Axion physics in condensed-matter systems

Abstract

Axions are hypothetical particles that were proposed to solve the strong charge–parity problem in high-energy physics. Although they have long been known in quantum field theory, axions have so far not been observed as elementary particles in nature. Yet, in condensed-matter systems, axions can also emerge as quasiparticles in certain materials such as strong topological insulators. The corresponding axion field is expected to lead to exciting physical phenomena in condensed-matter systems, such as a fractional quantum anomalous Hall effect, the chiral anomaly, exotic Casimir–Lifshitz repulsion and a linear magnetoelectric response quantized in units of the fine-structure constant. First signatures of electronic states that permit axion dynamics have been reported in condensed-matter systems. In this Review, we explore the concepts that introduce axion fields in condensed-matter systems and present experimental findings. We discuss predicted and realized material systems, the prospects of using axion electrodynamics for next-generation devices and the search for axions as a possible constituent of dark matter.

Key points

  • 3D insulators can be topologically characterized by the value of their bulk axion field.

  • Axion fields introduce additional terms in Maxwell’s equations for condensed-matter systems.

  • The microscopic expression for the axion field in a crystal is given by the non-Abelian Chern–Simons integral, which depends on the Berry connection matrix of the band structure.

  • In strong 3D topological insulators, a half-quantized surface Hall effect appears when the surface states are gapped, together with linear magnetoelectric coupling in their bulk.

  • The axion insulator state can be realized in antiferromagnetic insulators without external fields.

  • Materials with a non-trivial axion field can be used in dark-matter detectors and non-reciprocal thermal emitters.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Quantized responses in topological insulator–ferromagnet heterostructures.
Fig. 2: Material systems proposed to be axion insulators.
Fig. 3: Experimental set-ups to access topological responses.
Fig. 4: Signature of axionic charge-density wave in Ta2Se8I.

References

  1. 1.

    Svrcek, P. & Witten, E. Axions in string theory. J. High Energy Phys. 2006, 051–051 (2006).

    ADS  MathSciNet  Google Scholar 

  2. 2.

    Peccei, R. D. & Quinn, H. R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 38, 1440–1443 (1977).

    ADS  Google Scholar 

  3. 3.

    Preskill, J., Wise, M. B. & Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 120, 127–132 (1983).

    ADS  Google Scholar 

  4. 4.

    Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987).

    ADS  Google Scholar 

  5. 5.

    Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008). Unified topological Chern–Simons field theory in phase space for time-reversal invariant insulators.

    ADS  Google Scholar 

  6. 6.

    Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    ADS  Google Scholar 

  7. 7.

    Grushin, A. G. Consequences of a condensed matter realization of Lorentz-violating QED in Weyl semi-metals. Phys. Rev. D 86, 045001 (2012).

    ADS  Google Scholar 

  8. 8.

    Zyuzin, A. A. & Burkov, A. A. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 86, 115133 (2012).

    ADS  Google Scholar 

  9. 9.

    Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Google Scholar 

  10. 10.

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  Google Scholar 

  11. 11.

    Vergniory, M. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    ADS  Google Scholar 

  12. 12.

    Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

    ADS  Google Scholar 

  13. 13.

    Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242 (2018).

    Google Scholar 

  14. 14.

    Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    ADS  Google Scholar 

  15. 15.

    Stern, A. & Lindner, N. H. Topological quantum computation — from basic concepts to first experiments. Science 339, 1179–1184 (2013).

    ADS  Google Scholar 

  16. 16.

    Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    ADS  Google Scholar 

  17. 17.

    Mong, R. S. K., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010).

    ADS  Google Scholar 

  18. 18.

    Zirnstein, H.-G. & Rosenow, B. Topological magnetoelectric effect: nonlinear time-reversal-symmetric response, Witten effect, and half-integer quantum Hall effect. Phys. Stat. Solidi B 257, 1900698 (2020).

  19. 19.

    Essin, A. M., Turner, A. M., Moore, J. E. & Vanderbilt, D. Orbital magnetoelectric coupling in band insulators. Phys. Rev. B 81, 205104 (2010).

    ADS  Google Scholar 

  20. 20.

    Turner, A. M., Zhang, Y., Mong, R. S. K. & Vishwanath, A. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B 85, 165120 (2012).

    ADS  Google Scholar 

  21. 21.

    Wilczek, F. Particle physics and condensed matter: the saga continues. Phys. Scr. T168, 014003 (2016).

    ADS  Google Scholar 

  22. 22.

    Nielsen, H. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    ADS  MathSciNet  Google Scholar 

  23. 23.

    Vazifeh, M. M. & Franz, M. Electromagnetic response of Weyl semimetals. Phys. Rev. Lett. 111, 027201 (2013).

    ADS  Google Scholar 

  24. 24.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  Google Scholar 

  25. 25.

    Ilan, R., Grushin, A. G. & Pikulin, D. I. Pseudo-electromagnetic fields in 3D topological semimetals. Nat. Rev. Phys. 2, 29–41 (2019).

  26. 26.

    Burkov, A. A. Weyl metals. Annu. Rev. Condens. Matter Phys 9, 359–378 (2018).

    ADS  Google Scholar 

  27. 27.

    Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010). Theory and predictions on the dynamical axion field in magnetically doped TIs.

    Google Scholar 

  28. 28.

    Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315 (2019). Magnetoresistance experiments in axionic charge-density-wave material Ta2Se8I.

    ADS  Google Scholar 

  29. 29.

    Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    ADS  Google Scholar 

  30. 30.

    Zhang, D. et al. Topological axion states in magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

    ADS  Google Scholar 

  31. 31.

    Feng, Y. et al. Observation of the zero Hall plateau in a quantum anomalous Hall insulator. Phys. Rev. Lett. 115, 126801 (2015).

    ADS  Google Scholar 

  32. 32.

    Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).

    ADS  Google Scholar 

  33. 33.

    Xiao, D. et al. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).

    ADS  Google Scholar 

  34. 34.

    Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  35. 35.

    Mondal, M. et al. Electric field modulated topological magnetoelectric effect in Bi2Se3. Phys. Rev. B 98, 121106 (2018).

    ADS  Google Scholar 

  36. 36.

    Dziom, V. et al. Observation of the universal magnetoelectric effect in a 3D topological insulator. Nat. Commun. 8, 15197 (2017).

    ADS  Google Scholar 

  37. 37.

    Okada, K. N. et al. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. Nat. Commun. 7, 12245 (2016).

    ADS  Google Scholar 

  38. 38.

    Peccei, R. D. & Quinn, H. R. Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 16, 1791–1797 (1977).

    ADS  Google Scholar 

  39. 39.

    Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    ADS  Google Scholar 

  40. 40.

    Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982).

    ADS  Google Scholar 

  41. 41.

    Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    ADS  Google Scholar 

  42. 42.

    König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    ADS  Google Scholar 

  43. 43.

    Mehta, M. L. Random Matrices (Elsevier, 2004).

  44. 44.

    Fu, L. & Kane, C. L. Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006).

    ADS  Google Scholar 

  45. 45.

    Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    ADS  Google Scholar 

  46. 46.

    Soluyanov, A. A. & Vanderbilt, D. Computing topological invariants without inversion symmetry. Phys. Rev. B 83, 235401 (2011).

    ADS  Google Scholar 

  47. 47.

    Yu, R., Qi, X. L., Bernevig, A., Fang, Z. & Dai, X. Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection. Phys. Rev. B 84, 075119 (2011).

    ADS  Google Scholar 

  48. 48.

    Ringel, Z., Kraus, Y. E. & Stern, A. Strong side of weak topological insulators. Phys. Rev. B 86, 045102 (2012).

    ADS  Google Scholar 

  49. 49.

    Mong, R. S. K., Bardarson, J. H. & Moore, J. E. Quantum transport and two-parameter scaling at the surface of a weak topological insulator. Phys. Rev. Lett. 108, 076804 (2012).

    ADS  Google Scholar 

  50. 50.

    Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    ADS  Google Scholar 

  51. 51.

    Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009).

    Google Scholar 

  52. 52.

    Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).

    ADS  Google Scholar 

  53. 53.

    Malashevich, A., Souza, I., Coh, S. & Vanderbilt, D. Theory of orbital magnetoelectric response. New Journal of Physics 12, 053032 (2010).

    ADS  Google Scholar 

  54. 54.

    Armitage, N. P. & Wu, L. On the matter of topological insulators as magnetoelectrics. SciPost Phys. 6, 46 (2019). Review of magnetoelectric responses and their connection to the effective polarization.

    ADS  MathSciNet  Google Scholar 

  55. 55.

    Vanderbilt, D. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ. Press, 2018).

  56. 56.

    Varnava, N. & Vanderbilt, D. Surfaces of axion insulators. Phys. Rev. B 98, 245117 (2018).

    ADS  Google Scholar 

  57. 57.

    Wang, Z., Qi, X.-L. & Zhang, S.-C. Equivalent topological invariants of topological insulators. New J. Phys. 12, 065007 (2010).

    ADS  Google Scholar 

  58. 58.

    Fang, C., Gilbert, M. J. & Bernevig, B. A. Topological insulators with commensurate antiferromagnetism. Phys. Rev. B 88, 085406 (2013).

    ADS  Google Scholar 

  59. 59.

    Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Google Scholar 

  60. 60.

    Bernevig, B. A. & Hughes, T. L.Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).

  61. 61.

    Nomura, K. & Nagaosa, N. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Phys. Rev. Lett. 106, 166802 (2011).

    ADS  Google Scholar 

  62. 62.

    Morimoto, T., Furusaki, A. & Nagaosa, N. Topological magnetoelectric effects in thin films of topological insulators. Phys. Rev. B 92, 085113 (2015).

    ADS  Google Scholar 

  63. 63.

    Wang, J., Lian, B., Qi, X.-L. & Zhang, S.-C. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state. Phys. Rev. B 92, 081107 (2015).

    ADS  Google Scholar 

  64. 64.

    Wang, J., Lian, B. & Zhang, S.-C. Dynamical axion field in a magnetic topological insulator superlattice. Phys. Rev. B 93, 045115 (2016).

    ADS  Google Scholar 

  65. 65.

    Rivera, J.-P. A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. Eur. Phys. J. B 71, 299 (2009).

    ADS  Google Scholar 

  66. 66.

    fiebig, M. & Spaldin, N. A. Current trends of the magnetoelectric effect. Eur. Phys. J. B 71, 293 (2009).

    ADS  Google Scholar 

  67. 67.

    Coh, S., Vanderbilt, D., Malashevich, A. & Souza, I. Chern–Simons orbital magnetoelectric coupling in generic insulators. Phys. Rev. B 83, 085108 (2011). Numerical calculation of the axion field in topologically trivial and non-trivial materials, based on maximally localized Wannier functions.

    ADS  Google Scholar 

  68. 68.

    Karch, A. Electric–magnetic duality and topological insulators. Phys. Rev. Lett. 103, 171601 (2009).

    ADS  MathSciNet  Google Scholar 

  69. 69.

    Maciejko, J., Qi, X.-L., Drew, H. D. & Zhang, S.-C. Topological quantization in units of the fine structure constant. Phys. Rev. Lett. 105, 166803 (2010).

    ADS  Google Scholar 

  70. 70.

    Tse, W.-K. & MacDonald, A. H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys. Rev. Lett. 105, 057401 (2010).

    ADS  Google Scholar 

  71. 71.

    Feng, W. et al. Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets. Nat. Commun. 11, 1–9 (2020).

    Google Scholar 

  72. 72.

    Beenakker, C. Topological magnetoelectric effect versus quantum Faraday effect. J. Club Condens. Matter Phys. https://doi.org/10.36471/JCCM_April_2016_01 (2016).

  73. 73.

    Qi, X.-L., Li, R., Zang, J. & Zhang, S.-C. Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  74. 74.

    König, E. J. et al. Half-integer quantum Hall effect of disordered Dirac fermions at a topological insulator surface. Phys. Rev. B 90, 165435 (2014).

    ADS  Google Scholar 

  75. 75.

    Taguchi, K. et al. Electromagnetic effects induced by a time-dependent axion field. Phys. Rev. B 97, 214409 (2018).

    ADS  Google Scholar 

  76. 76.

    Ooguri, H. & Oshikawa, M. Instability in magnetic materials with a dynamical axion field. Phys. Rev. Lett. 108, 161803 (2012).

    ADS  Google Scholar 

  77. 77.

    Zhang, J. et al. Large dynamical axion field in topological antiferromagnetic insulator Mn2Bi2Te5. Chin. Phys. Lett. 37, 077304 (2020).

    ADS  Google Scholar 

  78. 78.

    Wang, Z. & Zhang, S.-C. Chiral anomaly, charge density waves, and axion strings from Weyl semimetals. Phys. Rev. B 87, 161107 (2013).

    ADS  Google Scholar 

  79. 79.

    Casimir, H. B. G. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793 (1948).

    MATH  Google Scholar 

  80. 80.

    Lifshitz, E. M. et al. in Perspectives in Theoretical Physics 329–349 (Elsevier, 1992).

  81. 81.

    Dzyaloshinskii, I. E., Lifshitz, E. M. & Pitaevskii, L. P. The general theory of van der Waals forces. Adv. Phys. 10, 165–209 (1961).

    ADS  MathSciNet  MATH  Google Scholar 

  82. 82.

    Rivera, N., flick, J. & Narang, P. Variational theory of nonrelativistic quantum electrodynamics. Phys. Rev. Lett. 122, 193603 (2019).

    ADS  Google Scholar 

  83. 83.

    Capasso, F., Munday, J. N., Iannuzzi, D. & Chan, H. B. Casimir forces and quantum electrodynamical torques: physics and nanomechanics. IEEE J. Sel. Top. Quantum Electron. 13, 400–414 (2007).

    ADS  Google Scholar 

  84. 84.

    Grushin, A. G. & Cortijo, A. Tunable Casimir repulsion with three-dimensional topological insulators. Phys. Rev. Lett. 106, 020403 (2011).

    ADS  Google Scholar 

  85. 85.

    Grushin, A. G., Rodriguez-Lopez, P. & Cortijo, A. Effect of finite temperature and uniaxial anisotropy on the Casimir effect with three-dimensional topological insulators. Phys. Rev. B 84, 045119 (2011).

    ADS  Google Scholar 

  86. 86.

    Rodriguez-Lopez, P. Casimir repulsion between topological insulators in the diluted regime. Phys. Rev. B 84, 165409 (2011).

    ADS  Google Scholar 

  87. 87.

    Chen, L. & Wan, S. Casimir interaction between topological insulators with finite surface band gap. Phys. Rev. B 84, 075149 (2011).

    ADS  Google Scholar 

  88. 88.

    Chen, L. & Wan, S. Critical surface band gap of repulsive Casimir interaction between three-dimensional topological insulators at finite temperature. Phys. Rev. B 85, 115102 (2012).

    ADS  Google Scholar 

  89. 89.

    Nie, W., Zeng, R., Lan, Y. & Zhu, S. Casimir force between topological insulator slabs. Phys. Rev. B 88, 085421 (2013).

    ADS  Google Scholar 

  90. 90.

    Zeng, R. et al. Enhancing Casimir repulsion via topological insulator multilayers. Phys. Lett. A 380, 2861–2869 (2016).

    ADS  MathSciNet  Google Scholar 

  91. 91.

    Rodriguez-Lopez, P. & Grushin, A. G. Repulsive Casimir effect with Chern insulators. Phys. Rev. Lett. 112, 056804 (2014).

    ADS  Google Scholar 

  92. 92.

    Wilson, J. H., Allocca, A. A. & Galitski, V. Repulsive Casimir force between Weyl semimetals. Phys. Rev. B 91, 235115 (2015).

    ADS  Google Scholar 

  93. 93.

    Rodriguez-Lopez, P., Popescu, A., Fialkovsky, I., Khusnutdinov, N. & Woods, L. M. Signatures of complex optical response in Casimir interactions of type I and II Weyl semimetals. Commun. Mater. 1, 14 (2020).

    Google Scholar 

  94. 94.

    Woods, L. M. et al. Materials perspective on Casimir and van der Waals interactions. Rev. Mod. Phys. 88, 045003 (2016).

    ADS  MathSciNet  Google Scholar 

  95. 95.

    fialkovsky, I., Khusnutdinov, N. & Vassilevich, D. Quest for Casimir repulsion between Chern–Simons surfaces. Phys. Rev. B 97, 165432 (2018).

    ADS  Google Scholar 

  96. 96.

    Vassilevich, D. On the (im)possibility of Casimir repulsion between Chern–Simons surfaces. Mod. Phys. Lett. A 35, 2040017 (2020).

    ADS  MathSciNet  Google Scholar 

  97. 97.

    Martín-Ruiz, A., Cambiaso, M. & Urrutia, L. F. A Green’s function approach to the Casimir effect on topological insulators with planar symmetry. Europhys. Lett. 113, 60005 (2016).

    ADS  Google Scholar 

  98. 98.

    Fukushima, K., Imaki, S. & Qiu, Z. Anomalous Casimir effect in axion electrodynamics. Phys. Rev. D 100, 045013 (2019).

    ADS  MathSciNet  Google Scholar 

  99. 99.

    Hehl, F. W., Obukhov, Y. N., Rivera, J.-P. & Schmid, H. Magnetoelectric Cr2O3 and relativity theory. Eur. Phys. J. B 71, 321–329 (2009).

    ADS  Google Scholar 

  100. 100.

    Kurumaji, T. et al. Optical magnetoelectric resonance in a polar magnet (Fe,Zn)2Mo3O8 with axion-type coupling. Phys. Rev. Lett. 119, 077206 (2017).

    ADS  Google Scholar 

  101. 101.

    Varnava, N., Souza, I. & Vanderbilt, D. Axion coupling in the hybrid Wannier representation. Phys. Rev. B 101, 155130 (2020).

    ADS  Google Scholar 

  102. 102.

    Maciejko, J., Qi, X.-L., Karch, A. & Zhang, S.-C. Fractional topological insulators in three dimensions. Phys. Rev. Lett. 105, 246809 (2010).

    ADS  Google Scholar 

  103. 103.

    Shi, W. et al. A charge-density-wave Weyl semimetal. Preprint at arXiv https://arxiv.org/abs/1909.04037 (2019).

  104. 104.

    Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019). Combined theoretical and experimental study on antiferromagnetic topological insulator MnBi2Te4.

    ADS  Google Scholar 

  105. 105.

    Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2018).

    ADS  Google Scholar 

  106. 106.

    Hu, C. et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling. Nat. Commun. 11, 97 (2020).

    ADS  Google Scholar 

  107. 107.

    Lv, B., Qian, T. & Ding, H. Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 1, 609–626 (2019).

    Google Scholar 

  108. 108.

    Lee, S. H. et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res. 1, 012011 (2019).

    Google Scholar 

  109. 109.

    Yan, J.-Q. et al. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).

    Google Scholar 

  110. 110.

    Chen, B. et al. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes. Nat. Commun. 10, 4469 (2019).

    ADS  Google Scholar 

  111. 111.

    Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    ADS  Google Scholar 

  112. 112.

    Otrokov, M. et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 122, 107202 (2019).

    ADS  Google Scholar 

  113. 113.

    Li, H. et al. Antiferromagnetic topological insulator MnBi2Te4: synthesis and magnetic properties. Phys. Chem. Chem. Phys. 22, 556–563 (2020).

    Google Scholar 

  114. 114.

    Li, Y. et al. Layer-magnetization-tuned topological phases in Mn2Bi2Te5 films. Preprint at arXiv https://arxiv.org/abs/2001.06133 (2020).

  115. 115.

    Hao, Y.-J. et al. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 9, 041038 (2019).

    Google Scholar 

  116. 116.

    Li, H. et al. Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1. Phys. Rev. X 9, 041039 (2019).

    Google Scholar 

  117. 117.

    Lee, D. S. et al. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4. CrystEngComm 15, 5532–5538 (2013).

    Google Scholar 

  118. 118.

    Swatek, P. et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 101, 161109 (2020).

    ADS  Google Scholar 

  119. 119.

    Li, H. et al. Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1. Phys. Rev. X 9, 041039 (2019).

    Google Scholar 

  120. 120.

    Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

    ADS  Google Scholar 

  121. 121.

    Fei, R., Song, W. & Yang, L. Giant photogalvanic effect and second-harmonic generation in magnetic axion insulators. Phys. Rev. B 102, 035440 (2020).

    ADS  Google Scholar 

  122. 122.

    Wu, J. et al. Natural van der Waals heterostructural single crystals with both magnetic and topological properties. Sci. Adv. 5, eaax9989 (2019).

    ADS  Google Scholar 

  123. 123.

    Li, Y. et al. Layer-magnetization-tuned topological phases in Mn2Bi2Te5 films. Preprint at arXiv https://arxiv.org/abs/2001.06133 (2020).

  124. 124.

    Hou, Y. S., Kim, J. W. & Wu, R. Q. Axion insulator state in ferromagnetically ordered Cri3/Bi2Se3/MnBi2Se4 heterostructures. Phys. Rev. B 101, 121401 (2020).

    ADS  Google Scholar 

  125. 125.

    Li, Z. et al. Tunable interlayer magnetism and band topology in van der Waals heterostructures of MnBi2Te4-family materials. Phys. Rev. B 102, 081107 (2020).

    ADS  Google Scholar 

  126. 126.

    Wang, H. et al. Dynamical axion state with hidden pseudospin Chern numbers in MnBi2Te4-based heterostructures. Phys. Rev. B 101, 081109 (2020).

    ADS  Google Scholar 

  127. 127.

    Fu, H., Liu, C.-X. & Yan, B. Exchange bias and quantum anomalous Hall effect in the MnBi2Te4/CrI3 heterostructure. Sci. Adv. 6, eaaz0948 (2020).

    ADS  Google Scholar 

  128. 128.

    Xu, Y., Song, Z., Wang, Z., Weng, H. & Dai, X. Higher-order topology of the axion insulator EuIn2As2. Phys. Rev. Lett. 122, 256402 (2019).

    ADS  Google Scholar 

  129. 129.

    Zhang, Y. et al. In-plane antiferromagnetic moments and magnetic polaron in the axion topological insulator candidate EuIn2As2. Phys. Rev. B 101, 205126 (2020).

    ADS  Google Scholar 

  130. 130.

    Regmi, S. et al. Temperature dependent electronic structure in a higher order topological insulator candidate EuIn2As2. Preprint at arXiv https://arxiv.org/abs/1911.03703 (2019).

  131. 131.

    Gui, X. et al. A new magnetic topological quantum material candidate by design. ACS Central Sci. 5, 900–910 (2019).

    Google Scholar 

  132. 132.

    Hou, Y. & Wu, R. Axion insulator state in a ferromagnet/topological insulator/antiferromagnet heterostructure. Nano Lett. 19, 2472–2477 (2019).

    ADS  Google Scholar 

  133. 133.

    Wieder, B. J., Lin, K.-S. & Bradlyn, B. Is the dynamical axion Weyl-charge-density wave an axionic band insulator? Preprint at arXiv https://arxiv.org/abs/2004.11401 (2020).

  134. 134.

    Wan, X., Turner, A., Vishwanath, A. & Savrasov, S. Y. Electronic structure of pyrochlore iridates: from topological Dirac metal to Mott insulator. Phys. Rev. B 83, 205101 (2011).

    ADS  Google Scholar 

  135. 135.

    Chen, G. & Hermele, M. Magnetic orders and topological phases from fd exchange in pyrochlore iridates. Phys. Rev. B 86, 235129 (2012).

    ADS  Google Scholar 

  136. 136.

    Yamaura, J. et al. Tetrahedral magnetic order and the metal–insulator transition in the pyrochlore lattice of Cd2Os2O7. Phys. Rev. Lett. 108, 247205 (2012).

    ADS  Google Scholar 

  137. 137.

    Shi, Y. G. et al. Continuous metal–insulator transition of the antiferromagnetic perovskite NaOsO3. Phys. Rev. B 80, 161104 (2009).

    ADS  Google Scholar 

  138. 138.

    Liu, C. et al. Metallic surface electronic state in half-Heusler compounds RPtBi (R = Lu, Dy, Gd). Phys. Rev. B 83, 205133 (2011).

    ADS  Google Scholar 

  139. 139.

    Kreyssig, A. et al. Magnetic order in GdBiPt studied by X-ray resonant magnetic scattering. Phys. Rev. B 84, 220408 (2011).

    ADS  Google Scholar 

  140. 140.

    Müller, R. A. et al. Magnetic structure of GdBiPt: a candidate antiferromagnetic topological insulator. Phys. Rev. B 90, 041109 (2014).

    Google Scholar 

  141. 141.

    Gooth, J. et al. Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017).

    ADS  Google Scholar 

  142. 142.

    Ikebe, Y. et al. Optical hall effect in the integer quantum Hall regime. Phys. Rev. Lett. 104, 256802 (2010).

    ADS  Google Scholar 

  143. 143.

    Shimano, R. et al. Quantum Faraday and Kerr rotations in graphene. Nat. Commun. 4, 1–6 (2013).

    ADS  Google Scholar 

  144. 144.

    Mogi, M. et al. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator. Sci. Adv. 3, eaao1669 (2017).

    Google Scholar 

  145. 145.

    Grauer, S. et al. Scaling of the quantum anomalous Hall effect as an indicator of axion electrodynamics. Phys. Rev. Lett. 118, 246801 (2017).

    ADS  Google Scholar 

  146. 146.

    Lachman, E. O. et al. Observation of superparamagnetism in coexistence with quantum anomalous Hall C = ±1 and C = 0 Chern states. npj Quantum Mater. 2, 1–7 (2017).

    Google Scholar 

  147. 147.

    Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator.Nat. Mater. 19, 522–527 (2020).

    ADS  Google Scholar 

  148. 148.

    Zhang, Y., Lin, L.-F., Moreo, A., Dong, S. & Dagotto, E. First-principles study of the low-temperature charge density wave phase in the quasi-one-dimensional Weyl chiral compound (TaSe4)2I. Phys. Rev. B 101, 174106 (2020).

    ADS  Google Scholar 

  149. 149.

    Marsh, D. J. E., Fong, K. C., Lentz, E. W., Šmejkal, L. & Ali, M. N. Proposal to detect dark matter using axionic topological antiferromagnets. Phys. Rev. Lett. 123, 121601 (2019). Proposal for a dark-matter axion detector based on an antiferromagnetic topological insulator.

    ADS  Google Scholar 

  150. 150.

    Ringwald, A. Exploring the role of axions and other wisps in the dark Universe. Phys. Dark Universe 1, 116–135 (2012).

    ADS  Google Scholar 

  151. 151.

    Hofmann, J. & Sarma, S. D. Surface plasmon polaritons in topological Weyl semimetals. Phys. Rev. B 93, 241402 (2016).

    ADS  Google Scholar 

  152. 152.

    Zhao, B., Guo, C., Garcia, C. A. C., Narang, P. & Fan, S. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals. Nano Lett. 20, 1923–1927 (2020). Exploitation of the axion field in an ideal Weyl semimetal for non-reciprocal thermal emitters.

    ADS  Google Scholar 

  153. 153.

    Green, M. A. Time-asymmetric photovoltaics. Nano Lett. 12, 5985–5988 (2012).

    ADS  Google Scholar 

  154. 154.

    Soh, J.-R. et al. Ideal Weyl semimetal induced by magnetic exchange. Phys. Rev. B 100, 201102 (2019).

    ADS  Google Scholar 

  155. 155.

    Qi, X.-L., Witten, E. & Zhang, S.-C. Axion topological field theory of topological superconductors. Phys. Rev. B 87, 134519 (2013).

    ADS  Google Scholar 

  156. 156.

    Chen, C.-Z., Xie, Y.-M., Liu, J., Lee, P. A. & Law, K. T. Quasi-one-dimensional quantum anomalous Hall systems as new platforms for scalable topological quantum computation. Phys. Rev. B 97, 104504 (2018).

    ADS  Google Scholar 

  157. 157.

    Lian, B., Sun, X.-Q., Vaezi, A., Qi, X.-L. & Zhang, S.-C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl Acad. Sci. USA 115, 10938–10942 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  158. 158.

    Burkov, A. A. Topological semimetals. Nat. Mater. 15, 1145–1148 (2016).

    ADS  Google Scholar 

  159. 159.

    Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    Google Scholar 

  160. 160.

    Altland, A. & Zirnbauer, M. R. Nonstandard symmetry classes in mesoscopic normal–superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997).

    ADS  Google Scholar 

  161. 161.

    Kitaev, A. Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  162. 162.

    Chern, S.-S. & Simons, J. Characteristic forms and geometric invariants. Ann. Math. 99, 48–69 (1974).

    MathSciNet  MATH  Google Scholar 

  163. 163.

    Witten, E. Topological quantum field theory. Commun. Math. Phys. 117, 353–386 (1988).

    ADS  MathSciNet  MATH  Google Scholar 

  164. 164.

    Hsiang, W.-Y. & Lee, D.-H. Chern–Simons invariant in the Berry phase of a 2x2 Hamiltonian. Phys. Rev. A 64, 052101 (2001).

    ADS  MathSciNet  Google Scholar 

  165. 165.

    Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    ADS  Google Scholar 

  166. 166.

    Adler, S. L. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969).

    ADS  Google Scholar 

  167. 167.

    Bell, J. S. & Jackiw, R. A PCAC puzzle. Nuovo Cim. A 60, 47–61 (1969).

    ADS  Google Scholar 

  168. 168.

    Chen, Y., Wu, S. & Burkov, A. A. Axion response in Weyl semimetals. Phys. Rev. B 88, 125105 (2013).

    ADS  Google Scholar 

  169. 169.

    Goswami, P. & Tewari, S. Axionic field theory of (3+1)-dimensional Weyl semimetals. Phys. Rev. B 88, 245107 (2013).

    ADS  Google Scholar 

  170. 170.

    Liang, S. et al. Experimental tests of the chiral anomaly magnetoresistance in the Dirac–Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8, 031002 (2018).

    Google Scholar 

Download references

Acknowledgements

The authors thank Y. Wang (Harvard) and S. Roychowdhury (Max Planck Institute) for input and discussions. This work was supported by the US Department of Energy ‘Photonics at Thermodynamic Limits’ Energy Frontier Research Center under grant DE-SC0019140, the Army Research Office MURI (Ab-Initio Solid-State Quantum Materials) grant no. W911NF-18-1-0431 and by the Science and Technology Center (STC) Center for Integrated Quantum Materials under US National Science Foundation (NSF) grant no. DMR-1231319. C.A.C.G. is supported by the NSF Graduate Research Fellowship Program under grant no. DGE-1745303. Financial support by the European Union (grant no. 742068) is gratefully acknowledged. P.N. is a Moore Inventor Fellow and gratefully acknowledges support through grant no. GBMF8048 from the Gordon and Betty Moore Foundation.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Dennis M. Nenno or Prineha Narang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Pavan Hosur and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

\({{\mathbb{Z}}}_{2}\) invariant

Group of integers 0, 1 first introduced in 2D time-reversal-invariant systems to distinguish topological from trivial phases.

Chern number

Berry flux on a closed manifold, which becomes quantized in time-reversal-breaking topological insulators.

Berry connection

Gauge-dependent vector potential connected to the Berry phase.

Kramers degeneracy

In time-reversal-symmetric systems, every energy state is at least two-fold degenerate.

Casimir stress

Stress that results in Casimir forces inside inhomogeneous structures.

Shift current

Second-order optical effect that results in a d.c. current from incident monochromatic light.

Nesting vector

Vector connecting pockets of the Fermi surface, typically related to the formation of a density wave.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nenno, D.M., Garcia, C.A.C., Gooth, J. et al. Axion physics in condensed-matter systems. Nat Rev Phys 2, 682–696 (2020). https://doi.org/10.1038/s42254-020-0240-2

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing