Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Nanoscale magnetic field imaging for 2D materials

Abstract

Nanoscale magnetic imaging can provide microscopic information about length scales, inhomogeneity and interactions of materials systems. As such, it is a powerful tool to probe phenomena such as superconductivity, Mott insulating states and magnetically ordered states in 2D materials, which are sensitive to the local environment. This Technical Review provides an analysis of weak magnetic field imaging techniques that are most promising for the study of 2D materials: magnetic force microscopy, scanning superconducting quantum interference device microscopy and scanning nitrogen-vacancy centre microscopy.

Key points

  • Scanning magnetic probes have developed into powerful techniques for imaging magnetization patterns, spin configurations and current distributions with high spatial resolution and high sensitivity.

  • These local probes give crucial insights into length scales, inhomogeneity and interactions that are often absent from bulk measurements of transport, magnetization, susceptibility or heat capacity.

  • Using these techniques to image the recently discovered correlated states hosted in 2D materials will provide crucial local information on quantum phases, including on the spatial variation of order parameters, the presence of domains and the role of defects.

  • Correlated states in 2D systems are extremely sensitive to disorder and inhomogeneity. In such a fragile environment, local measurements — with sensors whose characteristic size is smaller than the length scale of the disorder — are essential for making sense of the system.

  • It is important to choose the appropriate scanning magnetic probe for the physical system under investigation: the different scaling of magnetization and current contrast with probe–sample spacing and the different physical quantities that are measured by each probe make certain techniques more amenable to certain systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagrams for magnetic force microscopy, scanning SQUID microscopy and scanning NV microscopy.
Fig. 2: Comparing sensitivity and resolution of different magnetic imaging techniques.
Fig. 3: Scanning probe microscopy measurements of magnetic field on 2D systems.

Similar content being viewed by others

References

  1. Freeman, M. R. & Choi, B. C. Advances in magnetic microscopy. Science 294, 1484–1488 (2001).

    Article  ADS  Google Scholar 

  2. McCord, J. Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D 48, 333001 (2015).

    Article  Google Scholar 

  3. Rougemaille, N. & Schmid, A. K. Magnetic imaging with spin-polarized low-energy electron microscopy. Eur. Phys. J. 50, 20101 (2010).

    Google Scholar 

  4. Stoll, H. et al. Imaging spin dynamics on the nanoscale using X-Ray microscopy. Front. Phys. 3, 26 (2015).

    Article  Google Scholar 

  5. Bonetti, S. X-ray imaging of spin currents and magnetisation dynamics at the nanoscale. J. Phys. Condens. Matter 29, 133004 (2017).

    Article  ADS  Google Scholar 

  6. Fischer, P. Magnetic imaging with polarized soft X-rays. J. Phys. D 50, 313002 (2017).

    Article  Google Scholar 

  7. Belova, L. M., Hellwig, O., Dobisz, E. & Dan Dahlberg, E. Rapid preparation of electron beam induced deposition co magnetic force microscopy tips with 10 Nm spatial resolution. Rev. Sci. Instrum. 83, 093711 (2012).

    Article  ADS  Google Scholar 

  8. Jaafar, M. et al. Customized MFM probes based on magnetic nanorods. Nanoscale 12, 10090–10097 (2020).

    Article  Google Scholar 

  9. Schnez, S. et al. Imaging localized states in graphene nanostructures. Phys. Rev. B 82, 165445 (2010).

    Article  ADS  Google Scholar 

  10. Lee, K. et al. Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures. Sci. Adv. 6, eabd1919 (2020).

    Article  ADS  Google Scholar 

  11. Quang, T. L. et al. Scanning tunneling spectroscopy of van der Waals graphene/semiconductor interfaces: absence of Fermi level pinning. 2D Mater. 4, 035019 (2017).

    Article  Google Scholar 

  12. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article  ADS  Google Scholar 

  13. Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47–52 (2020).

    Article  ADS  Google Scholar 

  14. Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Science 372, 1323–1327 (2021).

    Article  ADS  Google Scholar 

  15. Uri, A. et al. Nanoscale imaging of equilibrium quantum Hall edge currents and of the magnetic monopole response in graphene. Nat. Phys. 16, 164–170 (2020).

    Article  Google Scholar 

  16. Aharon-Steinberg, A. et al. Long-range nontopological edge currents in charge-neutral graphene. Nature 593, 528–534 (2021).

    Article  ADS  Google Scholar 

  17. Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).

    Article  ADS  Google Scholar 

  18. Sun, Q.-C. et al. Magnetic domains and domain wall pinning in two-dimensional ferromagnets revealed by nanoscale imaging. Nat. Commun. 12, 1989 (2021).

    Article  Google Scholar 

  19. Fabre, F. et al. Characterization of room-temperature in-plane magnetization in thin flakes of CrTe2 with a single-spin magnetometer. Phys. Rev. Mater. 5, 034008 (2021).

    Article  Google Scholar 

  20. Jenkins, A. et al. Imaging the breakdown of ohmic transport in graphene. Preprint at arXiv https://arxiv.org/abs/2002.05065 (2020).

  21. Ku, M. J. H. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).

    Article  ADS  Google Scholar 

  22. Vool, U. et al. Imaging phonon-mediated hydrodynamic flow in WTe2 with cryogenic quantum magnetometry. Preprint at arXiv https://arxiv.org/abs/2009.04477 (2020).

  23. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  ADS  Google Scholar 

  24. Chen, W. et al. Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366, 983–987 (2019).

    Article  ADS  Google Scholar 

  25. Yang, M. et al. Creation of skyrmions in van der Waals ferromagnet Fe3GeTe2 on (Co/Pd)n superlattice. Sci. Adv. 6, eabb5157 (2020).

    Article  ADS  Google Scholar 

  26. Li, Q. et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett. 18, 5974–5980 (2018).

    Article  ADS  Google Scholar 

  27. Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    Article  ADS  Google Scholar 

  28. Kirtley, J. R. Fundamental studies of superconductors using scanning magnetic imaging. Rep. Prog. Phys. 73, 126501 (2010).

    Article  ADS  Google Scholar 

  29. Martin, Y. & Wickramasinghe, H. K. Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl. Phys. Lett. 50, 1455–1457 (1987).

    Article  ADS  Google Scholar 

  30. Sáenz, J. J. et al. Observation of magnetic forces by the atomic force microscope. J. Appl. Phys. 62, 4293–4295 (1987).

    Article  ADS  Google Scholar 

  31. Schmid, I. et al. Exchange bias and domain evolution at 10 nm scales. Phys. Rev. Lett. 105, 197201 (2010).

    Article  ADS  Google Scholar 

  32. Moser, A. et al. High-resolution magnetic force microscopy study of high-density transitions in perpendicular recording media. J. Magn. Magn. Mater. 287, 298–302 (2005).

    Article  ADS  Google Scholar 

  33. Rossi, N. et al. Vectorial scanning force microscopy using a nanowire sensor. Nat. Nanotechnol. 12, 150–155 (2017).

    Article  ADS  Google Scholar 

  34. de Lépinay, L. M. et al. A universal and ultrasensitive vectorial nanomechanical sensor for imaging 2D force fields. Nat. Nanotechnol. 12, 156–162 (2017).

    Article  ADS  Google Scholar 

  35. Siria, A. & Niguès, A. Electron beam detection of a nanotube scanning force microscope. Sci. Rep. 7, 11595 (2017).

    Article  ADS  Google Scholar 

  36. Poggio, M. Nanomechanics: sensing from the bottom up. Nat. Nanotechnol. 8, 482–483 (2013).

    Article  ADS  Google Scholar 

  37. Nichol, J. M., Hemesath, E. R., Lauhon, L. J. & Budakian, R. Nanomechanical detection of nuclear magnetic resonance using a silicon nanowire oscillator. Phys. Rev. B 85, 054414 (2012).

    Article  ADS  Google Scholar 

  38. van Schendel, P. J. A., Hug, H. J., Stiefel, B., Martin, S. & Güntherodt, H.-J. A method for the calibration of magnetic force microscopy tips. J. Appl. Phys. 88, 435–445 (2000).

    Article  ADS  Google Scholar 

  39. Mattiat, H. et al. Nanowire magnetic force sensors fabricated by focused-electron-beam-induced deposition. Phys. Rev. Appl. 13, 044043 (2020).

    Article  ADS  Google Scholar 

  40. Rossi, N., Gross, B., Dirnberger, F., Bougeard, D. & Poggio, M. Magnetic force sensing using a self-assembled nanowire. Nano Lett. 19, 930–936 (2019).

    Article  ADS  Google Scholar 

  41. Sansa, M. et al. Frequency fluctuations in silicon nanoresonators. Nat. Nanotechnol. 11, 552–558 (2016).

    Article  ADS  Google Scholar 

  42. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  43. Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  44. Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018).

    Article  ADS  Google Scholar 

  45. Roch, J. G. et al. Spin-polarized electrons in monolayer MoS2. Nat. Nanotechnol. 14, 432–436 (2019).

    Article  ADS  Google Scholar 

  46. Roch, J. G. et al. First-order magnetic phase transition of mobile electrons in monolayer MoS2. Phys. Rev. Lett. 124, 187602 (2020).

    Article  ADS  Google Scholar 

  47. Grütter, P., Liu, Y., LeBlanc, P. & Dürig, U. Magnetic dissipation force microscopy. Appl. Phys. Lett. 71, 279–281 (1997).

    Article  ADS  Google Scholar 

  48. Kisiel, M. et al. Suppression of electronic friction on Nb films in the superconducting state. Nat. Mater. 10, 119–122 (2011).

    Article  ADS  Google Scholar 

  49. Kisiel, M. et al. Noncontact atomic force microscope dissipation reveals a central peak of SrTiO3 structural phase transition. Phys. Rev. Lett. 115, 046101 (2015).

    Article  ADS  Google Scholar 

  50. Rogers, F. P. A Device for Experimental Observation of Flux Vortices Trapped in Superconducting Thin Film. Thesis, Massachusetts Inst. Technol. (1983).

  51. Finkler, A. et al. Scanning superconducting quantum interference device on a tip for magnetic imaging of nanoscale phenomena. Rev. Sci. Instrum. 83, 073702 (2012).

    Article  ADS  Google Scholar 

  52. Ceccarelli, L. Scanning Probe Microscopy with SQUID-on-tip Sensor. Thesis, Univ. Basel (2020).

  53. Kirtley, J. R. et al. Scanning SQUID susceptometers with sub-micron spatial resolution. Rev. Sci. Instrum. 87, 093702 (2016).

    Article  ADS  Google Scholar 

  54. Finkler, A. et al. Self-aligned nanoscale SQUID on a tip. Nano Lett. 10, 1046–1049 (2010).

    Article  ADS  Google Scholar 

  55. Bagani, K. et al. Sputtered Mo66Re34 SQUID-on-tip for high-field magnetic and thermal nanoimaging. Phys. Rev. Appl. 12, 044062 (2019).

    Article  ADS  Google Scholar 

  56. Vasyukov, D. et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 8, 639–644 (2013).

    Article  ADS  Google Scholar 

  57. Tesche, C. D. & Clarke, J. dc SQUID: noise and optimization. J. Low Temp. Phys. 29, 301–331 (1977).

    Article  ADS  Google Scholar 

  58. Mitchell, M. W. & Alvarez, S. P. Colloquium: Quantum limits to the energy resolution of magnetic field sensors. Rev. Mod. Phys. 92, 021001 (2020).

    Article  ADS  Google Scholar 

  59. Geller, M. R. & Vignale, G. Currents in the compressible and incompressible regions of the two-dimensional electron gas. Phys. Rev. B 50, 11714 (1994).

    Article  ADS  Google Scholar 

  60. Cooper, N. R., Halperin, B. I. & Ruzin, I. M. Thermoelectric response of an interacting two-dimensional electron gas in a quantizing magnetic field. Phys. Rev. B 55, 2344 (1997).

    Article  ADS  Google Scholar 

  61. Weis, J. & von Klitzing, K. Metrology and microscopic picture of the integer quantum Hall effect. Phil. Trans. R. Soc. A 369, 3954–3974 (2011).

    Article  ADS  Google Scholar 

  62. Feldman, B. E., Krauss, B., Smet, J. H. & Yacoby, A. Unconventional sequence of fractional quantum Hall states in suspended graphene. Science 337, 1196–1199 (2012).

    Article  ADS  Google Scholar 

  63. Suddards, M. E., Baumgartner, A., Henini, M. & Mellor, C. J. Scanning capacitance imaging of compressible and incompressible quantum Hall effect edge strips. New J. Phys. 14, 083015 (2012).

    Article  ADS  Google Scholar 

  64. Halbertal, D. et al. Nanoscale thermal imaging of dissipation in quantum systems. Nature 539, 407–410 (2016).

    Article  ADS  Google Scholar 

  65. Halbertal, D. et al. Imaging resonant dissipation from individual atomic defects in graphene. Science 358, 1303–1306 (2017).

    Article  ADS  Google Scholar 

  66. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article  ADS  Google Scholar 

  67. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Article  ADS  Google Scholar 

  68. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  ADS  Google Scholar 

  69. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  70. Felton, S. et al. Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond. Phys. Rev. B 79, 075203 (2009).

    Article  ADS  Google Scholar 

  71. Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    Article  ADS  Google Scholar 

  72. Epstein, R. J., Mendoza, F. M., Kato, Y. K. & Awschalom, D. D. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nat. Phys. 1, 94–98 (2005).

    Article  Google Scholar 

  73. Tetienne, J.-P. et al. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New J. Phys. 14, 103033 (2012).

    Article  Google Scholar 

  74. Ariyaratne, A., Bluvstein, D., Myers, B. A. & Jayich, A. C. B. Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond. Nat. Commun. 9, 2406 (2018).

    Article  ADS  Google Scholar 

  75. Wolfe, C. S. et al. Off-resonant manipulation of spins in diamond via precessing magnetization of a proximal ferromagnet. Phys. Rev. B 89, 180406 (2014).

    Article  ADS  Google Scholar 

  76. van der Sar, T., Casola, F., Walsworth, R. & Yacoby, A. Nanometre-scale probing of spin waves using single electron spins. Nat. Commun. 6, 7886 (2015).

    Article  ADS  Google Scholar 

  77. Bertelli, I. et al. Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator. Sci. Adv. 6, eabd3556 (2020).

    Article  ADS  Google Scholar 

  78. Álvarez, G. A. & Suter, D. Measuring the spectrum of colored noise by dynamical decoupling. Phys. Rev. Lett. 107, 230501 (2011).

    Article  ADS  Google Scholar 

  79. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  80. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012).

    Article  ADS  Google Scholar 

  81. Ofori-Okai, B. K. et al. Spin properties of very shallow nitrogen vacancy defects in diamond. Phys. Rev. B 86, 081406 (2012).

    Article  ADS  Google Scholar 

  82. Wornle, M. S. et al. Coexistence of Bloch and Néel walls in a collinear antiferromagnet. Phys. Rev. B 103, 094426 (2021).

    Article  ADS  Google Scholar 

  83. Chang, K., Eichler, A., Rhensius, J., Lorenzelli, L. & Degen, C. L. Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett. 17, 2367–2373 (2017).

    Article  ADS  Google Scholar 

  84. Budker, D. & Romalis, M. Optical magnetometry. Nat. Phys. 3, 227–234 (2007).

    Article  Google Scholar 

  85. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  86. de Lange, G., Ristè, D., Dobrovitski, V. V. & Hanson, R. Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett. 106, 080802 (2011).

    Article  Google Scholar 

  87. Hopper, D. A., Lauigan, J. D., Huang, T.-Y. & Bassett, L. C. Real-time charge initialization of diamond nitrogen-vacancy centers for enhanced spin readout. Phys. Rev. Appl. 13, 024016 (2020).

    Article  ADS  Google Scholar 

  88. Momenzadeh, S. A. et al. Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. Nano Lett. 15, 165–169 (2015).

    Article  ADS  Google Scholar 

  89. Wan, N. H. et al. Efficient extraction of light from a nitrogen-vacancy center in a diamond parabolic reflector. Nano Lett. 18, 2787–2793 (2018).

    Article  ADS  Google Scholar 

  90. Lee, M. et al. Mapping current profiles of point-contacted graphene devices using single-spin scanning magnetometer. Appl. Phys. Lett. 118, 033101 (2021).

    Article  ADS  Google Scholar 

  91. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  ADS  Google Scholar 

  92. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article  ADS  Google Scholar 

  93. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Article  ADS  Google Scholar 

  94. Du, C. et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2017).

    Article  ADS  Google Scholar 

  95. Stipe, B. C., Mamin, H. J., Stowe, T. D., Kenny, T. W. & Rugar, D. Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett. 87, 096801 (2001).

    Article  ADS  Google Scholar 

  96. Beardsley, I. A. Reconstruction of the magnetization in a thin film by a combination of Lorentz microscopy and external field measurements. IEEE Trans. Magn. 25, 671–677 (1989).

    Article  ADS  Google Scholar 

  97. Braakman, F. R. & Poggio, M. Force sensing with nanowire cantilevers. Nanotechnology 30, 332001 (2019).

    Article  Google Scholar 

  98. Koblischka, M. R., Hartmann, U. & Sulzbach, T. Improving the lateral resolution of the MFM technique to the 10nm range. J. Magn. Magn. Mater. 272–276, 2138–2140 (2004).

    Article  ADS  Google Scholar 

  99. Gao, L. et al. Focused Ion beam milled CoPt magnetic force microscopy tips for high resolution domain images. IEEE Trans. Magn. 40, 2194–2196 (2004).

    Article  ADS  Google Scholar 

  100. Müller, B. et al. Josephson junctions and squids created by focused helium-ion-beam irradiation of YBa2Cu3O7. Phys. Rev. Appl. 11, 044082 (2019).

    Article  ADS  Google Scholar 

  101. Sangtawesin, S. et al. Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy. Phys. Rev. X 9, 031052 (2019).

    Google Scholar 

  102. Yamaoka, T. et al. Vacuum magnetic force microscopy at high temperatures: observation of permanent magnets. Microsc. Today 22, 12–17 (2014).

    Article  Google Scholar 

  103. Jeffery, M., Van Duzer, T., Kirtley, J. R. & Ketchen, M. B. Magnetic imaging of moat-guarded superconducting electronic circuits. Appl. Phys. Lett. 67, 1769–1771 (1995).

    Article  ADS  Google Scholar 

  104. Zhigao, S. et al. Visualization of electronic multiple ordering and its dynamics in high magnetic field: evidence of electronic multiple ordering crystals. ACS Appl. Mater. Interfaces 10, 20136–20141 (2018).

    Article  Google Scholar 

  105. Roth, B. J., Sepulveda, N. G. & Wikswo, J. P. Using a magnetometer to image a two-dimensional current distribution. J. Appl. Phys. 65, 361–372 (1989).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H.-J. Hug, J. Kirtley and A. Kleibert for insightful discussions. We acknowledge the support of the Canton Aargau and the Swiss National Science Foundation under project grant 200020-178863, via the Sinergia grant Nanoskyrmionics (grant no. CRSII5-171003) and via the NCCR Quantum Science and Technology (QSIT). C.L.D. acknowledges funding by the Swiss National Science Foundation under project grant 20020-175600, by the European Commission under grant no. 820394 ASTERIQS and by the European Research Council under grant 817720 IMAGINE.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, carried out calculations and contributed substantially to discussion of the content. L.C. made the figures, with input from E.M., N.R., C.L.D. and M.P. M.P. wrote the text, with input from E.M., L.L. and C.L.D. All authors reviewed the manuscript before submission.

Corresponding author

Correspondence to Martino Poggio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Ruslan Prozorov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchiori, E., Ceccarelli, L., Rossi, N. et al. Nanoscale magnetic field imaging for 2D materials. Nat Rev Phys 4, 49–60 (2022). https://doi.org/10.1038/s42254-021-00380-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00380-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing