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The past decade has seen a hectic develop
ment in the field of machine learning (ML), 
with applications touching every sector from 
healthcare and energy grids to manufacturing 
and autonomous driving. ML represents a 
major change in the way we devise algo
rithms: instead of hard coding a specific 
set of rules, only the high level structure of 
the solution needs to be defined while the 
rest is obtained by learning the underlying 
patterns in data. This approach allowed the 
development of powerful algorithms with 
a compact representation in memory for 
certain types of problems.

At the same time with the rapid develop
ment of the ability to control quantum 
systems, the need to simulate or validate 
experiments with more particles has 
increased. But the size of the Hilbert  
space, and thus the memory and runtime  
cost of computations, increases exponentially 
with the number of particles. To avoid this 
unmanageable cost several methods have 
been engineered, for example, semiclassical 
or phase space representations, which  
eschew encoding part or all of the entangle
ment in the system or plaquette states, which 
truncate it to some finite range, or product 
states, a method that is extremely effective  
in 1D, but not in higher dimensions.

A new approach has emerged bridging the  
gap between quantum physics and ML. 
The central idea is to encode the quantum state 
into a compact function approximator that 
can capture the underlying structure: neural 
networks. Their strength comes from their 
ability to capture long range correlations in 

arbitrary dimensions with few parameters, and 
from their flexibility, as it is relatively easy to 
enforce symmetries or constraints of the Hilbert 
space within the approximation itself. This 
dense representation is then complemented 
by Monte Carlo sampling of the configuration 
space in order to address the exponential 
blow up of both memory and runtime.

The field is still young, and new applications 
are being proposed continuously. However, 
the most promising results so far, beating 
traditional algorithms, have been obtained 
on the variational search of the ground or 
steady state, and quantum state tomography. 
In the former, the variational parameters 
of a neural quantum state are optimized 
by minimizing the energy defined by a 
Hamiltonian until the minimum value, corres
ponding to the ground state, is obtained.  
In the latter, the unknown state of a quantum 
system, such as that of a quantum simulator, 
is reconstructed starting from a set of 
experimental measurements in a similar  
spirit to unsupervised learning.

Although the algorithms are conceptually 
simple, writing efficient kernels for networks, 
samplers and quantum operators requires 
a very diverse skillset. For this reason, we 
developed NetKet, an open source Python 
toolbox providing an easy to use interface 
for the techniques described above without 
the need to delve into the details of the 
implementation. NetKet follows a simple 
mental model, where the users can separately 
define their system by specifying its spatial 
structure and Hamiltonian, the variational 
quantum state, the sampler and the optimiser. 

Several common neural networks are already 
included and ready to use, but defining custom 
ones using Google’s Jax and NumPy like 
operations is encouraged. Lastly, predefined 
optimization drivers can be used to easily 
put everything together and determine, for 
example, the ground state, but it is also possible 
to write a customized optimization loop.

Even though it is now easy to apply  
ML techniques to real problems using 
software such as NetKet, many open 
questions remain. More reliable optimization 
strategies, improved second order methods,  
and the precise relationship between  
network depth and representation power  
are all issues that we hope will be addressed  
in the coming years.
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