Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Probing topological quantum matter with scanning tunnelling microscopy

Abstract

The search for topological phases of matter is evolving towards strongly interacting systems, including magnets and superconductors, where exotic effects emerge from the quantum-level interplay between geometry, correlation and topology. Over the past decade or so, scanning tunnelling microscopy has become a powerful tool to probe and discover emergent topological matter, because of its unprecedented spatial resolution, high-precision electronic detection and magnetic tunability. Scanning tunnelling microscopy can be used to probe various topological phenomena, as well as complement results from other techniques. We discuss some of these proof-of-principle methodologies applied to probe topology, with particular attention to studies performed under a tunable vector magnetic field, which is a relatively new direction of recent focus. We then project the future possibilities for atomic-resolution tunnelling methods in providing new insights into topological matter.

Key points

  • By combining scanning and tunnelling, several proof-of-principle spectro-microscopic methodologies have emerged that are capable of probing the nontrivial topology of electronic and magnetic materials.

  • Explorations of quasi-particle interference and Landau quantization behaviours in materials can be used to elucidate the nature of chiral or helical fermions and their interplay with symmetry-breaking order, such as magnetism, charge order or superconductivity.

  • Bulk-boundary connectivity and its relationship with atomically resolved lattice and magnetic structure probed via topographic measurements are central to understanding emergent topology, such as in kagome lattices.

  • Tunable vector magnetic field capability allows for exploring field-induced novel states in topological matter, including emergent magnetism, superconductivity and strongly correlated phases.

  • In the presence of magnetic field control, spectro-microscopy plays an important role in identifying the nature of localized zero modes or in-gap states, such as the Majorana mode.

  • Scanning tunnelling microscopy-based study on topological materials can be further extended for visualizing Wannier–Bloch duality and can be employed in sub-nanoscale engineering in developing quantum information science platforms.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Fundamentals for scanning tunnelling microscopy of topological quantum materials.
Fig. 2: Quasi-particle interference method to probe topological scattering geometry.
Fig. 3: Landau level quantization method to detect topological fermions.
Fig. 4: Visualization of topological bulk-boundary-Berry correspondence.
Fig. 5: Vector magnetic field control of quantum order in topological matter.
Fig. 6: Search for localized topological zero modes as Majorana candidates.

References

  1. Girvin, S. M. & Yang, K. Modern Condensed Matter Physics (Cambridge Univ. Press, 2019).

  2. Avron, J. E., Osadchy, D. & Seiler, R. A topological look at the quantum Hall effect. Phys. Today 56, 38–42 (2003).

    Google Scholar 

  3. Haldane, F. D. M. Nobel lecture: Topological quantum matter. Rev. Mod. Phys. 89, 040502 (2017).

    MathSciNet  ADS  Google Scholar 

  4. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Google Scholar 

  5. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  Google Scholar 

  6. Hasan, M. Z. et al. Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks. Phys. Scr. 2015, 014001 (2015).

    Google Scholar 

  7. Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    Google Scholar 

  8. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    MathSciNet  ADS  Google Scholar 

  9. Sachdev, S. Topological order, emergent gauge fields, and Fermi surface reconstruction. Rep. Prog. Phys. 82, 014001 (2019).

    MathSciNet  ADS  Google Scholar 

  10. Wen, X.-G. Choreographed entanglement dances: Topological states of quantum matter. Science 363, eaal3099 (2019).

    Google Scholar 

  11. Kharzeev, D. E. Topology, magnetic field, and strongly interacting matter. Annu. Rev. Nucl. Part. Sci. 65, 193–214 (2015).

    ADS  Google Scholar 

  12. Anderson, P. W. More is different. Science 177, 393–396 (1972).

    ADS  Google Scholar 

  13. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    ADS  Google Scholar 

  14. Fert, А Nobel Lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517–1530 (2008).

    ADS  Google Scholar 

  15. Keimer, B., Kivelson, S., Norman, M., Uchida, M. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    ADS  Google Scholar 

  16. Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 3, 9–26 (2021).

    Google Scholar 

  17. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    Google Scholar 

  18. Laughlin, R. B. Nobel lecture: Fractional quantization. Rev. Mod. Phys. 71, 863–873 (1999).

    MathSciNet  MATH  ADS  Google Scholar 

  19. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    ADS  Google Scholar 

  20. Sobota, J., He, Y. & Shen, Z.-X. Electronic structure of quantum materials studied by angle-resolved photoemission spectroscopy. Preprint at arXiv https://arxiv.org/abs/2008.02378 (2020).

  21. Voigtländer, B. Scanning Probe Microscopy (Springer, 2015).

  22. Fischer, O. et al. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007).

    ADS  Google Scholar 

  23. Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1550 (2009).

    ADS  Google Scholar 

  24. Hoffman, J. E. Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors. Rep. Prog. Phys. 74, 124513 (2011).

    ADS  Google Scholar 

  25. Simion, L. et al. Fourier-transform scanning tunnelling spectroscopy: the possibility to obtain constant-energy maps and band dispersion using a local measurement. J. Phys. D Appl. Phys. 44, 464010 (2011).

    Google Scholar 

  26. Schmidt, A. R. et al. Electronic structure of the cuprate superconducting and pseudogap phases from spectroscopic imaging STM. New J. Phys. 13, 065014 (2011).

    ADS  Google Scholar 

  27. Gyenis, A. et al. Imaging electronic states on topological semimetals using scanning tunneling microscopy. New J. Phys. 18, 105003 (2016).

    ADS  Google Scholar 

  28. Zheng, H. & Hasan, M. Z. Quasiparticle interference on type-I and type-II Weyl semimetal surfaces: a review. Adv. Phys. X 3, 1466661 (2018).

    Google Scholar 

  29. Choi, D. J. et al. Colloquium: Atomic spin chains on surfaces. Rev. Mod. Phys. 91, 41001 (2019).

    Google Scholar 

  30. Lin, C-L. et al. Scanning tunneling spectroscopy studies of topological materials. J. Condens. Matter Phys. 32, 243001 (2020).

    ADS  Google Scholar 

  31. Merzbacher, E. The early history of quantum tunneling. Phys. Today 55, 44–49 (2002).

    Google Scholar 

  32. Giaever, I. Electron tunneling and superconductivity. Rev. Mod. Phys. 46, 245–250 (1974).

    ADS  Google Scholar 

  33. Tersoff, J. & Hamann, D. R. Theory of the scanning tunnelling microscope. Phys. Rev. B 31, 805 (1985).

    ADS  Google Scholar 

  34. Yin, J.-X. et al. Fermion–boson many-body interplay in a frustrated kagome paramagnet. Nat. Commun. 11, 4003 (2020).

    ADS  Google Scholar 

  35. Pan, S. H. Piezoelectric motor. International Patent WO/1993/019494 (International Bureau, World Intellectual Property Organization, 1993).

  36. Wittneven, C., Dombrowski, R., Pan, S. H. & Wiesendanger, R. A low-temperature ultrahigh-vacuum scanning tunneling microscope with rotatable magnetic field. Rev. Sci. Instrum. 68, 3806–3810 (1997).

    ADS  Google Scholar 

  37. Pan, S. H., Hudson, E. W. & Davis, J. C. 3He refrigerator based very low temperature scanning tunneling microscope. Rev. Sci. Instrum. 70, 1459–1463 (1999).

    ADS  Google Scholar 

  38. Pan, S. H. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ. Nature 403, 746–750 (2000).

    ADS  Google Scholar 

  39. Pan, S. H. et al. Microscopic electronic inhomogeneity in the high-TC superconductor Bi2Sr2CaCu2O8+x. Nature 413, 282–285 (2001).

    ADS  Google Scholar 

  40. Yin, J.-X. et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se). Nat. Phys. 11, 543–546 (2015).

    Google Scholar 

  41. Song, Y. J. et al. Invited review article: A 10 mK scanning probe microscopy facility. Rev. Sci. Instrum. 81, 121101 (2010).

    ADS  Google Scholar 

  42. Meckler, S., Gyamfi, M., Pietzsch, O. & Wiesendanger, R. A low-temperature spin-polarized scanning tunneling microscope operating in a fully rotatable magnetic field. Rev. Sci. Instrum. 80, 023708 (2009).

    ADS  Google Scholar 

  43. Singh, U. R., Enayat, M., White, S. C. & Wahl, P. Construction and performance of a dilution-refrigerator based spectroscopic-imaging scanning tunneling microscope. Rev. Sci. Instrum. 84, 013708 (2013).

    ADS  Google Scholar 

  44. Misra, S. et al. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields. Rev. Sci. Instrum. 84, 103903 (2013).

    ADS  Google Scholar 

  45. Trainer, C. et al. Cryogenic STM in 3D vector magnetic fields realized through a rotatable insert. Rev. Sci. Instrum. 88, 093705 (2017).

    ADS  Google Scholar 

  46. von Allwörden, H. et al. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at 30 mK and in a vector magnetic field. Rev. Sci. Instrum. 89, 033902 (2018).

    ADS  Google Scholar 

  47. Machida, T., Kohsaka, Y. & Hanaguri, T. A scanning tunneling microscope for spectroscopic imaging below 90 mK in magnetic fields up to 17.5 T. Rev. Sci. Instrum. 89, 093707 (2018).

    ADS  Google Scholar 

  48. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).

    ADS  Google Scholar 

  49. Hasegawa, Y. & Avouris, P. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 71, 1071 (1993).

    ADS  Google Scholar 

  50. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    ADS  Google Scholar 

  51. Sprunger, P. T. et al. Giant Friedel oscillations on the Beryllium (0001) surface. Science 275, 1764–1767 (1997).

    Google Scholar 

  52. Petersen, L. et al. Direct imaging of the two-dimensional Fermi contour: Fourier-transform STM. Phys. Rev. B 57, R6858–R6861 (1998).

    ADS  Google Scholar 

  53. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ. Science 297, 1148–1151 (2002).

    ADS  Google Scholar 

  54. Liu, Q., Qi, X.-L. & Zhang, S.-C. Stationary phase approximation approach to the quasiparticle interference on the surface of a strong topological insulator. Phys. Rev. B 85, 125314 (2012).

    ADS  Google Scholar 

  55. Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).

    ADS  Google Scholar 

  56. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    ADS  Google Scholar 

  57. Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009).

    ADS  Google Scholar 

  58. Cohen, E. et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019).

    Google Scholar 

  59. Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 103, 266803 (2009).

    ADS  Google Scholar 

  60. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009).

    ADS  Google Scholar 

  61. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    ADS  Google Scholar 

  62. Alpichshev, Z. et al. STM imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. Phys. Rev. Lett. 104, 016401 (2010).

    ADS  Google Scholar 

  63. Fu, L. Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. Phys. Rev. Lett. 103, 266801 (2009).

    ADS  Google Scholar 

  64. Hanaguri, T. et al. Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3. Phys. Rev. B 82, 081305 (2010).

    ADS  Google Scholar 

  65. Kim, S. et al. Robust protection from backscattering in the topological insulator Bi1.5Sb0.5Te1.7Se1.3. Phys. Rev. Lett. 112, 136802 (2014).

    ADS  Google Scholar 

  66. Beidenkopf, H. et al. Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nat. Phys. 7, 939–943 (2011).

    Google Scholar 

  67. Okada, Y. et al. Direct observation of broken time-reversal symmetry on the surface of a magnetically doped topological insulator. Phys. Rev. Lett. 106, 206805 (2011).

    ADS  Google Scholar 

  68. Sessi, P. et al. Signatures of Dirac fermion-mediated magnetic order. Nat. Commun. 5, 5349 (2014).

    ADS  Google Scholar 

  69. Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3. Proc. Natl Acad. Sci. USA 112, 1316–1321 (2015).

    ADS  Google Scholar 

  70. Zeljkovic, I. et al. Mapping the unconventional orbital texture in topological crystalline insulators. Nat. Phys. 10, 572–577 (2014).

    Google Scholar 

  71. Zheng, H. et al. Atomic-scale visualization of quantum interference on a Weyl semimetal surface by scanning tunneling microscopy. ACS Nano 10, 1378–1385 (2016).

    Google Scholar 

  72. Inoue, H. et al. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 351, 1184–1187 (2016).

    ADS  Google Scholar 

  73. Batabyal, R. et al. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions. Sci. Adv. 2, e1600709 (2016).

    ADS  Google Scholar 

  74. Zheng, H. et al. Atomic-scale visualization of quasiparticle interference on a type-II Weyl semimetal surface. Phys. Rev. Lett. 117, 266804 (2016).

    ADS  Google Scholar 

  75. Sessi, P. et al. Impurity screening and stability of Fermi arcs against Coulomb and magnetic scattering in a Weyl monopnictide. Phys. Rev. B 95, 035114 (2017).

    ADS  Google Scholar 

  76. Zheng, H. et al. Mirror protected Dirac fermions on a Weyl semimetal NbP surface. Phys. Rev. Lett. 119, 196403 (2017).

    ADS  Google Scholar 

  77. Deng, P. et al. Revealing Fermi arcs and Weyl nodes in MoTe2 by quasiparticle interference mapping. Phys. Rev. B 95, 245110 (2017).

    ADS  Google Scholar 

  78. Zhang, W. et al. Quasiparticle interference of surface states in the type-II Weyl semimetal WTe2. Phys. Rev. B 96, 165125 (2017).

    ADS  Google Scholar 

  79. Lin, C.-L. et al. Visualizing type-II Weyl points in tungsten ditelluride by quasiparticle interference. ACS Nano 11, 11459–11465 (2017).

    Google Scholar 

  80. Berger, A. N. et al. Temperature-driven topological transition in 1T′-MoTe2. npj Quantum Mater. 3, 2 (2018).

    ADS  Google Scholar 

  81. Laia, D. et al. Searching for topological Fermi arcs via quasiparticle interference on a type-II Weyl semimetal MoTe2. npj Quantum Mater. 3, 38 (2018).

    ADS  Google Scholar 

  82. Guan, S. et al. Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2. Sci. Adv. 11, e1600894 (2016).

    ADS  Google Scholar 

  83. Iwaya et al. Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2. Nat. Commun. 8, 976 (2017).

    ADS  Google Scholar 

  84. Yin, J.-X. et al. Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018).

    ADS  Google Scholar 

  85. Pirie, H. et al. Imaging emergent heavy Dirac fermions of a topological Kondo insulator. Nat. Phys. 16, 52–56 (2020).

    Google Scholar 

  86. Pascual, J. I. et al. Role of spin in quasiparticle interference. Phys. Rev. Lett. 93, 196802 (2004).

    ADS  Google Scholar 

  87. Wildöer, J. W. G. et al. Observation of Landau levels at the InAs(110) surface by scanning tunneling spectroscopy. Phys. Rev. B 55, R16013(R) (1997).

    ADS  Google Scholar 

  88. Morgensternet, M. et al. Low temperature scanning tunneling spectroscopy on InAs(110). J. Electron. Spectrosc. Relat. Phenom. 109, 127–145 (2000).

    Google Scholar 

  89. Matsuiet, T. et al. STS observations of Landau levels at graphite surfaces. Phys. Rev. Lett. 94, 226403 (2005).

    ADS  Google Scholar 

  90. Li, G. H. & Andrei, E. Y. Observation of Landau levels of Dirac fermions in graphite. Nat. Phys. 3, 623–627 (2007).

    Google Scholar 

  91. Miller, D. L. et al. Observing the quantization of zero mass carriers in graphene. Science 324, 924–927 (2009).

    ADS  Google Scholar 

  92. Cheng, P. et al. Landau quantization of topological surface states in Bi2Se3. Phys. Rev. Lett. 105, 076801 (2010).

    ADS  Google Scholar 

  93. Xu, Y. et al. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys. 10, 956–963 (2014).

    Google Scholar 

  94. Okada, Y. et al. Visualizing Landau levels of Dirac electrons in a one-dimensional potential. Phys. Rev. Lett. 109, 166407 (2012).

    ADS  Google Scholar 

  95. Fu, Y. S. et al. Imaging the two-component nature of Dirac–Landau levels in the topological surface state of Bi2Se3. Nat. Phys. 10, 815–819 (2014).

    Google Scholar 

  96. Sessi, P. et al. Dual nature of magnetic dopants and competing trends in topological insulators. Nat. Commun. 7, 12027 (2016).

    ADS  Google Scholar 

  97. Fu, Y. S. et al. Observation of Zeeman effect in topological surface state with distinct material dependence. Nat. Commun. 7, 10829 (2016).

    ADS  Google Scholar 

  98. Okada, Y. et al. Observation of Dirac node formation and mass acquisition in a topological crystalline insulator. Science 341, 1496–1499 (2013).

    ADS  Google Scholar 

  99. Zeljkovic, I. et al. Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators. Nat. Mater. 14, 318–324 (2015).

    ADS  Google Scholar 

  100. Jeon, S. et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat. Mater. 13, 851–856 (2014).

    ADS  Google Scholar 

  101. Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).

    ADS  Google Scholar 

  102. Hatsugai, Y. Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697 (1993).

    MathSciNet  MATH  ADS  Google Scholar 

  103. Yang, F. et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys. Rev. Lett. 109, 016801 (2012).

    ADS  Google Scholar 

  104. Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).

    Google Scholar 

  105. Pauly, C. et al. Subnanometre-wide electron channels protected by topology. Nat. Phys. 11, 338–343 (2015).

    Google Scholar 

  106. Wu, R. et al. Evidence for topological edge states in a large energy gap near the step edges on the surface of ZrTe5. Phys. Rev. X 6, 021017 (2016).

    Google Scholar 

  107. Li, X.-B. et al. Experimental observation of topological edge states at the surface step edge of the topological insulator ZrTe5. Phys. Rev. Lett. 116, 176803 (2016).

    ADS  Google Scholar 

  108. Wang, Z. et al. Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film. Nat. Mater. 15, 968–973 (2016).

    ADS  Google Scholar 

  109. Sessi, P. et al. Robust spin-polarized midgap states at step edges of topological crystalline insulators. Science 354, 1269–1273 (2016).

    MathSciNet  MATH  ADS  Google Scholar 

  110. Reis, F. et al. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science 357, 287–290 (2017).

    MathSciNet  MATH  ADS  Google Scholar 

  111. Peng, L. et al. Observation of topological states residing at step edges of WTe2. Nat. Commun. 8, 659 (2017).

    ADS  Google Scholar 

  112. Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).

    Google Scholar 

  113. Liu, S. et al. Experimental observation of conductive edge states in weak topological insulator candidate HfTe5. APL Mater. 6, 121111 (2018).

    ADS  Google Scholar 

  114. Ugeda, M. M. et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun. 9, 3401 (2018).

    ADS  Google Scholar 

  115. Liu, R. Z. et al. Experimental observations indicating the topological nature of the edge states on HfTe5. Chin. Phys. Lett. 36, 117301 (2019).

    ADS  Google Scholar 

  116. Lin, Z. et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices. Phys. Rev. Lett. 121, 096401 (2018).

    ADS  Google Scholar 

  117. Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019).

    Google Scholar 

  118. Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    ADS  Google Scholar 

  119. Jiao, L. et al. Signatures for half-metallicity and nontrivial surface states in the kagome lattice Weyl semimetal Co3Sn2S2. Phys. Rev. B 99, 245158 (2019).

    ADS  Google Scholar 

  120. Howard, S. et al. Observation of linearly dispersive edge modes in a magnetic Weyl semimetal Co3Sn2S2. Preprint at arXiv https://arxiv.org/abs/1910.11205 (2019).

  121. Guguchia, Z. et al. Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet. Nat. Commun. 11, 559 (2020).

    ADS  Google Scholar 

  122. Zhang, S. S. Many-body resonance in a correlated topological kagome antiferromagnet. Phys. Rev. Lett. 125, 046501 (2020).

    Google Scholar 

  123. Liu, Z. et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nat. Commun. 11, 4002 (2020).

    ADS  Google Scholar 

  124. Yin, J.-X. et al. Spin-orbit quantum impurity in a topological magnet. Nat. Commun. 11, 4415 (2020).

    ADS  Google Scholar 

  125. Xing, Y. et al. Localized spin-orbit polaron in magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 11, 5613 (2020).

    ADS  Google Scholar 

  126. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    ADS  Google Scholar 

  127. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    ADS  Google Scholar 

  128. Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015).

    ADS  Google Scholar 

  129. Hess, H. F. et al. Scanning-tunneling-microscopy study of distortion and instability of inclined flux-line-lattice structures in the anisotropic superconductor 2H-NbSe2. Phys. Rev. Lett. 69, 2138 (1992).

    ADS  Google Scholar 

  130. Levy, N. et al. Experimental evidence for s-wave pairing symmetry in superconducting CuxBi2Se3 single crystals using a scanning tunneling microscope. Phys. Rev. Lett. 110, 117001 (2013).

    ADS  Google Scholar 

  131. Ran, T. et al. Direct visualization of the nematic superconductivity in CuxBi2Se3. Phys. Rev. X 8, 041024 (2018).

    Google Scholar 

  132. Zhang, S. S. et al. Vector field controlled vortex lattice symmetry in LiFeAs using scanning tunneling microscopy. Phys. Rev. B 99, 161103(R) (2019).

    ADS  Google Scholar 

  133. Yin, Jia-Xin et al. Quantum phase transition of correlated iron-based superconductivity in LiFe1−xCoxAs. Phys. Rev. Lett. 123, 217004 (2019).

    ADS  Google Scholar 

  134. Zhu, Z. et al. Discovery of segmented Fermi surface induced by Cooper pair momentum. Preprint at arXiv https://arxiv.org/abs/2010.02216 (2020).

  135. Li, Yangmu et al. Magnetic-field control of topological electronic response near room temperature in correlated kagome magnets. Phys. Rev. Lett. 123, 196604 (2019).

    ADS  Google Scholar 

  136. Karplus, R. & Luttinger, J. M. Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954).

    MATH  ADS  Google Scholar 

  137. Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    MathSciNet  MATH  ADS  Google Scholar 

  138. Vanderbilt, D. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ. Press, 2018).

  139. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  Google Scholar 

  140. Andrei, E.Y. & MacDonald, A.H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    ADS  Google Scholar 

  141. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS  Google Scholar 

  142. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS  Google Scholar 

  143. Hess, H. F. et al. Vortex-core structure observed with a scanning tunneling microscope. Phys. Rev. Lett. 64, 2711 (1990).

    ADS  Google Scholar 

  144. Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

    MathSciNet  ADS  Google Scholar 

  145. Volovik, G. E. Fermion zero modes on vortices in chiral superconductors. J. Exp. Theor. Phys. Lett. 70, 609–616 (1999).

    Google Scholar 

  146. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Uspekhi 44, 131–136 (2001).

    ADS  Google Scholar 

  147. Elliott, S. R. & Franz, M. Colloquium: Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys. 87, 137–163 (2015).

    MathSciNet  ADS  Google Scholar 

  148. Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017).

    MathSciNet  ADS  Google Scholar 

  149. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    ADS  Google Scholar 

  150. Beenakker, C. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    ADS  Google Scholar 

  151. Sarma, S. D., Freedman, M. & Nayak, C. Majorana zero modes and topological quantum computation. npj Quantum Inf. 1, 15001 (2015).

    ADS  Google Scholar 

  152. Sun, H.-H. & Jia, J.-F. Detection of Majorana zero mode in the vortex. npj Quantum Mater. 2, 34 (2017).

    ADS  Google Scholar 

  153. Yazdani, A. Majorana in chains and hinges. APS March Meeting 219, Vol. 64, abstract A05.00001 (2019).

  154. Wang, Z. et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 92, 115119 (2015).

    ADS  Google Scholar 

  155. Wu, X. et al. Topological characters in Fe(Te1−xSex) thin films. Phys. Rev. B 93, 115129 (2016).

    ADS  Google Scholar 

  156. Xu, G. et al. Topological superconductivity on the surface of Fe-based superconductors. Phys. Rev. Lett. 117, 047001 (2016).

    ADS  Google Scholar 

  157. Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).

    ADS  Google Scholar 

  158. Kreisel, A., Hirschfeld, P. J., Andersen, B. M. On the remarkable superconductivity of FeSe and its close cousins. Symmetry 12, 1402 (2020).

    Google Scholar 

  159. Jiang, K. et al. Quantum anomalous vortex and Majorana zero mode in Fe(Te,Se) superconductors. Phys. Rev. X 9, 011033 (2019).

    Google Scholar 

  160. Chen, L. et al. Spontaneous Nernst effect in the iron-based superconductor Fe1+yTe1−xSex. Phys. Rev. B 102, 054503 (2020).

    ADS  Google Scholar 

  161. Zhang, S. S. et al. Field-free platform for Majorana-like zero mode in superconductors with a topological surface state. Phys. Rev. B 101, 100507(R) (2020).

    ADS  Google Scholar 

  162. Fan, P. et al. Reversible transition between Yu-Shiba-Rusinov state and Majorana zero mode by magnetic adatom manipulation in an iron-based superconductor. Preprint at arXiv https://arxiv.org/abs/2001.07376 (2020).

  163. Chen, C. et al. Atomic line defects and zero-energy end states in monolayer Fe(Te,Se) high-temperature superconductors. Nat. Phys. 16, 536–540 (2020).

    Google Scholar 

  164. Wang, Z. et al. Evidence for dispersing 1D Majorana channels in an iron-based superconductor. Science 367, 104–108 (2020).

    ADS  Google Scholar 

  165. Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    ADS  Google Scholar 

  166. Machida, T. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te). Nat. Mater. 18, 811–815 (2019).

    ADS  Google Scholar 

  167. Kong, L. et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 15, 1181–1187 (2019).

    Google Scholar 

  168. Zhu, S. et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science 367, 189–192 (2020).

    ADS  Google Scholar 

  169. Néel, N., Kröger, J. & Berndt, R. Quantized conductance of a single magnetic atom. Phys. Rev. Lett. 102, 086805 (2009).

    ADS  Google Scholar 

  170. Liu, Q. et al. Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe. Phys. Rev. X 8, 041056 (2018).

    Google Scholar 

  171. Chen, C. et al. Quantized conductance of Majorana zero mode in the vortex of the topological superconductor (Li0.84Fe0.16)OHFeSe. Chin. Phys. Lett. 36, 057403 (2019).

    ADS  Google Scholar 

  172. Xue, F., Amin, V. P. & Haney, P. M. Imaging the valley and orbital Hall effect in monolayer MoS2. Phys. Rev. B 102, 161103(R) (2020).

    ADS  Google Scholar 

  173. Suzuki, T. et al. Singular angular magnetoresistance in a magnetic nodal semimetal. Science 365, 377–381 (2019).

    ADS  Google Scholar 

  174. Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278–1281 (2019).

    ADS  Google Scholar 

  175. Xu, Y. et al. Higher-order topology of the axion insulator EuIn2As2. Phys. Rev. Lett. 122, 256402 (2019).

    ADS  Google Scholar 

  176. Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).

    Google Scholar 

  177. Ran, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684–687 (2019).

    ADS  Google Scholar 

  178. Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523–527 (2020).

    ADS  Google Scholar 

  179. Gotliebet, K. et al. Revealing hidden spin-momentum locking in a high-temperature cuprate superconductor. Science 362, 1271–1275 (2018).

    ADS  Google Scholar 

  180. Jiang, Y-X. et al. Discovery of topological charge order in kagome superconductor KV3Sb5. Preprint at arXiv https://arxiv.org/abs/2012.15709 (2021).

  181. Sachdev, S. & Ye, J. Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339 (1993).

    ADS  Google Scholar 

  182. Pikulin, D. I. & Franz, M. Black hole on a chip: proposal for a physical realization of the Sachdev-Ye-Kitaev model in a solid-state system. Phys. Rev. X 7, 031006 (2017).

    Google Scholar 

  183. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

    ADS  Google Scholar 

  184. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    ADS  Google Scholar 

  185. Quantum Frontiers (The White House National Quantum Coordination Office, 2020).

  186. Fuechsle, M. et al. A single-atom transistor. Nat. Nanotechnol. 7, 242–246 (2012).

    ADS  Google Scholar 

  187. Folsch, S. et al. Quantum dots with single-atom precision. Nat. Nanotechnol. 9, 505–508 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge P. W. Anderson, D. A. Huse, F. D. M. Haldane, N. P. Ong, E. Lieb for discussions on quantum magnets, spin liquid and superconductivity. We acknowledge Abhay Pasupathy, Roland Wiesendanger, Ilija Zeljkovic, Takeshi Kondo, Suyang Xu, Sanfeng Wu, Nirmal Ghimire, Pengcheng Dai, Chin-Sen Ting, Lu Li, Yong P. Chen, Hu Miao, Guang Bian, Yan Sun, Nanlin Wang, David Hsieh, Madhab Neupane, Hao Zheng, Chang Liu, Zhenyu Wang, Canli Song, Jingsheng Wen, Ruihua He, Nan Xu, Ziqiang Wang, Titus Neupert, Biao Lian, Guoqing Chang, Ilya Belopolski, Jing Wang, Gang Su, Jiangping Hu, Gang Xu, Zhong-Yi Lu, Songtian S. Zhang, Hanqing Mao, Bianca S. Swidler, Tyler A. Cochran, Lingyuan Kong and Ruizhe Liu for discussions on STM study of topological matter. Work at Princeton University was supported by the Gordon and Betty Moore Foundation (GBMF4547 and GBMF9461; M.Z.H.). The theoretical work and sample characterization are supported by the United States Department of Energy (U.S. DOE) underthe Basic Energy Sciences programme (grant number DOE/BES DE-FG-02-05ER46200; M.Z.H.). The work on topological superconductivity is partly based on support by the U.S. DOE, Office of Science through the Quantum Science Center (QSC), a National Quantum Information Science Research Center at the Oak Ridge National Laboratory. S.H.P. acknowledges support from the Chinese Academy of Sciences, NSFC (grant no. 11227903), BM-STC (grant no. Z191100007219011), the National Key R&D Program of China (grant nos. 2017YFA0302900 and 2017YFA0302903) and the Strategic Priority Research Program (grant nos. XDB28000000, XDB28010000 and XDB28010200).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Jia-Xin Yin or M. Zahid Hasan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Noriaki Takagi and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, JX., Pan, S.H. & Zahid Hasan, M. Probing topological quantum matter with scanning tunnelling microscopy. Nat Rev Phys 3, 249–263 (2021). https://doi.org/10.1038/s42254-021-00293-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00293-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing