Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Graphene nanoribbons for quantum electronics

Abstract

Graphene nanoribbons (GNRs) are a family of one-dimensional (1D) materials with a graphitic lattice structure. GNRs possess high mobility and current-carrying capability, sizeable bandgap and versatile electronic properties, which make them promising candidates for quantum electronic applications. In the past 5 years, progress has been made towards atomically precise bottom-up synthesis of GNRs and heterojunctions that provide an ideal platform for functional molecular devices, as well as successful production of semiconducting GNR arrays on insulating substrates potentially useful for large-scale digital circuits. With further development, GNRs can be envisioned as a competitive candidate material in future quantum information sciences. In this Perspective, we discuss recent progress in GNR research and identify key challenges and new directions likely to develop in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of graphene nanoribbons on catalytic surfaces.
Fig. 2: Chemical vapour deposition synthesis and epitaxy on scalable and technologically relevant substrates.
Fig. 3: Six proposed device architectures based on graphene nanoribbons.

Similar content being viewed by others

References

  1. Mack, C. A. Fifty years of Moore’s law. IEEE Trans. Semicond. Manuf. 24, 202–207 (2011).

    Article  Google Scholar 

  2. Thompson, S. E. et al. In search of “Forever,” continued transistor scaling one new material at a time. IEEE Trans. Semicond. Manuf. 18, 26–36 (2005).

    Article  Google Scholar 

  3. Ito, T. & Okazaki, S. Pushing the limits of lithography. Nature 406, 1027–1031 (2000).

    Article  Google Scholar 

  4. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    Article  ADS  Google Scholar 

  5. Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article  ADS  Google Scholar 

  6. Baringhaus, J. et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506, 349–354 (2014). Report of ballistic transport behaviour of charge carriers in GNRs that makes them of great interest for high-speed electronic applications.

    Article  ADS  Google Scholar 

  7. Magda, G. Z. et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608–611 (2014). First experimental report of ZGNRs exhibiting clear magnetic ordering at room temperature that makes them prospects for spintronic devices.

    Article  ADS  Google Scholar 

  8. Cao, T., Zhao, F. & Louie, S. G. Topological phases in graphene nanoribbons: junction states, spin centers, and quantum spin chains. Phys. Rev. Lett. 119, 076401 (2017).

    Article  ADS  Google Scholar 

  9. Groning, O. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018).

    Article  ADS  Google Scholar 

  10. Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018).

    Article  ADS  Google Scholar 

  11. Slota, M. et al. Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature 557, 691–695 (2018).

    Article  ADS  Google Scholar 

  12. Fujita, M., Wakabayashi, K., Nakada, K. & Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn 65, 1920–1923 (1996).

    Article  ADS  Google Scholar 

  13. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  14. Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  ADS  Google Scholar 

  15. Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).

    Article  ADS  Google Scholar 

  16. Duy Khanh, N., Ngoc Thanh Thuy, T., Thanh Tien, N. & Lin, M.-F. Diverse electronic and magnetic properties of chlorination-related graphene nanoribbons. Sci. Rep. 8, 17859 (2018).

    Article  ADS  Google Scholar 

  17. Zhang, Q., Fang, T., Xing, H., Seabaugh, A. & Jena, D. Graphene nanoribbon tunnel transistors. IEEE Electron Device Lett. 29, 1344–1346 (2008).

    Article  ADS  Google Scholar 

  18. Zhao, P., Chauhan, J. & Guo, J. Computational study of tunneling transistor based on graphene nanoribbon. Nano Lett. 9, 684–688 (2009).

    Article  ADS  Google Scholar 

  19. Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nat. Nanotechnol. 3, 486–490 (2008).

    Article  ADS  Google Scholar 

  20. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008). Demonstration of sub-10-nm-wide GNRs using chemical sonication and field-effect transistors with high on/off ratio of 107 at room temperature.

    Article  ADS  Google Scholar 

  21. Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008). Systematic investigation of sub-10-nm-wide semiconducting GNR field-effect transistor performance.

    Article  ADS  Google Scholar 

  22. Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

    Article  ADS  Google Scholar 

  23. Wang, X. et al. N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009).

    Article  ADS  Google Scholar 

  24. Saraswat, V., Jacobberger, R. M. & Arnold, M. S. Materials science challenges to graphene nanoribbon electronics. ACS Nano 15, 3674–3708 (2021). A comprehensive overview of GNRs for classic electronics and possible directions towards incorporation in commercial electronics.

    Article  Google Scholar 

  25. Chen, Z., Narita, A. & Muellen, K. Graphene nanoribbons: On-surface synthesis and integration into electronic devices. Adv. Mater. 32, 2001893 (2020). A comprehensive overview of the synthesis of GNRs on metal surface and devices studies for transistor applications.

    Article  Google Scholar 

  26. Geng, Z. et al. Graphene nanoribbons for electronic devices. Ann. Phys. 529, 1700033 (2017).

    Article  Google Scholar 

  27. Marmolejo-Tejada, J. M. & Velasco-Medina, J. Review on graphene nanoribbon devices for logic applications. Microelectron. J. 48, 18–38 (2016).

    Article  Google Scholar 

  28. Celis, A. et al. Graphene nanoribbons: fabrication, properties and devices. J. Phys. D Appl. Phys. 49, 143001 (2016).

    Article  ADS  Google Scholar 

  29. Shende, P., Augustine, S. & Prabhakar, B. A review on graphene nanoribbons for advanced biomedical applications. Carbon Lett. 30, 465–475 (2020).

    Article  Google Scholar 

  30. Chen, Z., Lin, Y.-M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E Low Dimens. Syst. Nanostruct. 40, 228–232 (2007). Exprimental work reporting the field-effect properties of GNRs produced by nanofabrication patterning.

    Article  ADS  Google Scholar 

  31. Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  ADS  Google Scholar 

  32. Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    Article  ADS  Google Scholar 

  33. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–875 (2009).

    Article  ADS  Google Scholar 

  34. Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5, 321–325 (2010).

    Article  ADS  Google Scholar 

  35. Yang, R. et al. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 22, 4014–4019 (2010).

    Article  Google Scholar 

  36. Wang, X. & Dai, H. Etching and narrowing of graphene from the edges. Nat. Chem. 2, 661–665 (2010).

    Article  Google Scholar 

  37. Li, X. et al. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131, 15939–15944 (2009).

    Article  Google Scholar 

  38. Tapaszto, L., Dobrik, G., Lambin, P. & Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397–401 (2008).

    Article  Google Scholar 

  39. Schmidt, M. E. et al. Dielectric-screening reduction-induced large transport gap in suspended sub-10 nm graphene nanoribbon functional devices. Small 15, 1903025 (2019).

    Article  Google Scholar 

  40. Hasan, R. M. M. & Luo, X. Promising lithography techniques for next-generation logic devices. Nanomanuf. Metrol. 1, 67–81 (2018).

    Article  Google Scholar 

  41. Talirz, L., Ruffieux, P. & Fasel, R. On-surface synthesis of atomically precise graphene nanoribbons. Adv. Mater. 28, 6222–6231 (2016).

    Article  Google Scholar 

  42. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010). Production of atomically precise GNRs by surface-assisted, bottom-up molecular assembly.

    Article  ADS  Google Scholar 

  43. Zhang, H. et al. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 137, 4022–4025 (2015).

    Article  Google Scholar 

  44. Talirz, L. et al. On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano 11, 1380–1388 (2017).

    Article  Google Scholar 

  45. Chen, Y.-C. et al. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7, 6123–6128 (2013).

    Article  Google Scholar 

  46. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    Article  ADS  Google Scholar 

  47. Han, P. et al. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8, 9181–9187 (2014).

    Article  Google Scholar 

  48. Li, J. et al. Band depopulation of graphene nanoribbons induced by chemical gating with amino groups. ACS Nano 14, 1895–1901 (2020).

    Article  Google Scholar 

  49. Kawai, S. et al. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 6, 8098 (2015).

    Article  ADS  Google Scholar 

  50. Wang, X.-Y. et al. Bottom-up synthesis of heteroatom-doped chiral graphene nanoribbons. J. Am. Chem. Soc. 140, 9104–9107 (2018).

    Article  Google Scholar 

  51. Kawai, S. et al. Multiple heteroatom substitution to graphene nanoribbon. Sci. Adv. 4, eaar7181 (2018).

    Article  ADS  Google Scholar 

  52. Bronner, C. et al. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. 52, 4422–4425 (2013).

    Article  Google Scholar 

  53. Rizzo, D. J. et al. Length-dependent evolution of type II heterojunctions in bottom-up-synthesized graphene nanoribbons. Nano Lett. 19, 3221–3228 (2019).

    Article  ADS  Google Scholar 

  54. Pawlak, R. et al. Bottom-up synthesis of nitrogen-doped porous graphene nanoribbons. J. Am. Chem. Soc. 142, 12568–12573 (2020).

    Article  Google Scholar 

  55. Nguyen, G. D. et al. Bottom-up synthesis of N = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. C 120, 2684–2687 (2016).

    Article  Google Scholar 

  56. Nguyen, G. D. et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotechnol. 12, 1077–1082 (2017).

    Article  ADS  Google Scholar 

  57. Liang, L. & Meunier, V. Atomically precise graphene nanoribbon heterojunctions for excitonic solar cells. J. Phys. Chem. C 119, 775–783 (2015).

    Article  Google Scholar 

  58. Wang, X. Chemical stitching. Nat. Nanotechnol. 9, 875–876 (2014).

    Article  ADS  Google Scholar 

  59. Cai, J. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9, 896–900 (2014).

    Article  ADS  Google Scholar 

  60. Chen, Y.-C. et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10, 156–160 (2015).

    Article  ADS  Google Scholar 

  61. Ma, C. et al. Seamless staircase electrical contact to semiconducting graphene nanoribbon. Nano Lett. 17, 6241–6247 (2017).

    Article  ADS  Google Scholar 

  62. Ma, C. et al. Engineering edge states of graphene nanoribbons for narrow-band photoluminescence. ACS Nano 14, 5090–5098 (2020).

    Article  Google Scholar 

  63. Rizzo, D. J. et al. Inducing metallicity in graphene nanoribbons via zero-mode superlattices. Science 369, 1597–1603 (2020).

    Article  ADS  Google Scholar 

  64. Kolmer, M. et al. Rational synthesis of atomically precise graphene nanoribbons directly on metal oxide surfaces. Science 369, 571–575 (2020). Report of bottom-up assembly of GNRs directly on oxide (non-metal) surfaces.

    Article  ADS  Google Scholar 

  65. Simonov, K. A. et al. From graphene nanoribbons on Cu(111) to nanographene on Cu(110): Critical role of substrate structure in the bottom-up fabrication strategy. ACS Nano 9, 8997–9011 (2015).

    Article  Google Scholar 

  66. Jacobberger, R. M. et al. Direct oriented growth of armchair graphene nanoribbons on germanium. Nat. Commun. 6, 8006 (2015). Work reporting the production of AGNR on technologically relevant germanium wafer.

    Article  ADS  Google Scholar 

  67. Li, P. et al. Direct growth of unidirectional graphene nanoribbons on vicinal Ge(001). Phys. Status Solidi Rapid Res. Lett. 14, 1900398 (2020).

    Article  ADS  Google Scholar 

  68. Sprinkle, M. et al. Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 5, 727–731 (2010).

    Article  ADS  Google Scholar 

  69. Tang, S. et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat. Commun. 6, 6499 (2015).

    Article  ADS  Google Scholar 

  70. Chen, L. et al. Edge control of graphene domains grown on hexagonal boron nitride. Nanoscale 9, 11475–11479 (2017).

    Article  Google Scholar 

  71. Chen, L. et al. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Nat. Commun. 8, 14703 (2017). Report on the fabrication of sub-10-nm-wide GNRs embedded in the top layer of h-BN crystal with high chemical and mechanical stability.

    Article  ADS  Google Scholar 

  72. Kiraly, B. et al. Sub-5 nm, globally aligned graphene nanoribbons on Ge(001). Appl. Phys. Lett. 108, 213101 (2016).

    Article  ADS  Google Scholar 

  73. Zakharov, A. A. et al. Wafer scale growth and characterization of edge specific graphene nanoribbons for nanoelectronics. ACS Appl. Nano Mater. 2, 156–162 (2019).

    Article  Google Scholar 

  74. Aprojanz, J. et al. Ballistic tracks in graphene nanoribbons. Nat. Commun. 9, 4426 (2018).

    Article  ADS  Google Scholar 

  75. Miettinen, A. L. et al. Edge states and ballistic transport in zigzag graphene ribbons: the role of SiC polytypes. Phys. Rev. B 100, 045425 (2019).

    Article  ADS  Google Scholar 

  76. Conrad, M. et al. Structure and evolution of semiconducting buffer graphene grown on SiC(0001). Phys. Rev. B 96, 195304 (2017).

    Article  ADS  Google Scholar 

  77. Nair, M. N. et al. Band gap opening induced by the structural periodicity in epitaxial graphene buffer layer. Nano Lett. 17, 2681–2689 (2017).

    Article  ADS  Google Scholar 

  78. Ienaga, K. et al. Modulation of electron–phonon coupling in one-dimensionally nanorippled graphene on a macrofacet of 6H-SiC. Nano Lett. 17, 3527–3532 (2017).

    Article  ADS  Google Scholar 

  79. Stoehr, A. et al. Graphene ribbon growth on structured silicon carbide. Ann. Phys. 529, 1700052 (2017).

    Article  Google Scholar 

  80. Shi, Z. et al. Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates. Nat. Commun. 11, 849 (2020).

    Article  ADS  Google Scholar 

  81. Wang, G. et al. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. Appl. Phys. Lett. 109, 053101 (2016).

    Article  ADS  Google Scholar 

  82. Lu, X. et al. Graphene nanoribbons epitaxy on boron nitride. Appl. Phys. Lett. 108, 113103 (2016).

    Article  ADS  Google Scholar 

  83. Wang, H. S. et al. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nat. Mater. 20, 202–207 (2021). Realization of chirality control of GNRs embedded in an h-BN lattice.

    Article  ADS  Google Scholar 

  84. Ni, Z. H. et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008).

    Article  MathSciNet  Google Scholar 

  85. Pereira, V. M., Castro Neto, A. H. & Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009).

    Article  ADS  Google Scholar 

  86. Ribeiro, R. M., Pereira, V. M., Peres, N. M. R., Briddon, P. R. & Castro Neto, A. H. Strained graphene: Tight-binding and density functional calculations. New J. Phys. 11, 115002 (2009).

    Article  ADS  Google Scholar 

  87. Pereira, V. M. & Castro Neto, A. H. Strain engineering of graphene’s electronic structure. Phys. Rev. Lett. 103, 046801 (2009).

    Article  ADS  Google Scholar 

  88. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  ADS  Google Scholar 

  89. Wu, S. et al. Magnetotransport properties of graphene nanoribbons with zigzag edges. Phys. Rev. Lett. 120, 216601 (2018).

    Article  ADS  Google Scholar 

  90. Liu, L. et al. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343, 163–167 (2014).

    Article  ADS  Google Scholar 

  91. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  92. Saraswat, V. et al. Synthesis of armchair graphene nanoribbons on germanium-on-silicon. J. Phys. Chem. C 123, 18445–18454 (2019).

    Article  Google Scholar 

  93. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article  ADS  Google Scholar 

  94. Moreno, C. et al. On-surface synthesis of superlattice arrays of ultra-long graphene nanoribbons. Chem. Commun. 54, 9402–9405 (2018).

    Article  Google Scholar 

  95. Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    Article  ADS  Google Scholar 

  96. Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article  ADS  Google Scholar 

  97. Yin, J. et al. Aligned growth of hexagonal boron nitride monolayer on germanium. Small 11, 5375–5380 (2015).

    Article  Google Scholar 

  98. Chao, Z. et al. Silicon-assisted growth of hexagonal boron nitride to improve oxidation resistance of germanium. 2D Mater. 8, 035041 (2021).

    Article  Google Scholar 

  99. Anderson, N., Hartschuh, A. & Novotny, L. Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. Nano Lett. 7, 577–582 (2007).

    Article  ADS  Google Scholar 

  100. Telg, H. et al. Chiral index dependence of the G+ and G Raman modes in semiconducting carbon nanotubes. ACS Nano 6, 904–911 (2012).

    Article  Google Scholar 

  101. Casiraghi, C. & Prezzi, D. Carbon Nanostructures 19–30 (Springer, 2017).

  102. Overbeck, J. et al. Optimized substrates and measurement approaches for Raman spectroscopy of graphene nanoribbons. Phys. Status Solidi B 256, 1900343 (2019).

    Article  ADS  Google Scholar 

  103. Chen, Z. et al. Lateral fusion of chemical vapor deposited N = 5 armchair graphene nanoribbons. J. Am. Chem. Soc. 139, 9483–9486 (2017).

    Article  Google Scholar 

  104. Barin, G. B. et al. Surface-synthesized graphene nanoribbons for room temperature switching devices: Substrate transfer and ex situ characterization. ACS Appl. Nano Mater. 2, 2184–2192 (2019).

    Article  ADS  Google Scholar 

  105. Overbeck, J. et al. A universal length-dependent vibrational mode in graphene nanoribbons. ACS Nano 13, 13083–13091 (2019).

    Article  Google Scholar 

  106. Senkovskiy, B. V. et al. Making graphene nanoribbons photoluminescent. Nano Lett. 17, 4029–4037 (2017).

    Article  ADS  Google Scholar 

  107. Pfeiffer, M. et al. Observation of room-temperature photoluminescence blinking in armchair-edge graphene nanoribbons. Nano Lett. 18, 7038–7044 (2018).

    Article  ADS  Google Scholar 

  108. Alavi, S. K. et al. Probing the origin of photoluminescence brightening in graphene nanoribbons. 2D Mater. 6, 035009 (2019).

    Article  Google Scholar 

  109. Javey, A. et al. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004).

    Article  ADS  Google Scholar 

  110. Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  ADS  Google Scholar 

  111. Alexander-Webber, J. A. et al. Encapsulation of graphene transistors and vertical device integration by interface engineering with atomic layer deposited oxide. 2D Mater. 4, 011008 (2016).

    Article  Google Scholar 

  112. Park, H. Y. et al. Extremely low contact resistance on graphene through n-type doping and edge contact design. Adv. Mater. 28, 864–870 (2016).

    Article  Google Scholar 

  113. El Abbassi, M. et al. Controlled quantum dot formation in atomically engineered graphene nanoribbon field-effect transistors. ACS Nano 14, 5754–5762 (2020).

    Article  Google Scholar 

  114. Sun, Q. et al. Massive Dirac fermion behavior in a low bandgap graphene nanoribbon near a topological phase boundary. Adv. Mater. 32, 1906054 (2020).

    Article  Google Scholar 

  115. Braun, O. et al. Optimized graphene electrodes for contacting graphene nanoribbons. Carbon 184, 331–339 (2021).

    Article  Google Scholar 

  116. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  ADS  Google Scholar 

  117. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    Article  ADS  Google Scholar 

  118. Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article  ADS  Google Scholar 

  119. Xu, X. et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 11, 930–935 (2016).

    Article  ADS  Google Scholar 

  120. Lin, L., Peng, H. & Liu, Z. Synthesis challenges for graphene industry. Nat. Mater. 18, 520–524 (2019).

    Article  ADS  Google Scholar 

  121. Zhang, X. et al. Epitaxial growth of 6 in. single-crystalline graphene on a Cu/Ni (111) film at 750°C via chemical vapor deposition. Small 15, 1805395 (2019).

    Article  Google Scholar 

  122. Yuan, G. et al. Proton-assisted growth of ultra-flat graphene films. Nature 577, 204–208 (2020).

    Article  ADS  Google Scholar 

  123. Cusati, T. et al. Electrical properties of graphene-metal contacts. Sci. Rep. 7, 5109 (2017).

    Article  ADS  Google Scholar 

  124. Fiori, G. & Iannaccone, G. Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett. 28, 760–762 (2007).

    Article  ADS  Google Scholar 

  125. Leonard, F. Crosstalk between nanotube devices: Contact and channel effects. Nanotechnology 17, 2381–2385 (2006).

    Article  ADS  Google Scholar 

  126. Liu, L. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368, 850–856 (2020).

    Article  ADS  Google Scholar 

  127. Way, A. J. et al. Anisotropic synthesis of armchair graphene nanoribbon arrays from sub-5 nm seeds at variable pitches on germanium. J. Phys. Chem. Lett. 10, 4266–4272 (2019).

    Article  Google Scholar 

  128. International Roadmap for Devices and Systems (IRDS™) 2020 Edition. IEEE https://irds.ieee.org/editions/2020 (2020).

  129. Edwards, D. M. & Katsnelson, M. I. High-temperature ferromagnetism of sp electrons in narrow impurity bands: application to CaB6. J. Phys. Condens. Matter 18, 7209–7225 (2006).

    Article  ADS  Google Scholar 

  130. Yazyev, O. V. & Katsnelson, M. I. Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008).

    Article  ADS  Google Scholar 

  131. Wimmer, M., Adagideli, I., Berber, S., Tomanek, D. & Richter, K. Spin currents in rough graphene nanoribbons: Universal fluctuations and spin injection. Phys. Rev. Lett. 100, 177207 (2008).

    Article  ADS  Google Scholar 

  132. Datta, S. & Das, B. Electronic analog of the electrooptic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  ADS  Google Scholar 

  133. Choi, W. Y. et al. Electrical detection of coherent spin precession using the ballistic intrinsic spin Hall effect. Nat. Nanotechnol. 10, 666–670 (2015).

    Article  ADS  Google Scholar 

  134. Chuang, P. et al. All-electric all-semiconductor spin field-effect transistors. Nat. Nanotechnol. 10, 35–39 (2015).

    Article  ADS  Google Scholar 

  135. Indolese, D. et al. Wideband and on-chip excitation for dynamical spin injection into graphene. Phys. Rev. Appl. 10, 044053 (2018).

    Article  ADS  Google Scholar 

  136. Marcellina, E. et al. Nonlinear spin filter for nonmagnetic materials at zero magnetic field. Phys. Rev. B 102, 140406(R) (2020).

    Article  ADS  Google Scholar 

  137. Behnam, A. et al. Nanoscale phase change memory with graphene ribbon electrodes. Appl. Phys. Lett. 107, 123508 (2015).

    Article  ADS  Google Scholar 

  138. Kim, W.-H., Park, C. S. & Son, J. Y. Nanoscale resistive switching memory device composed of NiO nanodot and graphene nanoribbon nanogap electrodes. Carbon 79, 388–392 (2014).

    Article  Google Scholar 

  139. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  ADS  Google Scholar 

  140. Sachid, A. B. et al. Monolithic 3D CMOS using layered semiconductors. Adv. Mater. 28, 2547–2554 (2016).

    Article  Google Scholar 

  141. Ceyhan, A. & Naeemi, A. Cu interconnect limitations and opportunities for SWNT interconnects at the end of the roadmap. IEEE Trans. Electron Devices 60, 374–382 (2013).

    Article  ADS  Google Scholar 

  142. Li, L. et al. in 2015 Symposium on VLSI Technology (VLSI Technology) T122–T123 (IEEE, 2015).

  143. Murali, R., Yang, Y., Brenner, K., Beck, T. & Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94, 243114 (2009).

    Article  ADS  Google Scholar 

  144. Rakheja, S., Kumar, V. & Naeemi, A. Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects. Proc. IEEE 101, 1740–1765 (2013).

    Article  Google Scholar 

  145. Jiang, J. et al. Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects. Nano Lett. 17, 1482–1488 (2017).

    Article  ADS  Google Scholar 

  146. Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    Article  ADS  Google Scholar 

  147. Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

    Article  ADS  Google Scholar 

  148. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Article  Google Scholar 

  149. Gaita-Arino, A., Luis, F., Hill, S. & Coronado, E. Molecular spins for quantum computation. Nat. Chem. 11, 301–309 (2019).

    Article  Google Scholar 

  150. Ye, S. et al. Wave-function symmetry mechanism of quantum-well states in graphene nanoribbon heterojunctions. Phys. Rev. Appl. 12, 044018 (2019).

    Article  ADS  Google Scholar 

  151. Paik, S. Y., Lee, S. Y., Baker, W. J., McCamey, D. R. & Boehme, C. T1 and T2 spin relaxation time limitations of phosphorous donor electrons near crystalline silicon to silicon dioxide interface defects. Phys. Rev. B 81, 075214 (2010).

    Article  ADS  Google Scholar 

  152. Rosskopf, T. et al. Investigation of surface magnetic noise by shallow spins in diamond. Phys. Rev. Lett. 112, 147602 (2014).

    Article  ADS  Google Scholar 

  153. Sangtawesin, S. et al. Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy. Phys. Rev. X 9, 031052 (2019).

    Google Scholar 

  154. Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. Phys. Rev. B 97, 205444 (2018).

    Article  ADS  Google Scholar 

  155. Fal’ko, V. Graphene — Quantum information on chicken wire. Nat. Phys. 3, 151–152 (2007).

    Article  Google Scholar 

  156. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article  MATH  Google Scholar 

  157. Hwang, W. S. et al. Room-temperature graphene-nanoribbon tunneling field-effect transistors. NPJ 2D Mater. Appl. 3, 43 (2019).

    Article  Google Scholar 

  158. Medford, J. et al. Quantum-dot-based resonant exchange qubit. Phys. Rev. Lett. 111, 050501 (2013).

    Article  ADS  Google Scholar 

  159. Eng, K. et al. Isotopically enhanced triple-quantum-dot qubit. Sci. Adv. 1, e1500214 (2015).

    Article  ADS  Google Scholar 

  160. Liu, X. & Hersam, M. C. Interface characterization and control of 2D materials and heterostructures. Adv. Mater. 30, 1801586 (2018).

    Article  Google Scholar 

  161. Lin, X.-M., Zhou, Z.-W., Ye, M.-Y., Xiao, Y.-F. & Guo, G.-C. One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006).

    Article  ADS  Google Scholar 

  162. Gujarati, T. P. Rydberg-atom-based creation of an N-particle Greenberger-Horne-Zeilinger state using stimulated Raman adiabatic passage. Phys. Rev. A 98, 062326 (2018).

    Article  ADS  Google Scholar 

  163. Bronner, C. et al. Hierarchical on-surface synthesis of graphene nanoribbon heterojunctions. ACS Nano 12, 2193–2200 (2018).

    Article  Google Scholar 

  164. Linden, S. et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 216801 (2012).

    Article  ADS  Google Scholar 

  165. Lu, W. C., Meunier, V. & Bernholc, J. Nonequilibrium quantum transport properties of organic molecules on silicon. Phys. Rev. Lett. 95, 206805 (2005).

    Article  ADS  Google Scholar 

  166. Saha, K. K., Lu, W., Bernholc, J. & Meunier, V. First-principles methodology for quantum transport in multiterminal junctions. J. Chem. Phys. 131, 164105 (2009).

    Article  ADS  Google Scholar 

  167. Xiao, Z. et al. Design of atomically precise nanoscale negative differential resistance devices. Adv. Theory Simul. 2, 1800172 (2019).

    Article  Google Scholar 

  168. OuYang, F., Xiao, J., Guo, R., Zhang, H. & Xu, H. Transport properties of T-shaped and crossed junctions based on graphene nanoribbons. Nanotechnology 20, 055202 (2009).

    Article  ADS  Google Scholar 

  169. Brandimarte, P. et al. A tunable electronic beam splitter realized with crossed graphene nanoribbons. J. Chem. Phys. 146, 092318 (2017).

    Article  ADS  Google Scholar 

  170. Sanz, S., Brandimarte, P., Giedke, G., Sanchez-Portal, D. & Frederiksen, T. Crossed graphene nanoribbons as beam splitters and mirrors for electron quantum optics. Phys. Rev. B 102, 035436 (2020).

    Article  ADS  Google Scholar 

  171. Zhu, Z. et al. Rate-selected growth of ultrapure semiconducting carbon nanotube arrays. Nat. Commun. 10, 4467 (2019).

    Article  ADS  Google Scholar 

  172. Yu, Z. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).

    Article  Google Scholar 

  173. Carbon nanotube. Wikipedia https://en.wikipedia.org/wiki/Carbon_nanotube.

  174. Ryou, J., Kim, Y.-S., Santosh, K. C. & Cho, K. Monolayer MoS2 bandgap modulation by dielectric environments and tunable bandgap transistors. Sci. Rep. 6, 29184 (2016).

    Article  ADS  Google Scholar 

  175. Llinas, J. P. et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017).

    Article  ADS  Google Scholar 

  176. Qiu, C. et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 361, 387–391 (2018).

    Article  ADS  Google Scholar 

  177. Mertens, H. et al. Gate-all-around transistors based on vertically stacked Si nanowires. ECS Trans. 77, 19–30 (2017).

    Article  Google Scholar 

  178. Wang, Q. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 20, 7193–7199 (2020).

    Article  ADS  Google Scholar 

  179. Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article  ADS  Google Scholar 

  180. Liao, L. et al. Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10, 1917–1921 (2010).

    Article  ADS  Google Scholar 

  181. Smets, Q. et al. in 2019 IEEE International Electron Devices Meeting (IEDM) 23.2.1–23.2.4 (IEEE, 2019).

  182. Way, A. J., Jacobberger, R. M. & Arnold, M. S. Seed-initiated anisotropic growth of unidirectional armchair graphene nanoribbon arrays on germanium. Nano Lett. 18, 898–906 (2018).

    Article  ADS  Google Scholar 

  183. Wakabayashi, K., Fujita, M., Ajiki, H. & Sigrist, M. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 8271–8282 (1999).

    Article  ADS  Google Scholar 

  184. Palacios, J. J., Fernandez-Rossier, J. & Brey, L. Vacancy-induced magnetism in graphene and graphene ribbons. Phys. Rev. B 77, 195428 (2008).

    Article  ADS  Google Scholar 

  185. Fernandez-Rossier, J. Prediction of hidden multiferroic order in graphene zigzag ribbons. Phys. Rev. B 77, 075430 (2008).

    Article  ADS  Google Scholar 

  186. Awschalom, D. D. & Flatte, M. E. Challenges for semiconductor spintronics. Nat. Phys. 3, 153–159 (2007).

    Article  Google Scholar 

  187. Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    Article  ADS  Google Scholar 

  188. Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

    Article  ADS  Google Scholar 

  189. Brey, L. & Fertig, H. A. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73, 235411 (2006).

    Article  ADS  Google Scholar 

  190. Wang, J., Zhao, R., Yang, M., Liu, Z. & Liu, Z. Inverse relationship between carrier mobility and bandgap in graphene. J. Chem. Phys. 138, 084701 (2013).

    Article  ADS  Google Scholar 

  191. Jacobberger, R. M. & Arnold, M. S. High-performance charge transport in semiconducting armchair graphene nanoribbons grown directly on germanium. ACS Nano 11, 8924–8929 (2017).

    Article  Google Scholar 

  192. Ohtomo, M., Sekine, Y., Hibino, H. & Yamamoto, H. Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from Au(788). Appl. Phys. Lett. 112, 021602 (2018).

    Article  ADS  Google Scholar 

  193. Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nat. Phys. 3, 192–196 (2007).

    Article  Google Scholar 

  194. Droth, M. & Burkard, G. Electron spin relaxation in graphene nanoribbon quantum dots. Phys. Rev. B 87, 205432 (2013).

    Article  ADS  Google Scholar 

  195. Carvalho, A. R., Warnes, J. H. & Lewenkopf, C. H. Edge magnetization and local density of states in chiral graphene nanoribbons. Phys. Rev. B 89, 245444 (2014).

    Article  ADS  Google Scholar 

  196. Lopez-Sancho, M. P. & Brey, L. Charged topological solitons in zigzag graphene nanoribbons. 2D Mater. 5, 015026 (2018).

    Article  Google Scholar 

  197. Lee, Y.-L., Zhao, F., Cao, T., Ihm, J. & Louie, S. G. Topological phases in cove-edged and chevron graphene nanoribbons: Geometric structures, z2 invariants, and junction states. Nano Lett. 18, 7247–7253 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the National Key R&D Program (Grant No. 2017YFF0206106), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), National Natural Science Foundation of China (Grant Nos. 61734003, 61521001, 61927808, 61851401, 91964202, 61861166001, 51861145202, 51772317, 91964102, 12004406, 22002149), the Science and Technology Commission of Shanghai Municipality (Grant No. 20DZ2203600), Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant No. BK20202005), China Postdoctoral Science Foundation (Grant No. BX2021331), Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, the Fundamental Research Funds for the Central Universities, China, and Soft Matter Nanofab (SMN180827) of ShanghaiTech University. C.M. acknowledges support from the Chinese Academy of Sciences (CAS). A portion of the work (A.-P.L) was conducted at the Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility, and supported by grant ONR N00014-20-1-2302.

Author information

Authors and Affiliations

Authors

Contributions

X.W. conceived the Perspective article. H.W., A.-P.L., X.X. and X.W. drafted the manuscript, with contributions from H.S.W., C.M., L.C., C.J. and C.C. All authors have read, discussed and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Haomin Wang, Xiaoming Xie, An-Ping Li or Xinran Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Byung Hee Hong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chirality

Characterized by a chiral vector, including width, lattice orientation and edge structure, in graphene nanoribbons.

Coherence time

The time over which a propagating wave may be considered coherent, meaning that its phase is, on average, predictable.

Cyclodehydrogenation

Any reaction in which cyclization is accompanied by dehydrogenation.

Equivalent oxide thickness

The thickness of silicon oxide film that provides the same electrical performance as that of a high-κ material being used.

International Roadmap for Devices and Systems

An intention is to provide a clear outline to simplify academic, manufacturing, supply and research coordination regarding the development of electronic devices and systems.

Pitch

The distance between adjacent graphene nanoribbons.

Subthreshold swing

The exponential behaviour of the current as a function of voltage.

Technology node

The Si technology node, defined by the smallest feature size in the transistor.

Topological boundary states

States that occur in the gap that results from the breaking of the two degenerate bands with non-zero opposite Chern numbers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, H.S., Ma, C. et al. Graphene nanoribbons for quantum electronics. Nat Rev Phys 3, 791–802 (2021). https://doi.org/10.1038/s42254-021-00370-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00370-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing