Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum rotations of nanoparticles


Rotations of microscale rigid bodies exhibit pronounced quantum phenomena that do not exist for their centre-of-mass motion. By levitating nanoparticles in ultra-high vacuum, researchers are developing a promising platform for observing and exploiting these quantum effects in an unexplored mass and size regime. Recent experimental and theoretical breakthroughs demonstrate exquisite control of nanoscale rotations, setting the stage for the first tabletop tests of rotational superpositions and for the next generation of ultra-precise torque sensors. Here, we review the experimental state of the art and discuss promising routes towards quantum rotations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Controlling and cooling nanorotors.


  1. 1.

    Goldstein, H. Classical Mechanics (Addison-Wesley, 1980).

  2. 2.

    Millen, J., Monteiro, T. S., Pettit, R. & Vamivakas, A. N. Optomechanics with levitated particles. Rep. Prog. Phys. 83, 026401 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Hoang, T. M. et al. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett. 117, 123604 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Kuhn, S. et al. Full rotational control of levitated silicon nanorods. Optica 4, 356–360 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Kuhn, S. et al. Optically driven ultra-stable nanomechanical rotor. Nat. Commun. 8, 1670 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    Rashid, M., Toroš, M., Setter, A. & Ulbricht, H. Precession motion in levitated optomechanics. Phys. Rev. Lett. 121, 253601 (2018).

    ADS  Article  Google Scholar 

  7. 7.

    Reimann, R. et al. GHz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett. 121, 033602 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Ahn, J. et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett. 121, 033603 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Jin, Y. et al. 6 GHz hyperfast rotation of an optically levitated nanoparticle in vacuum. Photonics Res. 5, 195 (2021).

    Google Scholar 

  10. 10.

    Ahn, J. et al. Ultrasensitive torque detection with an optically levitated nanorotor. Nat. Nanotechnol. 15, 89–93 (2020).

    ADS  Article  Google Scholar 

  11. 11.

    Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892–895 (2020).

    ADS  Article  Google Scholar 

  12. 12.

    Magrini, L. et al. Optimal quantum control of mechanical motion at room temperature: ground-state cooling. Preprint at (2020).

  13. 13.

    Tebbenjohanns, F., Mattana, M. L., Rossi, M., Frimmer, M. & Novotny, L. Quantum control of a nanoparticle optically levitated in cryogenic free space. Preprint at (2021).

  14. 14.

    Delord, T., Huillery, P., Nicolas, L. & Hétet, G. Spin-cooling of the motion of a trapped diamond. Nature 580, 56–59 (2020).

    ADS  Article  Google Scholar 

  15. 15.

    Bang, J. et al. Five-dimensional cooling and nonlinear dynamics of an optically levitated nanodumbbell. Phys. Rev. Res. 2, 043054 (2020).

    Article  Google Scholar 

  16. 16.

    van der Laan, F. et al. Observation of radiation torque shot noise on an optically levitated nanodumbbell. Preprint at (2020).

  17. 17.

    Stickler, B. A. et al. Probing macroscopic quantum superpositions with nanorotors. New J. Phys. 20, 122001 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Ma, Y., Khosla, K. E., Stickler, B. A. & Kim, M. S. Quantum persistent tennis racket dynamics of nanorotors. Phys. Rev. Lett. 125, 053604 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Rusconi, C. C., Pöchhacker, V., Kustura, K., Cirac, J. I. & Romero-Isart, O. Quantum spin stabilized magnetic levitation. Phys. Rev. Lett. 119, 167202 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Schrinski, B., Nimmrichter, S., Stickler, B. A. & Hornberger, K. Macroscopicity of quantum mechanical superposition tests via hypothesis falsification. Phys. Rev. A 100, 032111 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Gieseler, J. et al. Optical tweezers — from calibration to applications: a tutorial. Adv. Opt. Photon. 13, 74–241 (2021).

    Article  Google Scholar 

  22. 22.

    Kuhn, S. et al. Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum. Nano Lett. 15, 5604–5608 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Stickler, B. A. et al. Rotranslational cavity cooling of dielectric rods and disks. Phys. Rev. A 94, 033818 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    van der Laan, F. et al. Optically levitated rotor at its thermal limit of frequency stability. Phys. Rev. A 102, 013505 (2020).

    ADS  Article  Google Scholar 

  25. 25.

    Zhong, C. & Robicheaux, F. Shot-noise-dominant regime for ellipsoidal nanoparticles in a linearly polarized beam. Phys. Rev. A 95, 053421 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Seberson, T. & Robicheaux, F. Parametric feedback cooling of rigid body nanodumbbells in levitated optomechanics. Phys. Rev. A 99, 013821 (2019).

    ADS  Article  Google Scholar 

  27. 27.

    Schäfer, J., Rudolph, H., Hornberger, K. & Stickler, B. A. Cooling nanorotors by elliptic coherent scattering. Phys. Rev. Lett. 126, 163603 (2021).

    ADS  Article  Google Scholar 

  28. 28.

    Bhattacharya, M. Rotational cavity optomechanics. J. Opt. Soc. Am. B 32, B55–B60 (2015).

    Article  Google Scholar 

  29. 29.

    Arita, Y., Mazilu, M. & Dholakia, K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013).

    ADS  Article  Google Scholar 

  30. 30.

    Monteiro, F., Ghosh, S., van Assendelft, E. C. & Moore, D. C. Optical rotation of levitated spheres in high vacuum. Phys. Rev. A 97, 051802 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    Martinetz, L., Hornberger, K. & Stickler, B. A. Gas-induced friction and diffusion of rigid rotors. Phys. Rev. E 97, 052112 (2018).

    ADS  Article  Google Scholar 

  32. 32.

    Hümmer, D. et al. Acoustic and optical properties of a fast-spinning dielectric nanoparticle. Phys. Rev. B 101, 205416 (2020).

    ADS  Article  Google Scholar 

  33. 33.

    Arita, Y., Simpson, S. H., Zemánek, P. & Dholakia, K. Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling. Sci. Adv. 6, eaaz9858 (2020).

    ADS  Article  Google Scholar 

  34. 34.

    Kane, B. Levitated spinning graphene flakes in an electric quadrupole ion trap. Phys. Rev. B 82, 115441 (2010).

    ADS  Article  Google Scholar 

  35. 35.

    Millen, J., Fonseca, P., Mavrogordatos, T., Monteiro, T. & Barker, P. Cavity cooling a single charged levitated nanosphere. Phys. Rev. Lett. 114, 123602 (2015).

    ADS  Article  Google Scholar 

  36. 36.

    Delord, T., Nicolas, L., Schwab, L. & Hétet, G. Electron spin resonance from NV centers in diamonds levitating in an ion trap. New J. Phys. 19, 033031 (2017).

    ADS  Article  Google Scholar 

  37. 37.

    Nagornykh, P., Coppock, J. E., Murphy, J. P. & Kane, B. Optical and magnetic measurements of gyroscopically stabilized graphene nanoplatelets levitated in an ion trap. Phys. Rev. B 96, 035402 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Bykov, D. S., Mestres, P., Dania, L., Schmöger, L. & Northup, T. E. Direct loading of nanoparticles under high vacuum into a Paul trap for levitodynamical experiments. Appl. Phys. Lett. 115, 034101 (2019).

    ADS  Article  Google Scholar 

  39. 39.

    Moore, D. C., Rider, A. D. & Gratta, G. Search for millicharged particles using optically levitated microspheres. Phys. Rev. Lett. 113, 251801 (2014).

    ADS  Article  Google Scholar 

  40. 40.

    Frimmer, M. et al. Controlling the net charge on a nanoparticle optically levitated in vacuum. Phys. Rev. A 95, 061801 (2017).

    ADS  Article  Google Scholar 

  41. 41.

    Goldwater, D. et al. Levitated electromechanics: all-electrical cooling of charged nano- and micro-particles. Quant. Sci. Technol. 4, 024003 (2019).

    ADS  Article  Google Scholar 

  42. 42.

    Martinetz, L., Hornberger, K., Millen, J., Kim, M. & Stickler, B. A. Quantum electromechanics with levitated nanoparticles. npj Quantum Inf. 6, 101 (2020).

    ADS  Article  Google Scholar 

  43. 43.

    Delord, T., Nicolas, L., Chassagneux, Y. & Hétet, G. Strong coupling between a single nitrogen-vacancy spin and the rotational mode of diamonds levitating in an ion trap. Phys. Rev. A 96, 063810 (2017).

    ADS  Article  Google Scholar 

  44. 44.

    Coppock, J. E., Nagornykh, P., Murphy, J. P. J. & Kane, B. E. in Proc. SPIE Opt. Trapping Opt. Micromanipulation XIII Vol. 9922 (eds Dholakia, K. & Spalding, G. C.) 99220E (SPIE, 2016).

  45. 45.

    Cirio, M., Brennen, G. K. & Twamley, J. Quantum magnetomechanics: Ultrahigh-Q-levitated mechanical oscillators. Phys. Rev. Lett. 109, 147206 (2012).

    ADS  Article  Google Scholar 

  46. 46.

    Romero-Isart, O., Clemente, L., Navau, C., Sanchez, A. & Cirac, J. Quantum magnetomechanics with levitating superconducting microspheres. Phys. Rev. Lett. 109, 147205 (2012).

    ADS  Article  Google Scholar 

  47. 47.

    Pino, H., Prat-Camps, J., Sinha, K., Venkatesh, B. P. & Romero-Isart, O. On-chip quantum interference of a superconducting microsphere. Quant. Sci. Technol. 3, 025001 (2018).

    ADS  Article  Google Scholar 

  48. 48.

    Einstein, A. & De Haas, W. Experimental proof of the existence of Ampère’s molecular currents. Proc. KNAW 18, 696 (1915).

    Google Scholar 

  49. 49.

    Barnett, S. J. Magnetization by rotation. Phys. Rev. 6, 239–270 (1915).

    ADS  Article  Google Scholar 

  50. 50.

    Hsu, J.-F., Ji, P., Lewandowski, C. W. & D’Urso, B. Cooling the motion of diamond nanocrystals in a magneto-gravitational trap in high vacuum. Sci. Rep. 6, 30125 (2016).

    ADS  Article  Google Scholar 

  51. 51.

    Slezak, B. R., Lewandowski, C. W., Hsu, J.-F. & D’Urso, B. Cooling the motion of a silica microsphere in a magneto-gravitational trap in ultra-high vacuum. New J. Phys. 20, 063028 (2018).

    ADS  Article  Google Scholar 

  52. 52.

    O’Brien, M., Dunn, S., Downes, J. & Twamley, J. Magneto-mechanical trapping of micro-diamonds at low pressures. Appl. Phys. Lett. 114, 053103 (2019).

    ADS  Article  Google Scholar 

  53. 53.

    Hofer, J. & Aspelmeyer, M. Analytic solutions to the Maxwell–London equations and levitation force for a superconducting sphere in a quadrupole field. Phys. Scr. 94, 125508 (2019).

    ADS  Article  Google Scholar 

  54. 54.

    Latorre, M. G., Hofer, J., Rudolph, M. & Wieczorek, W. Chip-based superconducting traps for levitation of micrometer-sized particles in the Meissner state. Supercond. Sci. Technol. 33, 105002 (2020).

    ADS  Article  Google Scholar 

  55. 55.

    Druge, J., Jean, C., Laurent, O., Méasson, M.-A. & Favero, I. Damping and non-linearity of a levitating magnet in rotation above a superconductor. New J. Phys. 16, 075011 (2014).

    ADS  Article  Google Scholar 

  56. 56.

    Timberlake, C., Gasbarri, G., Vinante, A., Setter, A. & Ulbricht, H. Acceleration sensing with magnetically levitated oscillators above a superconductor. Appl. Phys. Lett. 115, 224101 (2019).

    ADS  Article  Google Scholar 

  57. 57.

    Wang, T. et al. Dynamics of a ferromagnetic particle levitated over a superconductor. Phys. Rev. Appl. 11, 044041 (2019).

    ADS  Article  Google Scholar 

  58. 58.

    Vinante, A. et al. Ultralow mechanical damping with Meissner-levitated ferromagnetic microparticles. Phys. Rev. Appl. 13, 064027 (2020).

    ADS  Article  Google Scholar 

  59. 59.

    Gieseler, J. et al. Single-spin magnetomechanics with levitated micromagnets. Phys. Rev. Lett. 124, 163604 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  60. 60.

    Prat-Camps, J., Teo, C., Rusconi, C. C., Wieczorek, W. & Romero-Isart, O. Ultrasensitive inertial and force sensors with diamagnetically levitated magnets. Phys. Rev. Appl. 8, 034002 (2017).

    ADS  Article  Google Scholar 

  61. 61.

    Kordyuk, A. A. Magnetic levitation for hard superconductors. J. Appl. Phys. 83, 610–612 (1998).

    ADS  Article  Google Scholar 

  62. 62.

    Rusconi, C. C. & Romero-Isart, O. Magnetic rigid rotor in the quantum regime: theoretical toolbox. Phys. Rev. B 93, 054427 (2016).

    ADS  Article  Google Scholar 

  63. 63.

    Rusconi, C. C., Pöchhacker, V., Cirac, J. I. & Romero-Isart, O. Linear stability analysis of a levitated nanomagnet in a static magnetic field: quantum spin stabilized magnetic levitation. Phys. Rev. B 96, 134419 (2017).

    ADS  Article  Google Scholar 

  64. 64.

    Millen, J. & Stickler, B. A. Quantum experiments with microscale particles. Contemp. Phys. 61, 155–168 (2020).

    ADS  Article  Google Scholar 

  65. 65.

    Chang, D. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2010).

    ADS  Article  Google Scholar 

  66. 66.

    Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010).

    ADS  Article  Google Scholar 

  67. 67.

    Barker, P. & Shneider, M. Cavity cooling of an optically trapped nanoparticle. Phys. Rev. A 81, 023826 (2010).

    ADS  Article  Google Scholar 

  68. 68.

    Kiesel, N. et al. Cavity cooling of an optically levitated submicron particle. Proc. Natl Acad. Sci. USA 110, 14180–14185 (2013).

    ADS  Article  Google Scholar 

  69. 69.

    Asenbaum, P., Kuhn, S., Nimmrichter, S., Sezer, U. & Arndt, M. Cavity cooling of free silicon nanoparticles in high vacuum. Nat. Commun. 4, 2743 (2013).

    ADS  Article  Google Scholar 

  70. 70.

    Fonseca, P. Z. G., Aranas, E. B., Millen, J., Monteiro, T. S. & Barker, P. F. Nonlinear dynamics and strong cavity cooling of levitated nanoparticles. Phys. Rev. Lett. 117, 173602 (2016).

    ADS  Article  Google Scholar 

  71. 71.

    Salzburger, T. & Ritsch, H. Collective transverse cavity cooling of a dense molecular beam. New J. Phys. 11, 055025 (2009).

    ADS  Article  Google Scholar 

  72. 72.

    Gonzalez-Ballestero, C. et al. Theory for cavity cooling of levitated nanoparticles via coherent scattering: master equation approach. Phys. Rev. A 100, 013805 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  73. 73.

    Windey, D. et al. Cavity-based 3D cooling of a levitated nanoparticle via coherent scattering. Phys. Rev. Lett. 122, 123601 (2019).

    ADS  Article  Google Scholar 

  74. 74.

    Delič, U. et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett. 122, 123602 (2019).

    ADS  Article  Google Scholar 

  75. 75.

    Rudolph, H., Schäfer, J., Stickler, B. A. & Hornberger, K. Theory of nanoparticle cooling by elliptic coherent scattering. Phys. Rev. A 103, 043514 (2021).

    ADS  MathSciNet  Article  Google Scholar 

  76. 76.

    Stickler, B. A., Papendell, B. & Hornberger, K. Spatio-orientational decoherence of nanoparticles. Phys. Rev. A 94, 033828 (2016).

    ADS  Article  Google Scholar 

  77. 77.

    Yin, Z.-q, Li, T., Zhang, X. & Duan, L. Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys. Rev. A 88, 033614 (2013).

    ADS  Article  Google Scholar 

  78. 78.

    Pflanzer, A. C., Romero-Isart, O. & Cirac, J. I. Optomechanics assisted by a qubit: from dissipative state preparation to many-partite systems. Phys. Rev. A 88, 033804 (2013).

    ADS  Article  Google Scholar 

  79. 79.

    Delord, T., Nicolas, L., Bodini, M. & Hétet, G. Diamonds levitating in a Paul trap under vacuum: measurements of laser-induced heating via NV center thermometry. Appl. Phys. Lett. 111, 013101 (2017).

    ADS  Article  Google Scholar 

  80. 80.

    Delord, T. et al. Ramsey interferences and spin echoes from electron spins inside a levitating macroscopic particle. Phys. Rev. Lett. 121, 053602 (2018).

    ADS  Article  Google Scholar 

  81. 81.

    Tebbenjohanns, F., Frimmer, M., Militaru, A., Jain, V. & Novotny, L. Cold damping of an optically levitated nanoparticle to microkelvin temperatures. Phys. Rev. Lett. 122, 223601 (2019).

    ADS  Article  Google Scholar 

  82. 82.

    Dania, L., Bykov, D. S., Knoll, M., Mestres, P. & Northup, T. E. Optical and electrical feedback cooling of a silica nanoparticle levitated in a Paul trap. Phys. Rev. Res. 3, 013018 (2021).

    Article  Google Scholar 

  83. 83.

    Rider, A. D. et al. Search for screened interactions associated with dark energy below the 100 μm length scale. Phys. Rev. Lett. 117, 101101 (2016).

    ADS  Article  Google Scholar 

  84. 84.

    Jackson, J. D. Classical Electrodynamics (Wiley, 1999).

    MATH  Google Scholar 

  85. 85.

    Jackson Kimball, D. F., Sushkov, A. O. & Budker, D. Precessing ferromagnetic needle magnetometer. Phys. Rev. Lett. 116, 190801 (2016).

    ADS  Article  Google Scholar 

  86. 86.

    Berry, M. V. The Levitron: an adiabatic trap for spins. Proc. R. Soc. Lond. A 452, 1207–1220 (1996).

    ADS  Article  Google Scholar 

  87. 87.

    Simon, M. D., Heflinger, L. O. & Ridgway, S. Spin stabilized magnetic levitation. Am. J. Phys. 65, 286–292 (1997).

    ADS  Article  Google Scholar 

  88. 88.

    Seberson, T. & Robicheaux, F. Stability and dynamics of optically levitated dielectric disks in a Gaussian standing wave beyond the harmonic approximation. Phys. Rev. Res. 2, 033437 (2020).

    Article  Google Scholar 

  89. 89.

    Bowen, W. P. & Milburn, G. J. Quantum Optomechanics (CRC, 2015).

  90. 90.

    Xu, Z. & Li, T. Detecting Casimir torque with an optically levitated nanorod. Phys. Rev. A 96, 033843 (2017).

    ADS  Article  Google Scholar 

  91. 91.

    Zhao, R., Manjavacas, A., García de Abajo, F. J. & Pendry, J. B. Rotational quantum friction. Phys. Rev. Lett. 109, 123604 (2012).

    ADS  Article  Google Scholar 

  92. 92.

    Moore, D. C. & Geraci, A. A. Searching for new physics using optically levitated sensors. Quant. Sci. Technol. 6, 014008 (2021).

    Article  Google Scholar 

  93. 93.

    Band, Y. B., Avishai, Y. & Shnirman, A. Dynamics of a magnetic needle magnetometer: sensitivity to Landau-Lifshitz-Gilbert damping. Phys. Rev. Lett. 121, 160801 (2018).

    ADS  Article  Google Scholar 

  94. 94.

    Bassi, A., Lochan, K., Satin, S., Singh, T. & Ulbricht, H. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013).

    ADS  Article  Google Scholar 

  95. 95.

    Schrinski, B., Stickler, B. A. & Hornberger, K. Collapse-induced orientational localization of rigid rotors. J. Opt. Soc. Am. B 34, C1–C7 (2017).

    Article  Google Scholar 

  96. 96.

    Carlesso, M., Paternostro, M., Ulbricht, H., Vinante, A. & Bassi, A. Non-interferometric test of the continuous spontaneous localization model based on rotational optomechanics. New J. Phys. 20, 083022 (2018).

    ADS  Article  Google Scholar 

  97. 97.

    Fadeev, P. et al. Ferromagnetic gyroscopes for tests of fundamental physics. Quant. Sci. Technol. 6, 024006 (2021).

    ADS  Article  Google Scholar 

  98. 98.

    Fadeev, P. et al. Gravity probe spin: prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope. Phys. Rev. D 103, 044056 (2021).

    ADS  Article  Google Scholar 

  99. 99.

    Ma, Y., Hoang, T. M., Gong, M., Li, T. & Yin, Z.-q. Proposal for quantum many-body simulation and torsional matter-wave interferometry with a levitated nanodiamond. Phys. Rev. A 96, 023827 (2017).

    ADS  Article  Google Scholar 

  100. 100.

    Grimsmo, A. L., Combes, J. & Baragiola, B. Q. Quantum computing with rotation-symmetric bosonic codes. Phys. Rev. X 10, 011058 (2020).

    Google Scholar 

  101. 101.

    Albert, V. V., Covey, J. P. & Preskill, J. Robust encoding of a qubit in a molecule. Phys. Rev. X 10, 031050 (2020).

    Google Scholar 

  102. 102.

    Schlosshauer, M. Quantum decoherence. Phys. Rep. 831, 1–57 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  103. 103.

    Zhong, C. & Robicheaux, F. Decoherence of rotational degrees of freedom. Phys. Rev. A 94, 052109 (2016).

    ADS  Article  Google Scholar 

  104. 104.

    Papendell, B., Stickler, B. A. & Hornberger, K. Quantum angular momentum diffusion of rigid bodies. New J. Phys. 19, 122001 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  105. 105.

    Pedernales, J. S., Cosco, F. & Plenio, M. B. Decoherence-free rotational degrees of freedom for quantum applications. Phys. Rev. Lett. 125, 090501 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  106. 106.

    Seberson, T. & Robicheaux, F. Distribution of laser shot-noise energy delivered to a levitated nanoparticle. Phys. Rev. A 102, 033505 (2020).

    ADS  Article  Google Scholar 

  107. 107.

    Stickler, B. A., Schrinski, B. & Hornberger, K. Rotational friction and diffusion of quantum rotors. Phys. Rev. Lett. 121, 040401 (2018).

    ADS  Article  Google Scholar 

  108. 108.

    Millen, J. Rotational revivals of a nanorotor. YouTube (2020).

Download references


The authors thank J. Millen and C. Rusconi for their comments on the manuscript. B.A.S. acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 411042854. K.H. acknowledges funding from the DFG – 394398290. M.S.K. was supported by the QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European Union’s Horizon 2020 programme.

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Benjamin A. Stickler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stickler, B.A., Hornberger, K. & Kim, M.S. Quantum rotations of nanoparticles. Nat Rev Phys 3, 589–597 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing