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The use of machine learning is no news to physicists, 
who have been early adopters of AI technologies. For 
example, looking back at the 2011–2012 analysis of the 
Large Hadron Collider data underlying the discovery of 
the Higgs boson, machine learning enabled an increase 
in sensitivity equivalent to collecting 50% more data1. 
But the number of physics papers using machine learn-
ing posted on the arXiv preprint server, or abstracts 
submitted to the American Physical Society March and 
April meetings keeps growing. At the March meeting, 
the fraction of presentations with “machine learning” 
in the title or abstract increased from 0.3% in 2015 to 
3.4% in 2021, and at the April meeting from 0.085%  
to 3.3%. Is this trend just reflecting the overall explosion 
in AI applications, or is there something else going on in  
physics?

When thinking of AI and neural networks, the first 
application that comes to mind is classification: does this 
image represent a cat or a dog, does this jet of particles come 
from a quark or a gluon? Neural networks are powerful 
classifiers that have already had a big impact in data-rich 
fields such as particle physics, astrophysics or X-ray free 
electron laser experiments2. But they are more than that: 
neural networks can approximate any function with  
arbitrary precision (here is an intuitive explanation why).

Thinking of neural networks as universal function 
approximators is particularly empowering for physicists.  
It is hard to think of a field of physics that does not use 
partial differential equations. Neural networks can approx-
imate the solutions to partial differential equations much 
faster than traditional numerical methods. Furthermore, 
deep neural networks (neural networks with multiple lay-
ers) can approximate operators, meaning that they can 
solve families of partial differential equations.

Neural networks can approximate complicated, ugly 
functions like many body wavefunctions or interatomic 
potentials and therefore can be readily integrated into 
well-established numerical methods such as quantum 
Monte Carlo or molecular dynamics simulations, over-
coming some limitations of traditional methods and 
speeding up calculations. This approach is likely to  
push forward the capabilities of current state-of-the-art 
methods and enable new insights.

This is just the beginning of what may turn out to 
be a new paradigm: data-driven modelling. Some fields 
such as fluid dynamics have already made important 

advances, others are just starting (see for example this 
recent Perspective). The prospect of not being intimi-
dated by ugly, complex models and not being limited by 
an incomplete understanding of the underlying phys
ics is certainly attractive, but there is no such thing as a 
free lunch. Here comes the small print: neural networks 
can — given enough training data — approximate any 
function with arbitrary precision.

The availability of data is not necessarily a show stop-
per. One can use a combination of experimental data  
or/and surrogate training data from other computational 
methods. For example, the HEPMASS Data Set contain-
ing Monte Carlo simulations of 10.5 million particle 
collisions and CAMELS, a data set of over 4,000 cosmo-
logical simulations, are available for training machine 
learning algorithms. In some cases, no training data is 
necessary (see this Tools of the trade piece). There are 
other emerging directions.

In a Review in this issue, George Em Karniadakis and 
colleagues discuss physics-informed machine learning 
in which the algorithm incorporates prior knowledge 
of the physical laws coming from the observational or 
theoretical understanding of the world. This approach 
makes the most of the imperfect data and incomplete 
knowledge of the model. Moreover, it promises the abil-
ity to discover previously unknown physics and to tackle 
high-dimensional problems.

Machine learning and traditional numerical meth-
ods will coexist complementing each other. Data-driven 
modelling will provide faster or computationally 
cheaper, sometimes lower-accuracy simulations that can 
be used for parameter estimation, in multi-scale simula-
tions for the parts that do not require high resolution, for 
surrogate models and uncertainty quantification3.

These are early days and the field of data-driven 
modelling is yet to be defined: a consistent terminology 
and a taxonomy of the sub-topics needs to be developed 
by its practitioners. Different directions are waiting to 
be mapped. We are keen to document the developments 
in this new area and offer a forum for interdisciplinary 
dialogue and collaboration in our pages.
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