Quantum equilibration, thermalization and prethermalization in ultracold atoms

Abstract

Over the past decade, there has been remarkable progress in our understanding of equilibration, thermalization and prethermalization, due in large part to experimental breakthroughs in ultracold atomic gases. These advances have made it possible to investigate how isolated quantum systems thermalize and why certain special many-body states do not. An overview on recent theoretical and experimental developments is given.

Key points

  • Equilibration, thermalization and prethermalization are universal phenomena that occur through loss of memory about the initial state of a system. Quantum thermalization proceeds through formation of entanglement: a subsystem can appear thermal if it is sufficiently entangled with the rest of the system.

  • Ultracold atomic gases offer an ideal testbed for the fundamental study of relaxation, thermalization and prethermalization of isolated quantum systems because they can be almost perfectly isolated from surrounding environments or subjected to controlled dissipation.

  • A number of remarkable experiments on fundamental aspects of thermalization have been reported in ultracold atomic systems, for which all microscopic details are known and can be controlled to high precision. This is a field where theory and experiment cross-fertilize.

  • A many-body scar may be viewed as a many-body dark state, and belongs to a broad class of those states that are metastable in dissipative non-equilibrium situations. Such states are not thermal, but may be prethermal.

  • Arguably, the most challenging problem is to identify a class of robust non-equilibrium states in an open dissipative environment. Many long-lived many-body systems could belong to this class.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Newton’s cradle of ultracold atoms.
Fig. 2: Distance-to-thermalization metric versus evolution time for bosonic dysprosium atoms with strong dipolar interactions, in an array of 1D tubes.
Fig. 3: Thermalization of a pure, zero-entropy state through formation of quantum entanglement.
Fig. 4: Many-body localization in 2D.
Fig. 5: Exploring entanglement in a many-body localized system.
Fig. 6: Dynamical scaling in a spin-1 Bose–Einstein condensate.

References

  1. 1.

    Langen, T., Geiger, R. & Schmiedmayer, J. Ultracold atoms out of equilibrium. Annu. Rev. Condens. Matter Phys. 6, 201–217 (2015).

    ADS  Google Scholar 

  2. 2.

    Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130 (2015).

    Google Scholar 

  3. 3.

    Mori, T., Ikeda, T. N., Kaminishi, E. & Ueda, M. Thermalization and prethermalization in isolated quantum systems: a theoretical overview. J. Phys. B 51, 112001 (2018).

    ADS  Google Scholar 

  4. 4.

    Boltzmann, L. Über die Beziehung swischen dem zweiten Hauptsatz der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über des Wärmegleichgewicht. Wien. Ber. 76, 373–435 (1877).

    MATH  Google Scholar 

  5. 5.

    Tasaki, H. Typicality of thermal equilibrium and thermalization in isolated macroscopic quantum systems. J. Stat. Phys. 163, 937–997 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  6. 6.

    Maxwell, J. C. Theory of Heat (Longman, 1871).

  7. 7.

    Gibbs, J. W. Elementary Principles in Statistical Mechanics (C. Scribner’s Sons, 1902).

  8. 8.

    Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549–560 (1905).

    MATH  Google Scholar 

  9. 9.

    Einstein, A. Zum gegenwärtigen Stand des Strahlungsproblems. Phys. Z. 10, 185–193 (1909).

    MATH  Google Scholar 

  10. 10.

    Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn 12, 570–586 (1957).

    ADS  MathSciNet  Google Scholar 

  11. 11.

    Evans, D. J., Cohen, E. G. D. & Morriss, G. P. Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 (1993).

    ADS  MATH  Google Scholar 

  12. 12.

    Gallavotti, G. & Cohen, E. G. D. Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995).

    ADS  Google Scholar 

  13. 13.

    Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997).

    ADS  Google Scholar 

  14. 14.

    von Neumann, J. Beweis des Ergodensatzes und des H-theorems in der neuen mechanik. Z. Phys. 57, 20 (1929). The English translation is given in: Proof of the ergodic theorem and the H-theorem in quantum mechanics. Eur. Phys. J. H 35, 201–237 (2010).

    ADS  MATH  Google Scholar 

  15. 15.

    Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991).

    ADS  Google Scholar 

  16. 16.

    Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994).

    ADS  Google Scholar 

  17. 17.

    Rigol, M. & Srednicki, M. Phys. Rev. Lett. 108, 110601 (2012).

    ADS  Google Scholar 

  18. 18.

    Goldstein, S., Lebowitz, J. L., Tumulka, R. & Zanghì, N. Canonical typicality. Phys. Rev. Lett. 96, 050403 (2006).

    ADS  MathSciNet  Google Scholar 

  19. 19.

    Popescu, S., Short, A. J. & Winter, A. Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754–758 (2006).

    Google Scholar 

  20. 20.

    Imada, M. & Takahashi, M. Quantum transfer Monte Carlo method for finite temperature properties and quantum molecular dynamics method for dynamical correlation functions. J. Phys. Soc. Jpn 55, 3354–3361 (1986).

    ADS  Google Scholar 

  21. 21.

    Jaklič, J. & Prelovšek, P. Lanczos method for the calculation of finite-temperature quantities in correlated systems. Phys. Rev. B 49, 5065–5068 (1994).

    ADS  Google Scholar 

  22. 22.

    Hams, A. & De Raedt, H. Fast algorithm for finding the eigenvalue distribution of very large matrices. Phys. Rev. E 62, 4365–4377 (2000).

    ADS  Google Scholar 

  23. 23.

    Sugiura, S. & Shimizu, A. Thermal pure quantum states at finite temperature. Phys. Rev. Lett. 108, 240401 (2012).

    ADS  Google Scholar 

  24. 24.

    Sugiura, S. & Shimizu, A. Canonical thermal pure quantum state. Phys. Rev. Lett. 111, 010401 (2013).

    ADS  Google Scholar 

  25. 25.

    Sugita, A. On the foundation of quantum statistical mechanics, RIMS Kokyuroku 1507, 147–159 (2006).

    Google Scholar 

  26. 26.

    Sugita, A. On the basis of quantum statistical mechanics. Nonlinear Phenom. Complex Syst. 10, 192–195 (2007).

    MathSciNet  Google Scholar 

  27. 27.

    Reimann, P. Typicality for generalized microcanonical ensembles. Phys. Rev. Lett. 99, 160404 (2007).

    ADS  Google Scholar 

  28. 28.

    Saito, K., Takesue, S. & Miyashita, S. System-size dependence of statistical behavior in quantum system. J. Phys. Soc. Jpn 65, 1243–1249 (1996).

    ADS  Google Scholar 

  29. 29.

    Reimann, P. Foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. Lett. 101, 190403 (2008).

    ADS  Google Scholar 

  30. 30.

    Short, A. J. & Farrelly, T. C. Quantum equilibration in finite time. New J. Phys. 14, 013063 (2012).

    ADS  Google Scholar 

  31. 31.

    Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

    ADS  Google Scholar 

  32. 32.

    Rigol, M. & Santos, L. F. Quantum chaos and thermalization in gapped systems. Phys. Rev. A 82, 011604 (2010).

    ADS  Google Scholar 

  33. 33.

    Santos, L. F. & Rigol, M. Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization. Phys. Rev. E 81, 036206 (2010).

    ADS  Google Scholar 

  34. 34.

    Santos, L. F. & Rigol, M. Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum systems. Phys. Rev. E 82, 031130 (2010).

    ADS  MathSciNet  Google Scholar 

  35. 35.

    Santos, L. F., Borgonovi, F. & Izrailev, F. M. Chaos and statistical relaxation in quantum systems of interacting particles. Phys. Rev. Lett. 108, 094102 (2012).

    ADS  Google Scholar 

  36. 36.

    Santos, L. F., Borgonovi, F. & Izrailev, F. M. Onset of chaos and relaxation in isolated systems of interacting spins: energy shell approach. Phys. Rev. E 85, 036209 (2012).

    ADS  Google Scholar 

  37. 37.

    Rigol, M. Breakdown of thermalization in finite one-dimensional systems. Phys. Rev. Lett. 103, 100403 (2009).

    ADS  Google Scholar 

  38. 38.

    Rigol, M. Quantum quenches and thermalization in one-dimensional fermionic systems. Phys. Rev. A 80, 053607 (2009).

    ADS  Google Scholar 

  39. 39.

    Biroli, G., Kollath, C. & L’áuchli, A. Effect of rare fluctuations on the thermalization of isolated quantum systems. Phys. Rev. Lett. 105, 250401 (2010).

    ADS  Google Scholar 

  40. 40.

    Ikeda, T. N., Watanabe, Y. & Ueda, M. Finite-size scaling analysis of the eigenstate thermalization hypothesis in a one-dimensional interacting Bose gas. Phys. Rev. E 87, 012125 (2013).

    ADS  Google Scholar 

  41. 41.

    Alba, V. Eigenstate thermalization hypothesis and integrability in quantum spin chains. Phys. Rev. B 91, 155123 (2015).

    ADS  Google Scholar 

  42. 42.

    Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    ADS  Google Scholar 

  43. 43.

    Altman, E. & Vosk, R. Universal dynamics and renormalization in many-body-localized systems. Annu. Rev. Condens. Matter Phys. 6, 383–409 (2015).

    ADS  Google Scholar 

  44. 44.

    Imbrie, J. Z., Ros, V. & Scardicchio, A. Local integrals of motion in many-body localized systems. Ann. Phys. 529, 1600278 (2017).

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Srednicki, M. The approach to thermal equilibrium in quantized chaotic systems. J. Phys. A 32, 1163–1175 (1999).

    ADS  MathSciNet  MATH  Google Scholar 

  46. 46.

    Beugeling, W., Osessner, R. & Haque, M. Off-diagonal matrix elements of local operators in many-body quantum systems. Phys. Rev. E 91, 012144 (2015).

    ADS  Google Scholar 

  47. 47.

    Hamazaki, R. & Ueda, M. Generalized Gibbs ensemble in a nonintegrable system with an extensive number of local symmetries. Phys. Rev. E 93, 032116 (2016).

    ADS  MathSciNet  Google Scholar 

  48. 48.

    Mondaini, R. & Rigol, M. Eigenstate thermalization in the two-dimensional transverse field Ising model. II. Off-diagonal matrix elements of observables. Phys. Rev. E 96, 012157 (2017).

    ADS  MathSciNet  Google Scholar 

  49. 49.

    Kim, H., Ikeda, T. N. & Huse, D. Testing whether all eigenstates obey the eigenstate thermalization hypothesis. Phys. Rev. E 90, 052105 (2014).

    ADS  Google Scholar 

  50. 50.

    Iyoda, E., Kaneko, K. & Sagawa, T. Fluctuation theorem for many-body pure quantum states. Phys. Rev. Lett. 119, 100601 (2017).

    ADS  MathSciNet  Google Scholar 

  51. 51.

    Mori, T. Weak eigenstate thermalization with large deviation bound. Preprint at https://arxiv.org/abs/1609.09776 (2016).

  52. 52.

    Rogol, M. Fundamental asymmetry in quenches between integrable and nonintegrable systems. Phys. Rev. Lett. 116, 100601 (2016).

    ADS  MathSciNet  Google Scholar 

  53. 53.

    Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).

    ADS  Google Scholar 

  54. 54.

    Yao, N. Y., Potter, A. C., Potirniche, I.-D. & Vishwanath, A. Discrete time crystals: rigidity, criticality, and realizations. Phys. Rev. Lett. 118, 030401 (2017).

    ADS  MathSciNet  Google Scholar 

  55. 55.

    Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    ADS  Google Scholar 

  56. 56.

    Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    ADS  Google Scholar 

  57. 57.

    Blanes, S., Casas, F., Oteo, J. & Ros, J. The Magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2009).

    ADS  MathSciNet  Google Scholar 

  58. 58.

    D’Alessio, L. & Polkovnikov, A. Many-body energy localization transition in periodically driven systems. Ann. Phys. 333, 19–33 (2013).

    ADS  MathSciNet  MATH  Google Scholar 

  59. 59.

    D’Alessio, L. & Rigol, M. Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4, 041048 (2014).

    Google Scholar 

  60. 60.

    Lazarides, A., Das, A. & Moessner, R. Equilibrium states of generic quantum systems subject to periodic driving. Phys. Rev. E 90, 012110 (2014).

    ADS  Google Scholar 

  61. 61.

    Ponte, P., Chandran, A., Papić, Z. & Abanin, D. A. Periodically driven ergodic and many-body localized quantum systems. Ann. Phys. 353, 196–204 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  62. 62.

    Russomanno, A., Silva, A. & Santoro, G. E. Periodic steady regime and interference in a periodically driven quantum system. Phys. Rev. Lett. 109, 257101 (2012).

    ADS  Google Scholar 

  63. 63.

    Lazarides, A., Das, A. & Moessner, R. Fate of many-body localization under periodic driving. Phys. Rev. Lett. 115, 030402 (2015).

    ADS  Google Scholar 

  64. 64.

    Altman, E. Many-body localization and quantum thermalization. Nat. Phys. 14, 979–983 (2018).

    Google Scholar 

  65. 65.

    Imbrie, J. Z. On many-body localization for quantum spin chains. J. Stat. Phys. 163, 998–1048 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  66. 66.

    Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  67. 67.

    Kondov, S. S., McGehee, W. R., Xu, W. & DeMarco, B. Disorder-induced localization in a strongly correlated atomic Hubbard gas. Phys. Rev. Lett. 114, 083002 (2015).

    ADS  Google Scholar 

  68. 68.

    J-y, Choi et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  69. 69.

    Goldstein, S., Lebowitz, J. L., Mastrodonato, C., Tumulka, R. & Zanghi, N. Phys. Rev. E 81, 011109 (2010).

    ADS  Google Scholar 

  70. 70.

    Tasaki, H. The approach to thermal equilibrium and “thermodynamic normality” — an observation based on the works by Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghi in 2009, and by von Neumann in 1929. Preprint at https://arxiv.org/abs/1003.5424 (2010).

  71. 71.

    Reimann, P. Generalization of von Neumann’s approach to thermalization. Phys. Rev. Lett. 115, 010403 (2015).

    ADS  MathSciNet  Google Scholar 

  72. 72.

    Hamazaki, R. & Ueda, M. Atypicality of most few-body observables. Phys. Rev. Lett. 120, 080603 (2018).

    ADS  Google Scholar 

  73. 73.

    Berges, J., Borsányi, S. & Wetterrich, C. Prethermalization. Phys. Rev. Lett. 93, 142002 (2004).

    ADS  Google Scholar 

  74. 74.

    Rigol, M., Dunjko, V., Yurovsky, V. & Olshanii, M. Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007).

    ADS  Google Scholar 

  75. 75.

    Berges, J., Rothkopf, A. & Schmidt, J. Nonthermal fixed points: effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett. 101, 041603 (2008).

    ADS  Google Scholar 

  76. 76.

    Cassidy, A. C., Clark, C. W. & Rigol, M. Generalized thermalization in an integrable lattice system. Phys. Rev. Lett. 106, 140405 (2011).

    ADS  Google Scholar 

  77. 77.

    Mallayya, K., Rigol, M. & De Roeck, W. Prethermalization and thermalization in isolated quantum systems. Phys. Rev. X 9, 21027 (2019).

    Google Scholar 

  78. 78.

    Sotiriadis, S. & Calabrese, P. Validity of the GGE for quantum quenches from interacting to noninteracting models. J. Stat. Mech. P07024 (2014).

  79. 79.

    Pozsgay, B. et al. Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble. Phys. Rev. Lett. 113, 117203 (2014).

    ADS  Google Scholar 

  80. 80.

    Wouters, B. et al. Quenching the anisotropic Heisenberg chain: exact solution and generalized Gibbs ensemble predictions. Phys. Rev. Lett. 113, 117202 (2014).

    ADS  Google Scholar 

  81. 81.

    Mierzejewski, M., Prelovsek, P. & Prosen, T. Identifying local and quasilocal conserved quantities in integrable systems. Phys. Rev. Lett. 114, 140601 (2015).

    ADS  MathSciNet  Google Scholar 

  82. 82.

    Ilievski, E., Medenjak, M. & Prosen, T. Quasilocal conserved operators in the isotropic Heisenberg spin-1/2 chain. Phys. Rev. Lett. 115, 120601 (2015).

    ADS  Google Scholar 

  83. 83.

    Ilievski, E. et al. Complete generalized Gibbs ensenbles in an interacting theory. Phys. Rev. Lett. 115, 157201 (2015).

    ADS  Google Scholar 

  84. 84.

    Kuwahara, T., Mori, T. & Saito, K. Floquet–Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. 367, 96–124 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  85. 85.

    Mori, T., Kuwahara, T. & Saito, K. Rigorous bound on energy absorption and generic relaxation in periodically driven quantum systems. Phys. Rev. Lett. 116, 120401 (2016).

    ADS  Google Scholar 

  86. 86.

    Abanin, D. A., De Roeck, W., Ho, W. W. & Huveneers, F. Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017).

    ADS  Google Scholar 

  87. 87.

    Abanin, D., De Roeck, W., Ho, W. W. & Huveneers, F. A rigorous theory of many-body prethermalization for periodically driven and closed quantum systems. Commun. Math. Phys. 354, 809–827 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  88. 88.

    Kollath, C., L’áuchli, A. M. & Altman, E. Quench dynamics and nonequilibrium phase diagram of the Bose–Hubbard model. Phys. Rev. Lett. 98, 180601 (2007).

    ADS  Google Scholar 

  89. 89.

    Kaminishi, E., Mori, T., Ikeda, T. N. & Ueda, M. Entanglement pre-thermalization in a one-dimensional Bose gas. Nat. Phys. 11, 1050–1056 (2015).

    Google Scholar 

  90. 90.

    Lieb, E. H. & Liniger, W. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963).

    ADS  MathSciNet  MATH  Google Scholar 

  91. 91.

    Kinoshita, T., Wenger, T. & Weiss, D. S. A quantum Newtonas cradle. Nature 44, 900–903 (2006).

    ADS  Google Scholar 

  92. 92.

    Wu, H. & Foot, C. Direct simulation of evaporative cooling. J. Phys. B 29, L321–L328 (1996).

    ADS  Google Scholar 

  93. 93.

    Gring, M. et al. Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012).

    ADS  Google Scholar 

  94. 94.

    Langen, T., Geiger, R., Kuhnert, M., Rauer, B. & Schmiedmayer, J. Local emergence of thermal correlations in an isolated quantum many-body system. Nat. Phys. 9, 640–643 (2013).

    Google Scholar 

  95. 95.

    Langen, T. et al. Experimental observation of a generalized Gibbs ensemble. Science 348, 207–211 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  96. 96.

    Jaynes, E. T. Information theory and statistical mechanics. II. Phys. Rev. 108, 171–190 (1957).

    ADS  MathSciNet  MATH  Google Scholar 

  97. 97.

    Cazalilla, M. Effect of suddenly turning on interactions in the Luttinger model. Phys. Rev. Lett. 97, 156403 (2006).

    ADS  Google Scholar 

  98. 98.

    Caux, J. & Konik, R. Constructing the generalized Gibbs ensemble after a quantum quench. Phys. Rev. Lett. 109, 175301 (2012).

    ADS  Google Scholar 

  99. 99.

    Tang, Y. et al. Thermalization near integrability in a dipolar quantum Newton’s cradle. Phys. Rev. X 8, 021030 (2018).

    Google Scholar 

  100. 100.

    Giamarchi, T. Quantum Physics in One Dimension (Clarendon Press, 2003).

  101. 101.

    Orioli, A. P. et al. Relaxation of an isolated dipolar-interacting Rydberg quantum spin system. Phys. Rev. Lett. 120, 063601 (2018).

    ADS  Google Scholar 

  102. 102.

    Rubio-Abadal, A. et al. Floquet prethermalization in a Bose–Hubbard system. Phys. Rev. X 10, 021044 (2020).

    Google Scholar 

  103. 103.

    Bakr, W. S. et al. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

    ADS  Google Scholar 

  104. 104.

    Bakr, W. S. et al. Probing the superfluid-to-Mott Insulator transition at the single-atom level. Science 329, 547–550 (2010).

    ADS  Google Scholar 

  105. 105.

    Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–73 (2010).

    ADS  Google Scholar 

  106. 106.

    Trotzky, S. et al. Probing the relaxation towards equilibrium in an isolated stronly correlated one-dimensional Bose gas. Nat. Phys. 8, 325–330 (2012).

    Google Scholar 

  107. 107.

    Lieb, E. H. & Robinson, D. W. The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972).

    ADS  MathSciNet  Google Scholar 

  108. 108.

    Cheneau, M. et al. Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484–487 (2012).

    ADS  Google Scholar 

  109. 109.

    Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    ADS  Google Scholar 

  110. 110.

    Ribzheimer, J. P. et al. Expansion dynamics of interacting bosons in homogeneous lattices in one and two dimensions. Phys. Rev. Lett. 110, 205301 (2013).

    ADS  Google Scholar 

  111. 111.

    Pal, A. & Huse, D. A. Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010).

    ADS  Google Scholar 

  112. 112.

    Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

    ADS  MATH  Google Scholar 

  113. 113.

    Gomyi, I. V., Mirlin, A. D. & Polyakov, D. G. Interacting electrons in disordered wires: Anderson localization and low-T transport. Phys. Rev. Lett. 95, 206603 (2005).

    ADS  Google Scholar 

  114. 114.

    Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007).

    ADS  Google Scholar 

  115. 115.

    Aleiner, I. L., Altshuler, B. L. & Shlyapnikov, G. V. A finite-temperature phase transition for disordered weakly interacting bosons in one dimension. Nat. Phys. 6, 900–904 (2010).

    Google Scholar 

  116. 116.

    Aubry, S. & André, G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc. 3, 133–164 (1980).

    MathSciNet  MATH  Google Scholar 

  117. 117.

    Žnidarič, M., Prosen, T. & Prelovšek, P. Many-body localization in the Heisenberg XXZ magnet in a random field. Phys. Rev. B 77, 064426 (2008).

    ADS  Google Scholar 

  118. 118.

    Bardarson, J. H., Pollmann, F. & Moore, J. E. Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett. 109, 017202 (2012).

    ADS  Google Scholar 

  119. 119.

    Vosk, R. & Altman, E. Many-body localization in one dimension as a dynamical renormalization group fixed point. Phys. Rev. Lett. 110, 260601 (2013).

    Google Scholar 

  120. 120.

    Serbyn, M., Papić, Z. & Abanin, D. A. Universal slow growth of entanglement in interacting strongly disordered systems. Phys. Rev. Lett. 110, 260601 (2013).

    ADS  Google Scholar 

  121. 121.

    Nanduri, A., Kim, H. & Huse, D. A. Entanglement spreading in a many-body localized system. Phys. Rev. B 90, 064201 (2014).

    ADS  Google Scholar 

  122. 122.

    Bordia, P. et al. Coupling identical one-dimensional many-body localized systems. Phys. Rev. Lett. 116, 140401 (2016).

    ADS  Google Scholar 

  123. 123.

    Lüschen, H. P. et al. Signature of many-body localization in a controlled open quantum system. Phys. Rev. X 7, 011034 (2017).

    Google Scholar 

  124. 124.

    Bordia, P. et al. Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems. Phys. Rev. X 7, 041047 (2017).

    Google Scholar 

  125. 125.

    Lüschen, H. P. et al. Observation of slow dynamics near the many-body localization transition in one-dimensional quasiperiodic systems. Phys. Rev. Lett. 119, 260401 (2017).

    ADS  Google Scholar 

  126. 126.

    Rubio-Abadal, A. et al. Many-body delocalization in the presence of a quantum bath. Phys. Rev. X 9, 041014 (2019).

    Google Scholar 

  127. 127.

    Lukin, A. et al. Probing entanglement in a many-body-localized system. Science 364, 256–260 (2019).

    ADS  Google Scholar 

  128. 128.

    Kiefer-Emmanouilidis, M., Unayan, R., Fleischauer, M. & Sirker, J. Evidence for unbounded growth of the number entropy in many-body localized phases. Phys. Rev. Lett. 124, 243601 (2020).

    ADS  MathSciNet  Google Scholar 

  129. 129.

    Bordia, P., Lüschen, H., Schneider, U., Knap, M. & Bloch, I. Periodically driving a many-body localized quantum system. Nat. Phys. 13, 460–464 (2017).

    Google Scholar 

  130. 130.

    Nowak, B., Sexty, D. & Gasenzer, T. Superfluid turbulence: nonthermal fixed point in an ultracold Bose gas. Phys. Rev. B 84, 020506(R) (2011).

    ADS  Google Scholar 

  131. 131.

    PiñeiroOrioli, A., Boguslavski, K. & Berges, J. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D 92, 025041 (2015).

    ADS  MathSciNet  Google Scholar 

  132. 132.

    Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75 (2016).

    ADS  Google Scholar 

  133. 133.

    Prüfer, M. et al. Observation of universal dynamics in a spinor bose gas far from equilibrium. Nature 563, 217–221 (2018).

    ADS  Google Scholar 

  134. 134.

    Erne, S., Bücker, R., Gasenzer, T., Berges, J. & Schmiedmayer, J. Universal dynamics in an isolated one-dimensional bose gas far from equilibrium. Nature 563, 225–229 (2018).

    ADS  Google Scholar 

  135. 135.

    Gaunt, A. L., Fletcher, R. J., Smith, R. P. & Hadzibabic, Z. A superheated Bose-condensed gas. Nat. Phys. 9, 271–274 (2013).

    Google Scholar 

  136. 136.

    Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    ADS  Google Scholar 

  137. 137.

    Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).

    Google Scholar 

  138. 138.

    Choi, S. et al. Emergent SU(2) dynamics and perfect quantum many-body scars. Phys. Rev. Lett. 122, 220603 (2019).

    ADS  Google Scholar 

  139. 139.

    Rauer, B. et al. Recurrences in an isolated quantum many-body system. Science 360, 307–310 (2018).

    MathSciNet  MATH  Google Scholar 

  140. 140.

    Saint-Jalm, R. et al. Dynamical symmetry and breathers in a two-dimensional Bose gas. Phys. Rev. X 9, 021035 (2019).

    Google Scholar 

Download references

Acknowledgements

I acknowledge my present and former group members from whom I learned numerous things concerning the subjects described in this article. Special thanks are due to T. Mori, R. Hamazaki and Z. Gong who are always willing to share their expertise with me. This work was supported by KAKENHI grant number JP18H01145.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masahito Ueda.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ueda, M. Quantum equilibration, thermalization and prethermalization in ultracold atoms. Nat Rev Phys 2, 669–681 (2020). https://doi.org/10.1038/s42254-020-0237-x

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing