless Dirac fermion systems and topological insulators with dissipation. New J. Phys. 21, 093005 (2019).
Auston, D. H. Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26, 101–103 (1975).
Narang, P., Garcia, C. A. C. & Felser, C. The topology of electronic band structures. Nat. Mater. 20, 293–300 (2021).
Weber, C. P. Ultrafast investigation and control of Dirac and Weyl semimetals. J. Appl. Phys. 129, 070901 (2021).
Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet Weyl semimetal induced by off-resonant light. EPL 105, 17004 (2014).
Chan, C. K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. When chiral photons meet chiral fermions: photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 (2016).
Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016).
Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-II Weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106(R) (2016).
Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials. Nat. Commun. 8, 13940 (2017).
Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).
Yan, Z. & Wang, Z. Floquet multi-Weyl points in crossing-nodal-line semimetals. Phys. Rev. B 96, 041206(R) (2017).
Ezawa, M. Photoinduced topological phase transition from a crossing-line nodal semimetal to a multiple-Weyl semimetal. Phys. Rev. B 96, 041205(R) (2017).
Yan, Z. & Wang, Z. Tunable Weyl points in periodically driven nodal line semimetals. Phys. Rev. Lett. 117, 087402 (2016).
Taguchi, K., Xu, D.-H., Yamakage, A. & Law, K. T. Photovoltaic anomalous Hall effect in line-node semimetals. Phys. Rev. B 94, 155206 (2016).
Narayan, A. Tunable point nodes from line-node semimetals via application of light. Phys. Rev. B 94, 041409(R) (2016).
Wang, Z. F., Liu, Z., Yang, J. & Liu, F. Light-induced type-II band inversion and quantum anomalous Hall state in monolayer FeSe. Phys. Rev. Lett. 120, 156406 (2018).
Wang, Q.-Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 29, 037402 (2012).
Zhang, R.-X., Cole, W. S., Wu, X. & Das Sarma, S. Higher-order topology and nodal topological superconductivity in Fe(Se,Te) heterostructures. Phys. Rev. Lett. 123, 167001 (2019).
Gray, M. J. et al. Evidence for helical hinge zero modes in an Fe-based superconductor. Nano Lett. 19, 4890–4896 (2019).
Wu, X., Liu, X., Thomale, R. & Liu, C.-X. High-Tc superconductor Fe(Se,Te) Monolayer: an intrinsic, scalable and electrically-tunable majorana platform. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwab087 (2021).
Wang, Z. F. et al. Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film. Nat. Mater. 15, 968–973 (2016).
Katan, Y. T. & Podolsky, D. Modulated Floquet topological insulators. Phys. Rev. Lett. 110, 016802 (2013).
Narayan, A. Floquet dynamics in two-dimensional semi-Dirac semimetals and three-dimensional Dirac semimetals. Phys. Rev. B 91, 205445 (2015).
D’Alessio, L. & Rigol, M. Dynamical preparation of Floquet Chern insulators. Nat. Commun. 6, 8336 (2015).
Wang, H., Zhou, L. & Chong, Y. D. Floquet Weyl phases in a three-dimensional network model. Phys. Rev. B 93, 144114 (2016).
Bomantara, R. W., Raghava, G. N., Zhou, L. & Gong, J. Floquet topological semimetal phases of an extended kicked Harper model. Phys. Rev. E 93, 022209 (2016).
Zhang, X.-X., Ong, T. T. & Nagaosa, N. Theory of photoinduced Floquet Weyl semimetal phases. Phys. Rev. B 94, 235137 (2016).
Roy, R. & Harper, F. Periodic table for Floquet topological insulators. Phys. Rev. B 96, 155118 (2017).
Liu, H., Sun, J. T., Cheng, C., Liu, F. & Meng, S. Photoinduced nonequilibrium topological states in strained black phosphorus. Phys. Rev. Lett. 120, 237403 (2018).
Ezawa, M. Photoinduced topological phase transition and a single Dirac-cone state in silicene. Phys. Rev. Lett. 110, 026603 (2013).
Nguyen, P. X. & Tse, W.-K. Photoinduced anomalous Hall effect in two-dimensional transition metal dichalcogenides. Phys. Rev. B 103, 125420 (2021).
Dutreix, C., Stepanov, E. A. & Katsnelson, M. I. Laser-induced topological transitions in phosphorene with inversion symmetry. Phys. Rev. B 93, 241404(R) (2016).
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Carr, S., Fang, S. & Kaxiras, E. Electronic-structure methods for twisted moiré layers. Nat. Rev. Mater. 5, 748–763 (2020).
Rodriguez-Vega, M., Vogl, M. & Fiete, G. A. Low-frequency and Moiré–Floquet engineering: a review. Ann. Phys. https://doi.org/10.1016/j.aop.2021.168434 (2021).
Li, Y., Fertig, H. A. & Seradjeh, B. Floquet-engineered topological flat bands in irradiated twisted bilayer graphene. Phys. Rev. Res. 2, 043275 (2020).
Katz, O., Refael, G. & Lindner, N. H. Optically induced flat bands in twisted bilayer graphene. Phys. Rev. B 102, 155123 (2020).
Vogl, M., Rodriguez-Vega, M. & Fiete, G. A. Effective Floquet Hamiltonians for periodically driven twisted bilayer graphene. Phys. Rev. B 101, 235411 (2020).
Vogl, M., Rodriguez-Vega, M. & Fiete, G. A. Floquet engineering of interlayer couplings: tuning the magic angle of twisted bilayer graphene at the exit of a waveguide. Phys. Rev. B 101, 241408(R) (2020).
Kim, H., Dehghani, H., Aoki, H., Martin, I. & Hafezi, M. Optical imprinting of superlattices in two-dimensional materials. Phys. Rev. Res. 2, 043004 (2020).
Topp, G. E. et al. Topological Floquet engineering of twisted bilayer graphene. Phys. Rev. Res. 1, 023031 (2019).
Lu, M., Zeng, J., Liu, H., Gao, J.-H. & Xie, X. C. Valley-selective Floquet Chern flat bands in twisted multilayer graphene. Phys. Rev. B 103, 195146 (2021).
Vogl, M., Rodriguez-Vega, M., Flebus, B., MacDonald, A. H. & Fiete, G. A. Floquet engineering of topological transitions in a twisted transition metal dichalcogenide homobilayer. Phys. Rev. B 103, 014310 (2021).
Rodriguez-Vega, M., Vogl, M. & Fiete, G. A. Floquet engineering of twisted double bilayer graphene. Phys. Rev. Res. 2, 033494 (2020).
Chono, H., Takasan, K. & Yanase, Y. Laser-induced topological s-wave superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. B 102, 174508 (2020).
Ge, R.-C. & Kolodrubetz, M. Floquet engineering of lattice structure and dimensionality in twisted moiré heterobilayers. Preprint at arXiv https://arxiv.org/abs/2103.09874 (2021).
Utama, M. I. B. et al. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys. 17, 184–188 (2020).
Lisi, S. et al. Observation of flat bands in twisted bilayer graphene. Nat. Phys. 17, 189–193 (2020).
Aeschlimann, S. et al. Survival of Floquet–Bloch states in the presence of scattering. Nano Lett. 21, 5028–5035 (2021).
Wood, R. M. Laser-Induced Damage of Optical Materials (CRC Press, 2003).
Carr, C. W., Radousky, H. B. & Demos, S. G. Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms. Phys. Rev. Lett. 91, 127402 (2003).
Deng, Z. & Eberly, J. H. Multiphoton absorption above ionization threshold by atoms in strong laser fields. J. Opt. Soc. Am. B 2, 486–493 (1985).
Reimann, J. et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature 562, 396–400 (2018).
Gauthier, A. et al. Tuning time and energy resolution in time-resolved photoemission spectroscopy with nonlinear crystals. J. Appl. Phys. 128, 093101 (2020).
Mathias, S. et al. Angle-resolved photoemission spectroscopy with a femtosecond high harmonic light source using a two-dimensional imaging electron analyzer. Rev. Sci. Instrum. 78, 083105 (2007).
Perfetti, L. et al. Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2O8+δ by time-resolved photoelectron spectroscopy. Phys. Rev. Lett. 99, 197001 (2007).
Kiryukhin, V. et al. An X-ray-induced insulator–metal transition in a magnetoresistive manganite. Nature 386, 813–815 (1997).
Miyano, K., Tanaka, T., Tomioka, Y. & Tokura, Y. Photoinduced insulator-to-metal transition in a perovskite manganite. Phys. Rev. Lett. 78, 4257–4260 (1997).
Fiebig, M. Visualization of the local insulator-metal transition in Pr0.7Ca0.3MnO3. Science 280, 1925–1928 (1998).
Baum, P., Yang, D.-S. & Zewail, A. H. 4D visualization of transitional structures in phase transformations by electron diffraction. Science 318, 788–792 (2007).
Cavalleri, A. et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87, 237401 (2001).
Cavalleri, A., Dekorsy, T., Chong, H. H. W., Kieffer, J. C. & Schoenlein, R. W. Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale. Phys. Rev. B 70, 161102 (2004).
Kübler, C. et al. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2. Phys. Rev. Lett. 99, 116401 (2007).
Pashkin, A. et al. Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy. Phys. Rev. B 83, 195120 (2011).
Schmitt, F. et al. Transient electronic structure and melting of a charge density wave in TbTe3. Science 321, 1649–1652 (2008).
Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490–493 (2011).
Eichberger, M. et al. Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 468, 799–802 (2010).
Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).
Stevens, C. J. et al. Evidence for two-component high-temperature superconductivity in the femtosecond optical response of YBa2Cu3O7−δ. Phys. Rev. Lett. 78, 2212–2215 (1997).
Demsar, J., Podobnik, B., Kabanov, V. V., Wolf, T. & Mihailovic, D. Superconducting gap Δc, the pseudogap Δp, and pair fluctuations above Tc in overdoped Y1−xCaxBa2Cu3O7−δ from femtosecond time-domain spectroscopy. Phys. Rev. Lett. 82, 4918–4921 (1999).
Kabanov, V. V., Demsar, J., Podobnik, B. & Mihailovic, D. Quasiparticle relaxation dynamics in superconductors with different gap structures: Theory and experiments on YBa2Cu3O7−δ. Phys. Rev. B 59, 1497–1506 (1999).
Kaindl, R. A. Ultrafast mid-infrared response of YBa2Cu3O7-δ. Science 287, 470–473 (2000).
Kaindl, R. A. et al. Far-Infrared optical conductivity gap in superconducting MgB2 films. Phys. Rev. Lett. 88, 027003 (2001).
Gedik, N., Yang, D.-S., Logvenov, G., Bozovic, I. & Zewail, A. H. Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography. Science 316, 425–429 (2007).
Graf, J. et al. Nodal quasiparticle meltdown in ultrahigh-resolution pump–probe angle-resolved photoemission. Nat. Phys. 7, 805–809 (2011).
Smallwood, C. L. et al. Tracking Cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission. Science 336, 1137–1139 (2012).
Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).
Gerber, S. et al. Femtosecond electron-phonon lock-in by photoemission and X-ray free-electron laser. Science 357, 71–75 (2017).
Dornes, C. et al. The ultrafast Einstein–de Haas effect. Nature 565, 209–212 (2019).
Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).
Mankowsky, R., von Hoegen, A., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).
Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).
Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).
Afanasiev, D. et al. Ultrafast control of magnetic interactions via light-driven phonons. Nat. Mater. 20, 607–611 (2021).
Mankowsky, R., Först, M. & Cavalleri, A. Non-equilibrium control of complex solids by nonlinear phononics. Rep. Prog. Phys. 79, 064503 (2016).
Hu, W. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705–711 (2014).
Budden, M. et al. Evidence for metastable photo-induced superconductivity in K3C60. Nat. Phys. 17, 611–618 (2021).
Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).
Denny, S. J., Clark, S. R., Laplace, Y., Cavalleri, A. & Jaksch, D. Proposed parametric cooling of bilayer cuprate superconductors by terahertz excitation. Phys. Rev. Lett. 114, 137001 (2015).
Knap, M., Babadi, M., Refael, G., Martin, I. & Demler, E. Dynamical Cooper pairing in nonequilibrium electron-phonon systems. Phys. Rev. B 94, 214504 (2016).
Babadi, M., Knap, M., Martin, I., Refael, G. & Demler, E. Theory of parametrically amplified electron-phonon superconductivity. Phys. Rev. B 96, 014512 (2017).
Cantaluppi, A. et al. Pressure tuning of light-induced superconductivity in K3C60. Nat. Phys. 14, 837–841 (2018).
Schwarz, L. et al. Classification and characterization of nonequilibrium Higgs modes in unconventional superconductors. Nat. Commun. 11, 287 (2020).
Hoegen, A. V. et al. Parametrically amplified phase-incoherent superconductivity in YBa2Cu3O6+x. Preprint at arXiv https://arxiv.org/abs/1911.08284 (2020).
Dai, Z. & Lee, P. A. Superconductinglike response in a driven gapped bosonic system. Phys. Rev. B 104, 054512 (2021).
Dai, Z. & Lee, P. A. Superconducting-like response in driven systems near the Mott transition. Preprint at arXiv https://arxiv.org/abs/2106.08354 (2021).
Wang, Y., Chen, C. C., Moritz, B. & Devereaux, T. P. Light-enhanced spin fluctuations and d-wave superconductivity at a phase boundary. Phys. Rev. Lett. 120, 246402 (2018).
Schlawin, F. & Jaksch, D. Cavity-mediated unconventional pairing in ultracold fermionic atoms. Phys. Rev. Lett. 123, 133601 (2019).
Schlawin, F., Cavalleri, A. & Jaksch, D. Cavity-mediated electron-photon superconductivity. Phys. Rev. Lett. 122, 133602 (2019).
Tindall, J. et al. Dynamical order and superconductivity in a frustrated many-body system. Phys. Rev. Lett. 125, 137001 (2020).
Gao, H., Schlawin, F., Buzzi, M., Cavalleri, A. & Jaksch, D. Photoinduced electron pairing in a driven cavity. Phys. Rev. Lett. 125, 053602 (2020).
Buzzi, M. et al. Photomolecular high-temperature superconductivity. Phys. Rev. X 10, 031028 (2020).
Buzzi, M. et al. Higgs-mediated optical amplification in a nonequilibrium superconductor. Phys. Rev. X 11, 011055 (2021).
Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Cavity quantum Eliashberg enhancement of superconductivity. Phys. Rev. Lett. 122, 167002 (2019).
Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity. Sci. Adv. 4, eaau6969 (2018).
Boschini, F. et al. Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence. Nat. Mater. 17, 416–420 (2018).
Yang, S. L. et al. Mode-selective coupling of coherent phonons to the Bi2212 electronic band structure. Phys. Rev. Lett. 122, 176403 (2019).
Beck, M. et al. Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy. Phys. Rev. Lett. 107, 177007 (2011).
Matsunaga, R. & Shimano, R. Nonequilibrium BCS state dynamics induced by intense terahertz pulses in a superconducting NbN film. Phys. Rev. Lett. 109, 187002 (2012).
Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb1−xTixN induced by terahertz pulse excitation. Phys. Rev. Lett. 111, 057002 (2013).
Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).
Sherman, D. et al. The Higgs mode in disordered superconductors close to a quantum phase transition. Nat. Phys. 11, 188–192 (2015).
Matsunaga, R. et al. Polarization-resolved terahertz third-harmonic generation in a single-crystal superconductor NbN: dominance of the Higgs mode beyond the BCS approximation. Phys. Rev. B 96, 020505(R) (2017).
Katsumi, K. et al. Higgs mode in the d-wave superconductor Bi2Sr2CaCu2O8+x driven by an intense terahertz pulse. Phys. Rev. Lett. 120, 117001 (2018).
Chu, H. et al. Phase-resolved Higgs response in superconducting cuprates. Nat. Commun. 11, 1793 (2020).
Vaswani, C. et al. Light quantum control of persisting Higgs modes in iron-based superconductors. Nat. Commun. 12, 258 (2021).
Rajasekaran, S. et al. Probing optically silent superfluid stripes in cuprates. Science 359, 575–579 (2018).
Giorgianni, F. et al. Leggett mode controlled by light pulses. Nat. Phys. 15, 341–346 (2019).
Leggett, A. J. Number-phase fluctuations in two-band superconductors. Prog. Theor. Phys. 36, 901–930 (1966).
Yang, X. et al. Terahertz-light quantum tuning of a metastable emergent phase hidden by superconductivity. Nat. Mater. 17, 586–591 (2018).
Yang, X. et al. Lightwave-driven gapless superconductivity and forbidden quantum beats by terahertz symmetry breaking. Nat. Photonics 13, 707–713 (2019).
Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001 (2011).
Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2016).
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).
Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).
Sorgenfrei, N. L. A. N. et al. Photodriven transient picosecond top-layer semiconductor to metal phase-transition in p-doped molybdenum disulfide. Adv. Mater. 33, 2006957 (2021).
Vaskivskyi, I. et al. Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2. Sci. Adv. 1, e1500168 (2015).
Sun, K. et al. Hidden CDW states and insulator-to-metal transition after a pulsed femtosecond laser excitation in layered chalcogenide 1T-TaS2−xSex. Sci. Adv. 4, eaas9660 (2018).
Shi, X. et al. Ultrafast electron calorimetry uncovers a new long-lived metastable state in 1T-TaSe2 mediated by mode-selective electron-phonon coupling. Sci. Adv. 5, eaav4449 (2019).
Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16, 159–163 (2019).
Zhang, Y. et al. Creation of a novel inverted charge density wave state. Preprint at arXiv https://arxiv.org/abs/2011.07623 (2020).
Zong, A. et al. Evidence for topological defects in a photoinduced phase transition. Nat. Phys. 15, 27–31 (2018).
Vogelgesang, S. et al. Phase ordering of charge density waves traced by ultrafast low-energy electron diffraction. Nat. Phys. 14, 184–190 (2017).
Duan, S. et al. Optical manipulation of electronic dimensionality in a quantum material. Nature 595, 239–244 (2021).
Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).
Zhang, K. et al. Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2. Nat. Commun. 7, 13552 (2016).
Li, P. et al. Evidence for topological type-II Weyl semimetal WTe2. Nat. Commun. 8, 2150 (2017).
Hein, P. et al. Mode-resolved reciprocal space mapping of electron-phonon interaction in the Weyl semimetal candidate Td-WTe2. Nat. Commun. 11, 2613 (2020).
Gao, Y. & Zhang, F. Current-induced second harmonic generation of Dirac or Weyl semimetals in a strong magnetic field. Phys. Rev. B 103, L041301 (2021).
Nicolas, S. et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Preprint at arXiv https://arxiv.org/abs/2005.10308 (2020).
Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).
Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009).
Wang, Y. H. et al. Observation of a warped helical spin texture in Bi2Se3 from circular dichroism angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 207602 (2011).
Park, C.-H. & Louie, S. G. Spin polarization of photoelectrons from topological insulators. Phys. Rev. Lett. 109, 097601 (2012).
Park, S. R. et al. Chiral orbital-angular momentum in the surface states of Bi2Se3. Phys. Rev. Lett. 108, 046805 (2012).
Mirhosseini, H. & Henk, J. Spin texture and circular dichroism in photoelectron spectroscopy from the topological insulator Bi2Te3: first-principles photoemission calculations. Phys. Rev. Lett. 109, 036803 (2012).
Wang, Y. & Gedik, N. Circular dichroism in angle-resolved photoemission spectroscopy of topological insulators. Phys. Status Solidi RRL 7, 64–71 (2013).
Jiang, J. et al. Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2. Phys. Rev. Lett. 115, 166601 (2015).
Xu, D.-F. et al. Observation of Fermi arcs in non-centrosymmetric Weyl semi-metal candidate NbP. Chin. Phys. Lett. 32, 107101 (2015).
Yu, R., Weng, H., Fang, Z., Ding, H. & Dai, X. Determining the chirality of Weyl fermions from circular dichroism spectra in time-dependent angle-resolved photoemission. Phys. Rev. B 93, 205133 (2016).
Zhu, Z. H. et al. Photoelectron spin-polarization control in the topological insulator Bi2Se3. Phys. Rev. Lett. 112, 076802 (2014).
Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309 (2011).
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).
Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).
San-Jose, P., Prada, E., McCann, E. & Schomerus, H. Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics. Phys. Rev. Lett. 102, 247204 (2009).
Weyl, H. Elektron und gravitation. I. Z. Phys. 56, 330–352 (1929).
Baik, S. S., Kim, K. S., Yi, Y. & Choi, H. J. Emergence of two-dimensional massless Dirac fermions, chiral pseudospins, and Berry’s phase in potassium doped few-layer black phosphorus. Nano Lett. 15, 7788–7793 (2015).
Mucha-Kruczyński, M. et al. Characterization of graphene through anisotropy of constant-energy maps in angle-resolved photoemission. Phys. Rev. B 77, 195403 (2008).
Liu, Y., Bian, G., Miller, T. & Chiang, T. C. Visualizing electronic chirality and Berry phases in graphene systems using photoemission with circularly polarized light. Phys. Rev. Lett. 107, 166803 (2011).
Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011).
Bao, C. et al. Experimental evidence of chiral symmetry breaking in Kekulé-ordered graphene. Phys. Rev. Lett. 1226, 206804 (2021).
Bao, C. & Zhou, S. Black phosphorous for pseudospintronics. Nat. Mater. 19, 263–264 (2020).
Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).
Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).
Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).
Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. https://doi.org/10.1038/s41563-021-00992-7 (2021).
Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2016).
Nagaosa, N., Morimoto, T. & Tokura, Y. Transport, magnetic and optical properties of Weyl materials. Nat. Rev. Mater. 5, 621–636 (2020).
Von Baltz, R. & Kraut, W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B 23, 5590–5596 (1981).
Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).
Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2016).
Yang, X., Burch, K. & Ran, Y. Divergent bulk photovoltaic effect in Weyl semimetals. Preprint at arXiv https://arxiv.org/abs/1712.09363 (2018).
Choi, Y.-G., Doan, M.-H., Kim, Y. & Choi, G.-M. Nonlinear optical Hall effect in Weyl semimetal WTe2. Preprint at arXiv https://arxiv.org/abs/2103.08173 (2021).
Fei, R., Song, W. & Yang, L. Giant photogalvanic effect and second-harmonic generation in magnetic axion insulators. Phys. Rev. B 102, 035440 (2020).
Holder, T., Kaplan, D. & Yan, B. Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion. Phys. Rev. Res. 2, 033100 (2020).
Wang, H. & Qian, X. Electrically and magnetically switchable nonlinear photocurrent in РТ-symmetric magnetic topological quantum materials. NPJ Comput. Mater. 6, 199 (2020).
Jia, L., Zhang, Z., Yang, D. Z., Si, M. S. & Zhang, G. P. Probing magnetic configuration-mediated topological phases via high harmonic generation in MnBi2Te4. Phys. Rev. B 102, 174314 (2020).
Watanabe, H. & Yanase, Y. Chiral photocurrent in parity-violating magnet and enhanced response in topological antiferromagnet. Phys. Rev. X 11, 011001 (2021).
Matsuda, T. et al. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films. Nat. Commun. 11, 909 (2020).
de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).
Flicker, F. et al. Chiral optical response of multifold fermions. Phys. Rev. B 98, 155145 (2018).
Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020).
Ni, Z. et al. Giant topological longitudinal circular photo-galvanic effect in the chiral multifold semimetal CoSi. Nat. Commun. 12, 154 (2021).
Avdoshkin, A., Kozii, V. & Moore, J. E. Interactions remove the quantization of the chiral photocurrent at Weyl points. Phys. Rev. Lett. 124, 196603 (2020).
Mandal, I. Effect of interactions on the quantization of the chiral photocurrent for double-Weyl semimetals. Symmetry 12, 919 (2020).
Ji, Z. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763–767 (2020).
Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photonics 13, 146–157 (2019).
Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396, 239–242 (1998).
Aeschlimann, M. et al. Coherent two-dimensional nanoscopy. Science 333, 1723–1726 (2011).
Neugebauer, M. J. et al. Optical control of vibrational coherence triggered by an ultrafast phase transition. Phys. Rev. B 99, 220302(R) (2019).
Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019).
Stefanucci, G. & van Leeuwen, R. Nonequilibrium Many-Body Theory of Quantum Systems (Cambridge Univ. Press, 2013).
Sieberer, L. M., Buchhold, M. & Diehl, S. Keldysh field theory for driven open quantum systems. Rep. Prog. Phys. 79, 096001 (2016).
Ullrich, C. A. Time-Dependent Density-Functional Theory (Oxford Univ. Press, 2011).
Marques, M. A. L., Maitra, N. T., Nogueira, F. M. S., Gross, E. K. U. & Rubio, A. Fundamentals of Time-Dependent Density Functional Theory (Springer, 2012).
Sato, S. A. & Rubio, A. Nonlinear electric conductivity and THz-induced charge transport in graphene. New J. Phys. 23, 063047 (2021).
Seibold, G. & Lorenzana, J. Time-dependent Gutzwiller approximation for the Hubbard model. Phys. Rev. Lett. 86, 2605–2608 (2001).
Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143–224 (2008).
Werner, P., Oka, T. & Millis, A. J. Diagrammatic Monte Carlo simulation of nonequilibrium systems. Phys. Rev. B 79, 035320 (2009).
Schiró, M. & Fabrizio, M. Time-dependent mean field theory for quench dynamics in correlated electron systems. Phys. Rev. Lett. 105, 076401 (2010).
Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).
Werner, P., Tsuji, N. & Eckstein, M. Nonthermal symmetry-broken states in the strongly interacting Hubbard model. Phys. Rev. B 86, 205101 (2012).
Kennes, D. M., Jakobs, S. G., Karrasch, C. & Meden, V. Renormalization group approach to time-dependent transport through correlated quantum dots. Phys. Rev. B 85, 085113 (2012).
Ashida, Y., İmamoğlu, A. & Demler, E. Cavity quantum electrodynamics at arbitrary light-matter coupling strengths. Phys. Rev. Lett. 126, 153603 (2021).
Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).
Juraschek, D. M., Neuman, T., Flick, J. & Narang, P. Cavity control of nonlinear phononics. Phys. Rev. Res. 3, L032046 (2021).
Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2020).
Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. X 10, 041027 (2020).
Latini, S. et al. The ferroelectric photo ground state of SrTiO3: cavity materials engineering. Proc. Natl Acad. Sci. USA 118, e2105618118 (2021).
Najer, D. et al. A gated quantum dot strongly coupled to an optical microcavity. Nature 575, 622–627 (2019).
Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).
Delplace, P., Gómez-León, Á. & Platero, G. Merging of Dirac points and Floquet topological transitions in ac-driven graphene. Phys. Rev. B 88, 245422 (2013).
Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).
Acknowledgements
This work is supported by the National Natural Science Foundation of China (grant nos. 11725418, 11427903 and 12034001), National Key R&D Program of China (grant nos. 2020YFA0308800 and 2016YFA0301004), Tsinghua University Initiative Scientific Research Program and Tohoku-Tsinghua Collaborative Research Fund, Beijing Advanced Innovation Center for Future Chip (ICFC), Beijing Nature Science Foundation (JQ19001).
Author information
Authors and Affiliations
Contributions
All authors contributed to the discussion of the content and writing of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- ‘Multiphoton’ dressed states
-
The electronic states that are influenced by the optical field through virtual absorption or emission of multiple photons.
- Volkov states
-
Free electron states in the field of an electromagnetic wave in vacuum. In solids, they refer to multiphonon dressed states of free-electron-like photoemission final states in the vacuum, in analogy to Floquet states, which are multiphonon dressed states of the electronic states inside the solids.
- High harmonic generation
-
The emission of light at a higher harmonic (\(n\hbar \omega \)) of the fundamental laser (\(\hbar \omega \)) through a nonlinear optical process.
- Stripe phase
-
1D modulation of charges. In cuprate superconductors, this refers to the concentration of doped charges along spontaneously generated domain walls between antiferromagnetic insulating regions.
- 1/8 Anomaly
-
The anomalous suppression of superconductivity in cuprate La2−xBaxCuO4 (and certain related compounds) near x = 1/8 doping.
- Leggett mode
-
Collective excitations that can be ascribed to the relative phase fluctuations between two superconducting order parameters.
- Stark effect
-
The shifting and splitting of spectral lines of atoms and molecules owing to the presence of an external electrical field. If an oscillating electric field (like a laser) is applied, it corresponds to an ac (optical) Stark effect.
- Berry connection
-
An effective vector potential to describe the geometrical property of an energy band in the momentum space of crystalline solids, which is defined as \(A=\langle \psi | i{\nabla }_{k}| \psi \rangle \), where \(| \psi \rangle \) is the eigenstate of the system.
- Berry curvature
-
A local gauge field to describe the geometrical property of an energy band, which is defined as Ω = ∇ × A, where A is the Berry connection.
Rights and permissions
About this article
Cite this article
Bao, C., Tang, P., Sun, D. et al. Light-induced emergent phenomena in 2D materials and topological materials. Nat Rev Phys 4, 33–48 (2022). https://doi.org/10.1038/s42254-021-00388-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-021-00388-1
This article is cited by
-
Opportunities in nanoscale probing of laser-driven phase transitions
Nature Physics (2024)
-
Programmable generation of counterrotating bicircular light pulses in the multi-terahertz frequency range
Nature Communications (2024)
-
Probing inhomogeneous cuprate superconductivity by terahertz Josephson echo spectroscopy
Nature Physics (2024)
-
Nonlinear physics of moiré superlattices
Nature Materials (2024)
-
Nondiffracting supertoroidal pulses and optical “Kármán vortex streets”
Nature Communications (2024)