Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chiral spintronics

Abstract

As spins move through a chiral electric field, the resulting spin current can acquire chirality through a spin–orbit interaction. Such spin currents are highly useful in creating spin–orbit torques that can be used to manipulate chiral topological magnetic excitations, for example, chiral magnetic domain walls or skyrmions. When the chiral domain walls form composite domain walls, via an antiferromagnetic exchange coupling, novel phenomena, including an exchange coupling torque and domain wall drag, are observed. Here, we review recent progress in the generation and functionalities of spin currents derived from or acting on chiral structures. By bringing together advances in chiral molecules, chiral magnetic structures and chiral topological matter, we provide an outlook towards potential applications.

Key points

  • When a spin travels through a chiral structure in which the reflection or inversion symmetry is broken, the moving spin can be polarized, thereby giving rise to spin currents. The key ingredient to produce such spin currents is spin–orbit interaction.

  • The spin currents are central to the chiral spintronics. The chiral structures that generate the spin currents can be found not only in a real space but in a reciprocal space.

  • The exemplary chiral structures in the real space are chiral molecules, chiral magnetic domain walls and chiral skyrmions, while what can be found in the reciprocal space are chiral topological materials.

  • Chiral spintronics deals with not only the generation of the spin currents but the acting of spin currents on chiral structures, such as chiral spin–orbit torque.

  • The spin currents from chiral structures such as chiral molecules and chiral topological materials can often be significantly larger than the achiral counterparts. Reversely, the spin currents acting on chiral structures, such as chiral spin–orbit torque, is much more efficient than achiral spin transfer torque.

  • Chiral spintronics based on chiral magnetic structures are particularly useful for the potential development of devices that have better performances and new functionalities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Chiral-molecule-based spintronics.
Fig. 2: Chiral magnetic domain wall motion by chiral spin–orbit torques.
Fig. 3: Chiral exchange drag and chirality oscillation.
Fig. 4: Magnetotransport properties and chiral SOT-induced switching in chiral non-collinear antiferromagnets Mn3X.
Fig. 5: Spin currents in chiral topological quantum materials, and spin–orbit torque from topological insulators and Weyl semimetals.

References

  1. Linder, J. Improved domain-wall dynamics and magnonic torques using topological insulators. Phys. Rev. B 90, 041412 (2014).

    Article  ADS  Google Scholar 

  2. Yang, S.-H. Spintronics on chiral objects. Appl. Phys. Lett. 116, 120502 (2020).

    Article  ADS  Google Scholar 

  3. Banerjee-Ghosh, K. et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 360, 1331–1334 (2018). An application of the CISS-induced exchange forces and the relevance of these forces to homochirality in life.

    Article  ADS  Google Scholar 

  4. Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

    Article  Google Scholar 

  5. Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011). A demonstration of high spin selectivity of photoexcited electrons passing through chiral monolayers.

    Article  ADS  MATH  Google Scholar 

  6. Yang, X., van der Wal, C. H. & van Wees, B. J. Spin-dependent electron transmission model for chiral molecules in mesoscopic devices. Phys. Rev. B 99, 024418 (2019).

    Article  ADS  Google Scholar 

  7. Naaman, R. & Waldeck, D. H. Comment on “Spin-dependent electron transmission model for chiral molecules in mesoscopic devices”. Phys. Rev. B 101, 026403 (2020).

    Article  ADS  Google Scholar 

  8. Yang, X., van der Wal, C. H. & van Wees, B. J. Reply to “Comment on ‘Spin-dependent electron transmission model for chiral molecules in mesoscopic devices’”. Phys. Rev. B 101, 026404 (2020).

    Article  ADS  Google Scholar 

  9. Yang, X., van der Wal, C. H. & van Wees, B. J. Detecting chirality in two-terminal electronic nanodevices. Nano Lett. 20, 6148–6154 (2020).

    Article  ADS  Google Scholar 

  10. Nürenberg, D. & Zacharias, H. Evaluation of spin-flip scattering in chirality-induced spin selectivity using the Riccati equation. Phys. Chem. Chem. Phys. 21, 3761–3770 (2019).

    Article  Google Scholar 

  11. Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  ADS  Google Scholar 

  12. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  ADS  Google Scholar 

  13. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article  ADS  Google Scholar 

  14. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  ADS  Google Scholar 

  15. Luo, Z. et al. Chirally coupled nanomagnets. Science 363, 1435–1439 (2019).

    Article  ADS  Google Scholar 

  16. Dao, T. P. et al. Chiral domain wall injector driven by spin–orbit torques. Nano Lett. 19, 5930–5937 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  17. Luo, Z. et al. Current-driven magnetic domain-wall logic. Nature 579, 214–218 (2020).

    Article  ADS  Google Scholar 

  18. Yang, S.-H. An all-electrical magnetic logic gate that harnesses chirality between domains. Nature 579, 201–202 (2020).

    Article  ADS  Google Scholar 

  19. Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015). This paper shows very efficient composite domain wall motion from antiferromagnets.

    Article  ADS  Google Scholar 

  20. Yang, S.-H., Garg, C. & Parkin, S. S. P. Chiral exchange drag and chirality oscillations in synthetic antiferromagnets. Nat. Phys. 15, 543–548 (2019). Observation of chiral exchange drag and chirality oscillations from synthetic antiferromagnets.

    Article  Google Scholar 

  21. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  22. Liu, C.-X., Zhang, S.-C. & Qi, X.-L. The quantum anomalous Hall effect: theory and experiment. Annu. Rev. Condens. Matter Phys. 7, 301–321 (2016).

    Article  ADS  Google Scholar 

  23. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  24. Xie, Z. et al. Spin specific electron conduction through DNA oligomers. Nano Lett. 11, 4652–4655 (2011).

    Article  ADS  Google Scholar 

  25. Rosenberg, R. A., Mishra, D. & Naaman, R. Chiral selective chemistry induced by natural selection of spin-polarized electrons. Angew. Chem. Int. Ed. 54, 7295–7298 (2015).

    Article  Google Scholar 

  26. Kettner, M. et al. Spin filtering in electron transport through chiral oligopeptides. J. Phys. Chem. C 119, 14542–14547 (2015).

    Article  Google Scholar 

  27. Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).

    Article  ADS  Google Scholar 

  28. Suda, M. et al. Light-driven molecular switch for reconfigurable spin filters. Nat. Commun. 10, 2455 (2019).

    Article  ADS  Google Scholar 

  29. Yeganeh, S., Ratner, M. A., Medina, E. & Mujica, V. Chiral electron transport: scattering through helical potentials. J. Chem. Phys. 131, 014707 (2009).

    Article  ADS  Google Scholar 

  30. Medina, E., López, F., Ratner, M. A. & Mujica, V. Chiral molecular films as electron polarizers and polarization modulators. EPL 99, 17006 (2012).

    Article  ADS  Google Scholar 

  31. Liu, Y., Xiao, J., Koo, J. & Yan, B. Chirality-driven topological electronic structure of DNA-like materials. Nat. Mater. https://doi.org/10.1038/s41563-021-00924-5 (2021).

    Article  Google Scholar 

  32. Gutierrez, R. et al. Modeling spin transport in helical fields: derivation of an effective low-dimensional Hamiltonian. J. Phys. Chem. C 117, 22276–22284 (2013).

    Article  Google Scholar 

  33. Michaeli, K., Beratan, D. N., Waldeck, D. H. & Naaman, R. Voltage-induced long-range coherent electron transfer through organic molecules. Proc. Natl Acad. Sci. USA 116, 5931–5936 (2019).

    Article  Google Scholar 

  34. Guo, A.-M. & Sun, Q. Spin-selective transport of electrons in DNA double helix. Phys. Rev. Lett. 108, 218102 (2012).

    Article  ADS  Google Scholar 

  35. Dalum, S. & Hedegård, P. Theory of chiral induced spin selectivity. Nano Lett. 19, 5253–5259 (2019).

    Article  ADS  Google Scholar 

  36. Michaeli, K., Varade, V., Naaman, R. & Waldeck, D. H. A new approach towards spintronics–spintronics with no magnets. J. Phys. Condens. Matter 29, 103002 (2017).

    Article  ADS  Google Scholar 

  37. Dor, O. B., Yochelis, S., Mathew, S. P., Naaman, R. & Paltiel, Y. A chiral-based magnetic memory device without a permanent magnet. Nat. Commun. 4, 2256 (2013).

    Article  ADS  Google Scholar 

  38. Aragonès, A. C. et al. Measuring the spin-polarization power of a single chiral molecule. Small 13, 1602519 (2017).

    Article  Google Scholar 

  39. Alam, K. M. & Pramanik, S. Spin filtering with poly-T wrapped single wall carbon nanotubes. Nanoscale 9, 5155–5163 (2017).

    Article  Google Scholar 

  40. Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019). Close to 90% spin selectivity achieved in chiral perovskites crystals.

    Article  ADS  Google Scholar 

  41. Bloom, B. P., Graff, B. M., Ghosh, S., Beratan, D. N. & Waldeck, D. H. Chirality control of electron transfer in quantum dot assemblies. J. Am. Chem. Soc. 139, 9038–9043 (2017).

    Article  Google Scholar 

  42. Mathew, S. P., Mondal, P. C., Moshe, H., Mastai, Y. & Naaman, R. Non-magnetic organic/inorganic spin injector at room temperature. Appl. Phys. Lett. 105, 242408 (2014).

    Article  ADS  Google Scholar 

  43. Abendroth, J. M. et al. Analyzing spin selectivity in DNA-mediated charge transfer via fluorescence microscopy. ACS Nano 11, 7516–7526 (2017).

    Article  Google Scholar 

  44. Ben Dor, O., Morali, N., Yochelis, S., Baczewski, L. T. & Paltiel, Y. Local light-induced magnetization using nanodots and chiral molecules. Nano Lett. 14, 6042–6049 (2014).

    Article  ADS  Google Scholar 

  45. Fontanesi, C., Capua, E., Paltiel, Y., Waldeck, D. H. & Naaman, R. Spin-dependent processes measured without a permanent magnet. Adv. Mater. 30, 1707390 (2018).

    Article  Google Scholar 

  46. Smolinsky, E. Z. B. et al. Electric field-controlled magnetization in GaAs/AlGaAs heterostructures–chiral organic molecules hybrids. J. Phys. Chem. Lett. 10, 1139–1145 (2019).

    Article  Google Scholar 

  47. Kumar, A., Capua, E., Fontanesi, C., Carmieli, R. & Naaman, R. Injection of spin-polarized electrons into a AlGaN/GaN device from an electrochemical cell: evidence for an extremely long spin lifetime. ACS Nano 12, 3892–3897 (2018).

    Article  Google Scholar 

  48. Eckshtain-Levi, M. et al. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers. Nat. Commun. 7, 10744 (2016).

    Article  ADS  Google Scholar 

  49. Santos, J. I. et al. Chirality-induced electron spin polarization and enantiospecific response in solid-state cross-polarization nuclear magnetic resonance. ACS Nano 12, 11426–11433 (2018).

    Article  Google Scholar 

  50. Huang, Z. et al. Magneto-optical detection of photoinduced magnetism via chirality-induced spin selectivity in 2D chiral hybrid organic–inorganic perovskites. ACS Nano 14, 10370–10375 (2020).

    Article  Google Scholar 

  51. Inui, A. et al. Chirality-induced spin-polarized state of a chiral crystal CrNb3S6. Phys. Rev. Lett. 124, 166602 (2020).

    Article  ADS  Google Scholar 

  52. Koplovitz, G. et al. Magnetic nanoplatelet-based spin memory device operating at ambient temperatures. Adv. Mater. 29, 1606748 (2017).

    Article  Google Scholar 

  53. Al‐Bustami, H. et al. Single nanoparticle magnetic spin memristor. Small 14, 1801249 (2018).

    Article  Google Scholar 

  54. Koplovitz, G. et al. Nano ferromagnetism: single domain 10 nm ferromagnetism imprinted on superparamagnetic nanoparticles using chiral molecules (Small 1/2019). Small 15, 1970004 (2019).

    Article  Google Scholar 

  55. Ben Dor, O. et al. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. Nat. Commun. 8, 14567 (2017).

    Article  ADS  Google Scholar 

  56. Alpern, H. et al. Unconventional superconductivity induced in Nb films by adsorbed chiral molecules. New J. Phys. 18, 113048 (2016).

    Article  ADS  Google Scholar 

  57. Sukenik, N. et al. Proximity effect through chiral molecules in Nb–graphene-based devices. Adv. Mater. Technol. 3, 1700300 (2018).

    Article  Google Scholar 

  58. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  ADS  Google Scholar 

  59. Nayak, A. K. et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548, 561–566 (2017).

    Article  ADS  Google Scholar 

  60. Yu, X. Z. et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature 564, 95–98 (2018).

    Article  ADS  Google Scholar 

  61. Shen, L. et al. Current-induced dynamics and chaos of antiferromagnetic bimerons. Phys. Rev. Lett. 124, 037202 (2020).

    Article  ADS  Google Scholar 

  62. Liu, Y., Hou, W., Han, X. & Zang, J. Three-dimensional dynamics of a magnetic hopfion driven by spin transfer torque. Phys. Rev. Lett. 124, 127204 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  63. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013).

    Article  ADS  Google Scholar 

  64. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013). These two papers present observations of chiral SOT from chiral domain walls.

    Article  ADS  Google Scholar 

  65. Malozemoff, A. P. & Slonczewski, J. C. Magnetic Domain Walls in Bubble Materials (Elsevier, 1979).

  66. Ezawa, Z. F. Quantum Hall Effects (World Scientific, 2013).

  67. Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. EPL 100, 57002 (2012).

    Article  ADS  Google Scholar 

  68. Garg, C. et al. Efficient chiral-domain-wall motion driven by spin-orbit torque in metastable platinum films. Phys. Rev. Appl. 14, 034052 (2020).

    Article  ADS  Google Scholar 

  69. Filippou, P. C. et al. Chiral domain wall motion in unit-cell thick perpendicularly magnetized Heusler films prepared by chemical templating. Nat. Commun. 9, 4653 (2018).

    Article  ADS  Google Scholar 

  70. Ryu, K.-S., Yang, S.-H., Thomas, L. & Parkin, S. S. P. Chiral spin torque arising from proximity-induced magnetization. Nat. Commun. 5, 3910 (2014).

    Article  ADS  Google Scholar 

  71. Yoshimura, Y. et al. Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii–Moriya interaction. Nat. Phys. 12, 157–161 (2016).

    Article  Google Scholar 

  72. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011). Experimental observation of SOT.

    Article  ADS  Google Scholar 

  73. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8, 587–593 (2013).

    Article  ADS  Google Scholar 

  74. Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    Article  ADS  Google Scholar 

  75. Garg, C. et al. Highly asymmetric chiral domain-wall velocities in Y-shaped junctions. Nano Lett. 18, 1826–1830 (2018).

    Article  ADS  Google Scholar 

  76. Garg, C., Yang, S.-H., Phung, T., Pushp, A. & Parkin, S. S. P. Dramatic influence of curvature of nanowire on chiral domain wall velocity. Sci. Adv. 3, e1602804 (2017).

    Article  ADS  Google Scholar 

  77. Parkin, S. & Yang, S.-H. Memory on the racetrack. Nat. Nanotechnol. 10, 195–198 (2015).

    Article  ADS  Google Scholar 

  78. Parkin, S. S. P., More, N. & Roche, K. P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64, 2304–2307 (1990).

    Article  ADS  Google Scholar 

  79. Yang, S.-H. & Parkin, S. Novel domain wall dynamics in synthetic antiferromagnets. J. Phys. Condens. Matter 29, 303001 (2017).

    Article  Google Scholar 

  80. Cohen, A. et al. Current driven chiral domain wall motions in synthetic antiferromagnets with Co/Rh/Co. J. Appl. Phys. 128, 053902 (2020).

    Article  ADS  Google Scholar 

  81. Bläsing, R. et al. Exchange coupling torque in ferrimagnetic Co/Gd bilayer maximized near angular momentum compensation temperature. Nat. Commun. 9, 4984 (2018).

    Article  ADS  Google Scholar 

  82. Avci, C. O. et al. Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets. Nat. Nanotechnol. 14, 561–566 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  83. Shiino, T. et al. Antiferromagnetic domain wall motion driven by spin-orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

    Article  ADS  Google Scholar 

  84. Narozhny, B. N. & Levchenko, A. Coulomb drag. Rev. Mod. Phys. 88, 025003 (2016).

    Article  ADS  Google Scholar 

  85. Nielsen, H. B. & Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  86. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  ADS  Google Scholar 

  87. Hoffmann, M. et al. Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions. Nat. Commun. 8, 308 (2017).

    Article  ADS  Google Scholar 

  88. Lemesh, I. et al. Current-induced skyrmion generation through morphological thermal transitions in chiral ferromagnetic heterostructures. Adv. Mater. 30, 1805461 (2018).

    Article  Google Scholar 

  89. Duong, N. K. et al. Stabilizing zero-field skyrmions in Ir/Fe/Co/Pt thin film multilayers by magnetic history control. Appl. Phys. Lett. 114, 072401 (2019).

    Article  ADS  Google Scholar 

  90. Yu, G. et al. Room-temperature skyrmions in an antiferromagnet-based heterostructure. Nano Lett. 18, 980–986 (2018).

    Article  ADS  Google Scholar 

  91. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article  ADS  Google Scholar 

  92. Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2020).

    Article  ADS  Google Scholar 

  93. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Article  Google Scholar 

  94. Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017). Direct observation of the skyrmion Hall effect.

    Article  Google Scholar 

  95. Hirata, Y. et al. Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet. Nat. Nanotechnol. 14, 232–236 (2019).

    Article  ADS  Google Scholar 

  96. Zhang, X., Zhou, Y. & Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 7, 10293 (2016).

    Article  ADS  Google Scholar 

  97. Bruno, P., Dugaev, V. K. & Taillefumier, M. Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004).

    Article  ADS  Google Scholar 

  98. Kurumaji, T. et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019).

    Article  ADS  Google Scholar 

  99. Skjærvø, S. H., Marrows, C. H., Stamps, R. L. & Heyderman, L. J. Advances in artificial spin ice. Nat. Rev. Phys. 2, 13–28 (2020).

    Article  Google Scholar 

  100. Branford, W. R., Ladak, S., Read, D. E., Zeissler, K. & Cohen, L. F. Emerging chirality in artificial spin ice. Science 335, 1597–1600 (2012).

    Article  ADS  Google Scholar 

  101. Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: Artificial spin ice: Designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473–1490 (2013).

    Article  ADS  Google Scholar 

  102. Farhan, A. et al. Emergent magnetic monopole dynamics in macroscopically degenerate artificial spin ice. Sci. Adv. 5, eaav6380 (2019).

    Article  ADS  Google Scholar 

  103. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). Observation of large anomalous Hall effect from non-collinear antiferromagnets.

    Article  ADS  Google Scholar 

  104. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article  Google Scholar 

  105. Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    Article  ADS  Google Scholar 

  106. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  107. Miyasato, T. et al. Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets. Phys. Rev. Lett. 99, 086602 (2007).

    Article  ADS  Google Scholar 

  108. Zhang, W. et al. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016).

    Article  ADS  Google Scholar 

  109. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    Article  ADS  Google Scholar 

  110. Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Article  ADS  Google Scholar 

  111. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).

    Article  ADS  Google Scholar 

  112. Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of Kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264–280 (2019).

    Article  Google Scholar 

  113. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  114. Liu, Z.-X. & Normand, B. Dirac and chiral quantum spin liquids on the honeycomb lattice in a magnetic field. Phys. Rev. Lett. 120, 187201 (2018).

    Article  ADS  Google Scholar 

  115. Modic, K. A., Ramshaw, B. J., Shekhter, A. & Varma, C. M. Chiral spin order in some purported Kitaev spin-liquid compounds. Phys. Rev. B 98, 205110 (2018).

    Article  ADS  Google Scholar 

  116. Modic, K. A. et al. Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates. Nat. Commun. 8, 180 (2017).

    Article  ADS  Google Scholar 

  117. Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).

    Article  ADS  Google Scholar 

  118. Cao, H. B. et al. Low-temperature crystal and magnetic structure of α-RuCl3. Phys. Rev. B 93, 134423 (2016).

    Article  ADS  Google Scholar 

  119. Hirobe, D. et al. One-dimensional spinon spin currents. Nat. Phys. 13, 30–34 (2017).

    Article  Google Scholar 

  120. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  121. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  122. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  123. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  124. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    Article  Google Scholar 

  125. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014). Observation of chiral SOT from TI.

    Article  ADS  Google Scholar 

  126. Rojas-Sánchez, J.-C. et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 116, 096602 (2016).

    Article  ADS  Google Scholar 

  127. Dc, M. et al. Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe1−x films. Nat. Mater. 17, 800–807 (2018).

    Article  ADS  Google Scholar 

  128. Han, J. et al. Room-temperature spin-orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017).

    Article  ADS  Google Scholar 

  129. Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).

    Article  ADS  Google Scholar 

  130. Chi, Z. et al. The spin Hall effect of Bi-Sb alloys driven by thermally excited Dirac-like electrons. Sci. Adv. 6, eaay2324 (2020).

    Article  ADS  Google Scholar 

  131. Yasuda, K. et al. Current-nonlinear Hall effect and spin-orbit torque magnetization switching in a magnetic topological insulator. Phys. Rev. Lett. 119, 137204 (2017).

    Article  ADS  Google Scholar 

  132. Zhu, L., Ralph, Daniel, C. & Buhrman, R. A. Highly efficient spin-current generation by the spin Hall effect in Au1−xPtx. Phys. Rev. Appl. 10, 031001 (2018).

    Article  ADS  Google Scholar 

  133. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Article  Google Scholar 

  134. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  ADS  Google Scholar 

  135. Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    Article  ADS  Google Scholar 

  136. Mogi, M. et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 107, 182401 (2015).

    Article  ADS  Google Scholar 

  137. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    Article  ADS  Google Scholar 

  138. Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    Article  ADS  Google Scholar 

  139. Nenno, D. M., Garcia, C. A. C., Gooth, J., Felser, C. & Narang, P. Axion physics in condensed-matter systems. Nat. Rev. Phys. 2, 682–696 (2020).

    Article  Google Scholar 

  140. Liu, M. et al. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator. Sci. Adv. 2, e1600167 (2016).

    Article  ADS  Google Scholar 

  141. Lv, Y. et al. Unidirectional spin-Hall and Rashba–Edelstein magnetoresistance in topological insulator-ferromagnet layer heterostructures. Nat. Commun. 9, 111 (2018).

    Article  ADS  Google Scholar 

  142. Gupta, S., Kanai, S., Matsukura, F. & Ohno, H. Magnetic and transport properties of Sb2Te3 doped with high concentration of Cr. Appl. Phys. Express 10, 103001 (2017).

    Article  ADS  Google Scholar 

  143. Ou, Y. et al. Enhancing the quantum anomalous Hall effect by magnetic codoping in a topological insulator. Adv. Mater. 30, 1703062 (2018).

    Article  Google Scholar 

  144. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  145. Liang, S. et al. Experimental tests of the Chiral anomaly magnetoresistance in the Dirac-Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8, 031002 (2018).

    Google Scholar 

  146. Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).

    Article  ADS  Google Scholar 

  147. Johansson, A., Henk, J. & Mertig, I. Edelstein effect in Weyl semimetals. Phys. Rev. B 97, 085417 (2018).

    Article  ADS  Google Scholar 

  148. Li, P. et al. Spin-momentum locking and spin-orbit torques in magnetic nano-heterojunctions composed of Weyl semimetal WTe2. Nat. Commun. 9, 3990 (2018).

    Article  ADS  Google Scholar 

  149. Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  150. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  151. Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).

    Article  ADS  Google Scholar 

  152. Sasaki, S. et al. Topological superconductivity in CuxBi2Se3. Phys. Rev. Lett. 107, 217001 (2011).

    Article  ADS  Google Scholar 

  153. Novak, M., Sasaki, S., Kriener, M., Segawa, K. & Ando, Y. Unusual nature of fully gapped superconductivity in In-doped SnTe. Phys. Rev. B 88, 140502 (2013).

    Article  ADS  Google Scholar 

  154. Pustogow, A. et al. Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance. Nature 574, 72–75 (2019).

    Article  ADS  Google Scholar 

  155. Meinert, M. Unconventional superconductivity in YPtBi and related topological semimetals. Phys. Rev. Lett. 116, 137001 (2016).

    Article  ADS  Google Scholar 

  156. Amet, F. et al. Supercurrent in the quantum Hall regime. Science 352, 966–969 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  157. Yang, S., Garg, C., Phung, T., Rettner, C. & Hughes, B. Spin-orbit torque driven one-bit magnetic racetrack devices — memory and neuromorphic applications. Int. Symp. VLSI Technol. Syst. Appl. https://doi.org/10.1109/VLSI-TSA.2019.8804677 (2019).

    Article  Google Scholar 

  158. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 5, 31–34 (2011).

    Article  ADS  Google Scholar 

  159. Mashkovich, E. A. et al. Terahertz optomagnetism: nonlinear THz excitation of GHz spin waves in antiferromagnetic FeBO3. Phys. Rev. Lett. 123, 157202 (2019).

    Article  ADS  Google Scholar 

  160. Cai, K. et al. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nat. Electron. 3, 37–42 (2020).

    Article  Google Scholar 

  161. Ryu, K-.S, Thomas, L., Yang, S-.H, Parkin, S.S.P. Current induced tilting of domain walls in high velocity motion along perpendicularly magnetized micron-sized Co/Ni/Co racetracks. Appl. Phys. Express 5, 093006 (2012).

    Article  ADS  Google Scholar 

  162. Phung, T. et al. Highly efficient in-line magnetic domain wall injector. Nano Lett. 15, 835–841 (2015).

    Article  ADS  Google Scholar 

  163. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S.S.P.P. acknowledges the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 670166) and the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 766566. R.N. and Y.P. acknowledges the partial support from US Department of Energy grant no. ER46430 and from the Israel Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

S.-H.Y. and S.S.P.P. conceived and proposed this Review. The authors contributed to all aspects of the article.

Corresponding authors

Correspondence to See-Hun Yang or Stuart S. P. Parkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Cui-Zu Chang and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, SH., Naaman, R., Paltiel, Y. et al. Chiral spintronics. Nat Rev Phys 3, 328–343 (2021). https://doi.org/10.1038/s42254-021-00302-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00302-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing