Abstract
The proton charge radius has been measured since the 1950s using elastic electron–proton scattering and ordinary hydrogen atomic spectroscopy. In 2010, a highly precise measurement of the proton charge radius using, for the first time, muonic hydrogen spectroscopy unexpectedly led to controversy, as the value disagreed with the previously accepted one. Since then, atomic and nuclear physicists have been trying to understand this discrepancy by checking theories, questioning experimental methods and performing new experiments. Recently, two measurements from electron scattering and ordinary hydrogen spectroscopy were found to agree with the results from muonic atom spectroscopy. Is the ‘proton-radius puzzle’ now resolved? In this Review, we scrutinize the experimental studies of the proton radius to gain insight on this issue. We provide a brief history of the proton before describing the techniques used to measure its radius and the current status of the field. We assess the precision and reliability of available experimental data, with particular focus on the most recent results. Finally, we discuss the forthcoming new generation of refined experiments and theoretical calculations that aim to definitely end the debate on the proton size.
Key points
-
The charge radius of the proton can be determined using two different experimental techniques: measurements of electron–proton elastic scattering cross sections and high-resolution spectroscopy of the hydrogen atom.
-
A decade ago, the precision of the atomic spectroscopy method was greatly improved using muonic hydrogen atoms, wherein the electron is replaced by a muon. However, the measured value of the proton radius was in disagreement with previous determinations, giving rise to the ‘proton-radius puzzle’.
-
The latest results from refined scattering and spectroscopy experiments agree with the muonic value, leading to questions regarding the estimation of systematic uncertainties in previous scattering and ordinary hydrogen experiments.
-
More measurements are needed to confirm or disprove this trend. Various projects are in progress, aiming to improve some aspects of existing techniques or using new approaches.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Rutherford, E. LXXIX. The scattering of α and β particles by matter and the structure of the atom. Lond. Edinb. Dubl. Phil. Mag. 21, 669–688 (1911).
Rutherford, E. LIV. Collision of α particles with light atoms. IV. An anomalous effect in nitrogen. Lond. Edinb. Dubl. Phil. Mag. 37, 537–587 (1919).
Frisch, R. & Stern, O. Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons. Z. Phys. 85, 4–16 (1933).
Estermann, I. & Stern, O. Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons. II. Z. Phys. 85, 17–24 (1933).
Hofstadter, R. & McAllister, R. W. Electron scattering from the proton. Phys. Rev. 98, 217–218 (1955).
Gell-Mann, M. A schematic model of baryons and mesons. Phys. Lett. 8, 214–215 (1964).
Zweig, G. An SU(3) Model for Strong Interaction Symmetry and its Breaking Version 2, 22–101 (Hadronic Press, 1980).
Breidenbach, M. et al. Observed behavior of highly inelastic electron-proton scattering. Phys. Rev. Lett. 23, 935–939 (1969).
Müller, D., Robaschik, D., Geyer, B., Dittes, F.-M. & Hořejši, J. Wave functions, evolution equations and evolution kernels from light-ray operators of QCD. Fortschr. Phys. 42, 101–141 (1994).
Ji, X. Gauge-invariant decomposition of nucleon spin. Phys. Rev. Lett. 78, 610–613 (1997).
Radyushkin, A. V. Nonforward parton distributions. Phys. Rev. D 56, 5524–5557 (1997).
Airapetian, A. et al. Measurement of the beam-spin azimuthal asymmetry associated with deeply-virtual Compton scattering. Phys. Rev. Lett. 87, 182001 (2001).
Stepanyan, S. et al. Observation of exclusive deeply virtual Compton scattering in polarized electron beam asymmetry measurements. Phys. Rev. Lett. 87, 182002 (2001).
Mohr, P. J., Taylor, B. N. & Newell, D. B. CODATA recommended values of the fundamental physical constants: 2006. Rev. Mod. Phys. 80, 633–730 (2008).
Sick, I. On the rms-radius of the proton. Phys. Lett. B 576, 62–67 (2003).
Bernauer, J. C. et al. High-precision determination of the electric and magnetic form factors of the proton. Phys. Rev. Lett. 105, 242001 (2010).
Pohl, R. et al. The size of the proton. Nature 466, 213–216 (2010).
Antognini, A. et al. Proton structure from the measurement of 2S–2P transition frequencies of muonic hydrogen. Science 339, 417–420 (2013).
Pohl, R. et al. Laser spectroscopy of muonic deuterium. Science 353, 669–673 (2016).
Pohl, R., Gilman, R., Miller, G. A. & Pachucki, K. Muonic hydrogen and the proton radius puzzle. Ann. Rev. Nucl. Part. Sci. 63, 175–204 (2013).
Bernauer, J. & Pohl, R. The proton radius problem. Sci. Am. 310, 32–39 (2014).
Carlson, C. E. The proton radius puzzle. Prog. Part. Nucl. Phys. 82, 59–77 (2015).
Hill, R. J. Review of experimental and theoretical status of the proton radius puzzle. EPJ Web Conf. 137, 01023 (2017).
Beyer, A. et al. The Rydberg constant and proton size from atomic hydrogen. Science 358, 79–85 (2017).
Fleurbaey, H. et al. New measurement of the 1S–3S transition frequency of hydrogen: contribution to the proton charge radius puzzle. Phys. Rev. Lett. 120, 183001 (2018).
Bezginov, N. et al. A measurement of the atomic hydrogen Lamb shift and the proton charge radius. Science 365, 1007–1012 (2019).
Xiong, W. et al. A small proton charge radius from an electron–proton scattering experiment. Nature 575, 147–150 (2019).
Punjabi, V., Perdrisat, C., Jones, M., Brash, E. & Carlson, C. The structure of the nucleon: elastic electromagnetic form factors. Eur. Phys. J. A 51, 79–122 (2015).
Rosenbluth, M. N. High energy elastic scattering of electrons on protons. Phys. Rev. 79, 615–619 (1950).
Akhiezer, A. & Rekalo, M. Polarization phenomena in electron scattering by protons in the high energy region. Sov. Phys. Dokl. 13, 572 (1968).
Akhiezer, A. & Rekalo, M. Polarization effects in the scattering of leptons by hadrons. Sov. J. Part. Nucl. 4, 277–286 (1974).
Arnold, R. G., Carlson, C. E. & Gross, F. Polarization transfer in elastic electron scattering from nucleons and deuterons. Phys. Rev. C 23, 363–374 (1981).
Dombey, N. Scattering of polarized leptons at high energy. Rev. Mod. Phys. 41, 236–246 (1969).
Guichon, P. A. M. & Vanderhaeghen, M. How to reconcile the Rosenbluth and the polarization transfer methods in the measurement of the proton form factors. Phys. Rev. Lett. 91, 142303 (2003).
Blunden, P. G., Melnitchouk, W. & Tjon, J. A. Two-photon exchange and elastic electron–proton scattering. Phys. Rev. Lett. 91, 142304 (2003).
Adikaram, D. et al. Towards a resolution of the proton form factor problem: new electron and positron scattering data. Phys. Rev. Lett. 114, 062003 (2015).
Rachek, I. A. et al. Measurement of the two-photon exchange contribution to the elastic e±p scattering cross sections at the VEPP-3 storage ring. Phys. Rev. Lett. 114, 062005 (2015).
Henderson, B. S. et al. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment. Phys. Rev. Lett. 118, 092501 (2017).
Gorchtein, M. Forward sum rule for the 2γ-exchange correction to the charge-radius extraction from elastic electron scattering. Phys. Rev. C 90, 052201 (2014).
Tomalak, O., Pasquini, B. & Vanderhaeghen, M. Two-photon exchange contribution to elastic e−–proton scattering: full dispersive treatment of πN states and comparison with data. Phys. Rev. D 96, 096001 (2017).
Miller, G. A. Defining the proton radius: a unified treatment. Phys. Rev. C 99, 035202 (2019).
Karplus, R., Klein, A. & Schwinger, J. Electrodynamic displacement of atomic energy levels. II. Lamb shift. Phys. Rev. 86, 288–301 (1952).
Lamb, W. E. & Retherford, R. C. Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947).
Eides, M. I., Grotch, H. & Shelyuto, V. A. Theory of Light Hydrogenic Bound States (Springer Tracts in Modern Physics Vol. 222, Springer-Verlag, 2007).
Mohr, P. J., Newell, D. B. & Taylor, B. N. CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 88, 035009 (2016).
Parthey, C. G. et al. Improved measurement of the hydrogen 1S–2S transition frequency. Phys. Rev. Lett. 107, 203001 (2011).
Matveev, A. et al. Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link. Phys. Rev. Lett. 110, 230801 (2013).
Antognini, A. et al. Theory of the 2S–2P Lamb shift and 2S hyperfine splitting in muonic hydrogen. Ann. Phys. 331, 127–145 (2013).
Pachucki, K. Theory of the Lamb shift in muonic hydrogen. Phys. Rev. A 53, 2092–2100 (1996).
Pachucki, K. Proton structure effects in muonic hydrogen. Phys. Rev. A 60, 3593–3598 (1999).
Karshenboim, S. G., Korzinin, E. Y., Ivanov, V. G. & Shelyuto, V. A. Contribution of light-by-light scattering to energy levels of light muonic atoms. JETP Lett. 92, 8–14 (2010).
Jentschura, U. D. Lamb shift in muonic hydrogen — I. Verification and update of theoretical predictions. Ann. Phys. 326, 500–515 (2011).
Jentschura, U. D. Relativistic reduced-mass and recoil corrections to vacuum polarization in muonic hydrogen, muonic deuterium, and muonic helium ions. Phys. Rev. A 84, 012505 (2011).
Borie, E. Lamb shift in light muonic atoms — revisited. Ann. Phys. 327, 733–763 (2012).
Karshenboim, S. G., Ivanov, V. G. & Korzinin, E. Y. Relativistic recoil corrections to the electron-vacuum-polarization contribution in light muonic atoms. Phys. Rev. A 85, 032509 (2012).
Indelicato, P. Nonperturbative evaluation of some QED contributions to the muonic hydrogen n = 2 Lamb shift and hyperfine structure. Phys. Rev. A 87, 022501 (2013).
Pachucki, K., Patkóš, V. & Yerokhin, V. A. Three-photon-exchange nuclear structure correction in hydrogenic systems. Phys. Rev. A 97, 062511 (2018).
Miller G. A. Proton polarizability contribution: muonic hydrogen Lamb shift and elastic scattering. Phys. Lett. B 718, 1078–1082 (2013).
Birse, M. C. & McGovern, J. A. Proton polarisability contribution to the Lamb shift in muonic hydrogen at fourth order in chiral perturbation theory. Eur. Phys. J. A 48, 120 (2012).
Alarcón, J. M., Lensky, V. & Pascalutsa, V. Chiral perturbation theory of muonic-hydrogen Lamb shift: polarizability contribution. Eur. Phys. J. C 74, 2852–2861 (2014).
Chambers, E. E. & Hofstadter, R. Structure of the proton. Phys. Rev. 103, 1454–1463 (1956).
Simon, G., Schmitt, C., Borkowski, F. & Walther, V. Absolute electron–proton cross sections at low momentum transfer measured with a high pressure gas target system. Nucl. Phys. A 333, 381–391 (1980).
Bernauer, J. C. et al. Electric and magnetic form factors of the proton. Phys. Rev. C 90, 015206 (2014).
Hill, R. J. Effective field theory for large logarithms in radiative corrections to electron proton scattering. Phys. Rev. D 95, 013001 (2017).
Barcus, S. K., Higinbotham, D. W. & McClellan, R. E. How analytic choices can affect the extraction of electromagnetic form factors from elastic electron scattering cross section data. Phys. Rev. C 102, 015205 (2020).
Hill, R. J. & Paz, G. Model-independent extraction of the proton charge radius from electron scattering. Phys. Rev. D 82, 113005 (2010).
Lee, G., Arrington, J. R. & Hill, R. J. Extraction of the proton radius from electron–proton scattering data. Phys. Rev. D 92, 013013 (2015).
Kraus, E., Mesick, K. E., White, A., Gilman, R. & Strauch, S. Polynomial fits and the proton radius puzzle. Phys. Rev. C 90, 045206 (2014).
Higinbotham, D. W. et al. Proton radius from electron scattering data. Phys. Rev. C 93, 055207 (2016).
Griffioen, K., Carlson, C. & Maddox, S. Consistency of electron scattering data with a small proton radius. Phys. Rev. C 93, 065207 (2016).
Lorenz, I. & Meißner, U.-G. Reduction of the proton radius discrepancy by 3σ. Phys. Lett. B 737, 57–59 (2014).
Horbatsch, M. & Hessels, E. A. Evaluation of the strength of electron–proton scattering data for determining the proton charge radius. Phys. Rev. C 93, 015204 (2016).
Sick, I. & Trautmann, D. Reexamination of proton rms radii from low-q power expansions. Phys. Rev. C 95, 012501 (2017).
Yan, X. et al. Robust extraction of the proton charge radius from electron–proton scattering data. Phys. Rev. C 98, 025204 (2018).
Höhler, G. et al. Analysis of electromagnetic nucleon form factors. Nucl. Phys. B 114, 505–534 (1976).
Mergell, P., Meißner, U.-G. & Drechsel, D. Dispersion-theoretical analysis of the nucleon electromagnetic form factors. Nucl. Phys. A 596, 367–396 (1996).
Belushkin, M. A., Hammer, H.-W. & Meißner, U.-G. Dispersion analysis of the nucleon form factors including meson continua. Phys. Rev. C 75, 035202 (2007).
Adamuscin, C., Dubnicka, S. & Dubnickova, A. New value of the proton charge root mean square radius. Prog. Part. Nucl. Phys. 67, 479–485 (2012).
Lorenz, I. T., Hammer, H.-W. & Meißner, U.-G. The size of the proton — closing in on the radius puzzle. Eur. Phys. J. A 48, 151 (2012).
Lorenz, I. T., Meißner, U.-G., Hammer, H.-W. & Dong, Y.-B. Theoretical constraints and systematic effects in the determination of the proton form factors. Phys. Rev. D 91, 014023 (2015).
Alarcón, J. M., Higinbotham, D. W., Weiss, C. & Zhihong, Y. Proton charge radius extraction from electron scattering data using dispersively improved chiral effective field theory. Phys. Rev. C 99, 044303 (2019).
Yerokhin, V. A., Pachucki, K. & Patkóš, V. Theory of the Lamb shift in hydrogen and light hydrogen-like ions. Ann. Phys. 531, 1800324 (2019).
Karshenboim, S. G. & Shelyuto, V. A. Three-loop radiative corrections to the 1s Lamb shift in hydrogen. Phys. Rev. A 100, 032513 (2019).
Karshenboim, S. G., Ozawa, A. & Ivanov, V. G. Higher-order logarithmic corrections and the two-loop self-energy of a 1s electron in hydrogen. Phys. Rev. A 100, 032515 (2019).
Thomas, S. et al. High-resolution hydrogen spectroscopy and the proton radius puzzle. Ann. Phys. 531, 1800363 (2019).
Arnoult, O., Nez, F., Julien, L. & Biraben, F. Optical frequency measurement of the 1S–3S two-photon transition in hydrogen. Eur. Phys. J. D 60, 243–256 (2010).
Yost, D. C. et al. Spectroscopy of the hydrogen 1S–3S transition with chirped laser pulses. Phys. Rev. A 93, 042509 (2016).
Lundeen, S. R. & Pipkin, F. M. Separated oscillatory field measurement of the Lamb shift in H, n = 2. Metrologia 22, 9–54 (1986).
Marsman, A., Horbatsch, M., Corriveau, Z. A. & Hessels, E. A. Systematic effects important to separated-oscillatory-field measurements of the n = 2 Lamb shift in atomic hydrogen. Phys. Rev. A 98, 012509 (2018).
Hoballah, M. et al. Merits and constraints of low-K2 experimental data for the proton radius determination. Eur. Phys. J. A 55, 112 (2019).
Mihovilovič, M. et al. First measurement of proton’s charge form factor at very low Q2 with initial state radiation. Phys. Lett. B 771, 194–198 (2017).
Mihovilovič, M. et al. The proton charge radius extracted from the initial state radiation experiment at MAMI. Preprint at arXiv https://arxiv.org/abs/1905.11182 (2019).
Akimov, Y. K. et al. Electron scattering by protons at small angles. Sov. J. Exp. Theor. Phys. 35, 651–654 (1972).
Murphy, J. J., Shin, Y. M. & Skopik, D. M. Proton form factor from 0.15 to 0.79 fm−2. Phys. Rev. C 9, 2125–2129 (1974).
Merkel, H. in Proc. 54th International Winter Meeting on Nuclear Physics — PoS(BORMIO2016) Vol. 272, 037 (Sissa Medialab, 2016).
Suda, T. Measurement of proton charge radius by low-energy electron scattering. J. Part. Acc. Soc. Jpn 15, 52–59 (2018).
Barger, V., Chiang, C.-W., Keung, W.-Y. & Marfatia, D. Proton size anomaly. Phys. Rev. Lett. 106, 153001 (2011).
Tucker-Smith, D. & Yavin, I. Muonic hydrogen and MeV forces. Phys. Rev. D 83, 101702 (2011).
Batell, B., McKeen, D. & Pospelov, M. New parity-violating muonic forces and the proton charge radius. Phys. Rev. Lett. 107, 011803 (2011).
Carlson, C. E. & Rislow, B. C. New physics and the proton radius problem. Phys. Rev. D 86, 035013 (2012).
Pauk, V. & Vanderhaeghen, M. Lepton universality test in the photoproduction of e−e+ versus μ−μ+ pairs on a proton target. Phys. Rev. Lett. 115, 221804 (2015).
Liu, Y.-S. & Miller, G. A. Polarized lepton-nucleon elastic scattering and a search for a light scalar boson. Phys. Rev. C 92, 035209 (2015).
Bennett, G. W. et al. Final report of the E821 muon anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006).
Jegerlehner, F. & Nyffeler, A. The muon g − 2. Phys. Rep. 477, 1–110 (2009).
Krasznahorkay, A. J. et al. Observation of anomalous internal pair creation in 8Be: a possible indication of a light, neutral boson. Phys. Rev. Lett. 116, 042501 (2016).
Krasznahorkay, A. J. et al. New evidence supporting the existence of the hypothetic X17 particle. Preprint at arXiv https://arxiv.org/abs/1910.10459 (2019).
Liu, Y.-S., McKeen, D. & Miller, G. A. Electrophobic scalar boson and muonic puzzles. Phys. Rev. Lett. 117, 101801 (2016).
Gilman, R. et al. Technical design report for the Paul Scherrer Institute experiment R-12-01.1: studying the proton “radius” puzzle with μp elastic scattering. Preprint at arXiv https://arxiv.org/abs/1709.09753 (2017).
Adams, B. et al. Letter of intent: a new QCD facility at the M2 beam line of the CERN SPS (COMPASS++/AMBER). Preprint at arXiv https://arxiv.org/abs/1808.00848 (2018).
Beyer, A. et al. Precision spectroscopy of 2S–nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius. Phys. Scr. 2015, 014030 (2015).
Galtier, S., Nez, F., Julien, L. & Biraben, F. Ultraviolet continuous-wave laser source at 205 nm for hydrogen spectroscopy. Opt. Commun. 324, 34–37 (2014).
Karshenboim, S. G. Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants. Phys. Rep. 422, 1–63 (2005).
Cooke, D. A. et al. Observation of positronium annihilation in the 2S state: towards a new measurement of the 1S–2S transition frequency. Hyperfine Interact. 233, 67–73 (2015).
Mills, A. in Advances in Atomic, Molecular, and Optical Physics Vol. 65 (eds Arimondo, E., Lin, C. C. & Yelin, S. F.) 265–290 (Elsevier, 2016).
Cassidy, D. B. Experimental progress in positronium laser physics. Eur. Phys. J. D 72, 53 (2018).
Adkins, G. S., Kim, M., Parsons, C. & Fell, R. N. Three-photon-annihilation contributions to positronium energies at order mα7. Phys. Rev. Lett. 115, 233401 (2015).
Crivelli, P. & Wichmann, G. in CPT and Lorentz Symmetry (ed. Kostelecký, V. A.) 5–8 (World Scientific, 2017).
Herrmann, M. et al. Feasibility of coherent XUV spectroscopy on the 1S–2S transition in singly ionized helium. Phys. Rev. A 79, 052505 (2009).
Altmann, R. K., Galtier, S., Dreissen, L. S. & Eikema, K. S. E. High-precision Ramsey-comb spectroscopy at deep ultraviolet wavelengths. Phys. Rev. Lett. 117, 173201 (2016).
Krauth, J. J. et al. in Proc. International Conference on Precision Physics and Fundamental Physical Constants — PoS(FFK2019) Vol. 353, 049 (Sissa Medialab, 2019).
Karshenboim, S. G., Ozawa, A., Shelyuto, V. A., Szafron, R. & Ivanov, V. G. The Lamb shift of the 1s state in hydrogen: two-loop and three-loop contributions. Phys. Lett. B 795, 432–437 (2019).
Pachucki, K., Patkóš, V. & Yerokhin, V. A. Testing fundamental interactions on the helium atom. Phys. Rev. A 95, 062510 (2017).
Rengelink, R. J. et al. Precision spectroscopy of helium in a magic wavelength optical dipole trap. Nat. Phys. 14, 1132–1137 (2018).
Zheng, X. et al. Measurement of the frequency of the 23S−23P transition of 4He. Phys. Rev. Lett. 119, 263002 (2017).
Diepold, M. et al. Theory of the Lamb shift and fine structure in muonic 4He ions and the muonic 3He–4He isotope shift. Ann. Phys. 396, 220–244 (2018).
Karr, J.-P., Hilico, L., Koelemeij, J. C. J. & Korobov, V. I. Hydrogen molecular ions for improved determination of fundamental constants. Phys. Rev. A 94, 050501 (2016).
Puchalski, M., Komasa, J., Czachorowski, P. & Pachucki, K. Complete α6m corrections to the ground state of H2. Phys. Rev. Lett. 117, 263002 (2016).
Hilico, L., Billy, N., Grémaud, B. & Delande, D. Polarizabilities, light shifts and two-photon transition probabilities between J = 0 states of the H\({}_{2}^{+}\) and D\({}_{2}^{+}\) molecular ions. J. Phys. B 34, 491–507 (2001).
Tran, V. Q., Karr, J.-P., Douillet, A., Koelemeij, J. C. J. & Hilico, L. Two-photon spectroscopy of trapped HD+ ions in the Lamb–Dicke regime. Phys. Rev. A 88, 033421 (2013).
Alighanbari, S., Giri, G. S., Constantin, F. L., Korobov, V. I. & Schiller, S. Precise test of quantum electrodynamics and determination of fundamental constants with HD+ ions. Nature 581, 152–158 (2020).
Patra, S. et al. Proton–electron mass ratio from laser spectroscopy of HD+ at the part-per-trillion level. Science 369, 1238–1241 (2020).
Korobov, V. I., Hilico, L. & Karr, J.-P. Fundamental transitions and ionization energies of the hydrogen molecular ions with few ppt uncertainty. Phys. Rev. Lett. 118, 233001 (2017).
Tao, L.-G. et al. Toward a determination of the proton-electron mass ratio from the Lamb-dip measurement of HD. Phys. Rev. Lett. 120, 153001 (2018).
Cozijn, F. M. J., Dupré, P., Salumbides, E. J., Eikema, K. S. E. & Ubachs, W. Sub-Doppler frequency metrology in HD for tests of fundamental physics. Phys. Rev. Lett. 120, 153002 (2018).
Hölsch, N. et al. Benchmarking theory with an improved measurement of the ionization and dissociation energies of H2. Phys. Rev. Lett. 122, 103002 (2019).
Puchalski, M., Komasa, J., Czachorowski, P. & Pachucki, K. Nonadiabatic QED correction to the dissociation energy of the hydrogen molecule. Phys. Rev. Lett. 122, 103003 (2019).
Jentschura, U. D., Mohr, P. J., Tan, J. N. & Wundt, B. J. Fundamental constants and tests of theory in Rydberg states of hydrogenlike ions. Phys. Rev. Lett. 100, 160404 (2008).
Ramos, A., Moore, K. & Raithel, G. Measuring the Rydberg constant using circular Rydberg atoms in an intensity-modulated optical lattice. Phys. Rev. A 96, 032513 (2017).
Schmidt, S. et al. The next generation of laser spectroscopy experiments using light muonic atoms. J. Phys. Conf. Ser. 1138, 012010 (2018).
Lehmann, P., Taylor, R. & Wilson, R. Electron–proton scattering at low momentum transfers. Phys. Rev. 126, 1183–1188 (1962).
Dudelzak, B., Sauvage, G. & Lehmann, P. Measurements of the form factors of the proton at momentum transfers q22 fermi−2. Nuovo Cim. 28, 18–24 (1963).
Frèrejacque, D., Benaksas, D. & Drickey, D. Proton form factors from observation of recoil protons. Phys. Rev. 141, 1308–1312 (1966).
Borkowski, F., Peuser, P., Simon, G., Walther, V. & Wendling, R. Electromagnetic form factors of the proton at low four-momentum transfer. Nucl. Phys. A 222, 269–275 (1974).
Borkowski, F., Simon, G., Walther, V. & Wendling, R. Electromagnetic form factors of the proton at low four-momentum transfer (II). Nucl. Phys. B 93, 461–478 (1975).
McCord, M. et al. Preliminary results of a new determination of the rms charge radius of the proton. Nucl. Instrum. Methods Phys. Res. B 56–57, 496–499 (1991).
Eschrich, I. et al. Measurement of the Σ− charge radius by Σ−-electron elastic scattering. Phys. Lett. B 522, 233–239 (2001).
Hand, L. N., Miller, D. G. & Wilson, R. Electric and magnetic form factors of the nucleon. Rev. Mod. Phys. 35, 335–349 (1963).
Rosenfelder, R. Coulomb corrections to elastic electron–proton scattering and the proton charge radius. Phys. Lett. B 479, 381–386 (2000).
Blunden, P. G. & Sick, I. Proton radii and two-photon exchange. Phys. Rev. C 72, 057601 (2005).
Borisyuk, D. Proton charge and magnetic rms radii from the elastic ep scattering data. Nucl. Phys. A 843, 59–67 (2010).
Zhan, X. et al. High-precision measurement of the proton elastic form factor ratio μpGE/GM at low Q2. Phys. Lett. B 705, 59–64 (2011).
Sick, I. Problems with proton radii. Prog. Part. Nucl. Phys. 67, 473–478 (2012).
Graczyk, K. M. & Juszczak, C. Proton radius from Bayesian inference. Phys. Rev. C 90, 054334 (2014).
Arrington, J. & Sick, I. Evaluation of the proton charge radius from electron–proton scattering. J. Phys. Chem. Ref. Data 44, 031204 (2015).
Horbatsch, M., Hessels, E. A. & Pineda, A. Proton radius from electron–proton scattering and chiral perturbation theory. Phys. Rev. C 95, 035203 (2017).
Sick, I. Proton charge radius from electron scattering. Atoms 6, 2 (2018).
Newton, G., Andrews, D. A. & Unsworth, P. J. A precision determination of the Lamb shift in hydrogen. Phil. Trans. R. Soc. Lond. A 290, 373–404 (1979).
Bourzeix, S. et al. High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift. Phys. Rev. Lett. 76, 384–387 (1996).
Hagley, E. W. & Pipkin, F. M. Separated oscillatory field measurement of hydrogen 2S1/2–2P3/2 fine structure interval. Phys. Rev. Lett. 72, 1172–1175 (1994).
Berkeland, D. J., Hinds, E. A. & Boshier, M. G. Precise optical measurement of Lamb shifts in atomic hydrogen. Phys. Rev. Lett. 75, 2470–2473 (1995).
Weitz, M. et al. Precision measurement of the 1S ground-state Lamb shift in atomic hydrogen and deuterium by frequency comparison. Phys. Rev. A 52, 2664–2681 (1995).
de Beauvoir, B. et al. Absolute frequency measurement of the 2S–8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant. Phys. Rev. Lett. 78, 440–443 (1997).
Schwob, C. et al. Optical frequency measurement of the 2S–12D transitions in hydrogen and deuterium: Rydberg constant and Lamb shift determinations. Phys. Rev. Lett. 82, 4960–4963 (1999).
Drickey, D. J. & Hand, L. N. Precise neutron and proton form factors at low momentum transfers. Phys. Rev. Lett. 9, 521–524 (1962).
Meyer, V. et al. Measurement of the 1s–2s energy interval in muonium. Phys. Rev. Lett. 84, 1136–1139 (2000).
Jungmann, K.-P. in The Hydrogen Atom (eds Karshenboim, S. G. et al.) 81–102 (Springer, 2001).
Fee, M. S. et al. Measurement of the positronium 13S1−23S1 interval by continuous-wave two-photon excitation. Phys. Rev. Lett. 70, 1397–1400 (1993).
Bumiller, F., Croissiaux, M., Dally, E. & Hofstadter, R. Electromagnetic form factors of the proton. Phys. Rev. 124, 1623–1631 (1961).
Chen, K. W. et al. Measurement of proton electromagnetic form factors at high momentum transfers. Phys. Rev. 141, 1267–1285 (1966).
Bartel, W. et al. Small-angle electron-proton elastic scattering cross sections for momentum transfers between 10 and 105 f−2. Phys. Rev. Lett. 17, 608–611 (1966).
Janssens, T., Hofstadter, R., Hughes, E. B. & Yearian, M. R. Proton form factors from elastic electron–proton scattering. Phys. Rev. 142, 922–931 (1966).
Berger, C., Burkert, V., Knop, G., Langenbeck, B. & Rith, K. Electromagnetic form factors of the proton at squared four-momentum transfers between 10 and 50 fm−2. Phys. Lett. B 35, 87–89 (1971).
Price, L. E. et al. Backward-angle electron–proton elastic scattering and proton electromagnetic form factors. Phys. Rev. D 4, 45–53 (1971).
Bartel, W. et al. Measurement of proton and neutron electromagnetic form factors at squared four-momentum transfers up to 3 (GeV/c)2. Nucl. Phys. B 58, 429–475 (1973).
Walker, R. C. et al. Measurements of the proton elastic form factors for 1 ≤ Q2 ≤ 3 (GeV/c)2 at SLAC. Phys. Rev. D 49, 5671–5689 (1994).
Andivahis, L. et al. Measurements of the electric and magnetic form factors of the proton from Q2 = 1.75 to 8.83 (GeV/c)2. Phys. Rev. D 50, 5491–5517 (1994).
Christy, M. E. et al. Measurements of electron-proton elastic cross sections for 0.4 < Q2 < 5.5(GeV/c)2. Phys. Rev. C 70, 015206 (2004).
Qattan, I. A. et al. Precision Rosenbluth measurement of the proton elastic form factors. Phys. Rev. Lett. 94, 142301 (2005).
Milbrath, B. D. et al. Comparison of polarization observables in electron scattering from the proton and deuteron. Phys. Rev. Lett. 80, 452–455 (1998).
Dieterich, S. et al. Polarization transfer in the 4He(e →, e′p →)3H reaction. Phys. Lett. B 500, 47–52 (2001).
Gayou, O. et al. Measurements of the elastic electromagnetic form factor ratio μpGEp/GMp via polarization transfer. Phys. Rev. C 64, 038202 (2001).
Pospischil, T. et al. Measurement of GEp/GMp via polarization transfer at Q2 = 0.4GeV/c2. Eur. Phys. J. A 12, 125–127 (2001).
Strauch, S. et al. Polarization transfer in the \({}^{4}{\rm{H}}{\rm{e}}{\overrightarrow{e},{e}^{{\prime} }\overrightarrow{p}}^{3}{\rm{H}}\) reaction up to Q2 = 2.6(GeV/c)2. Phys. Rev. Lett. 91, 052301 (2003).
Punjabi, V. et al. Proton elastic form factor ratios to Q2 = 3.5GeV2 by polarization transfer. Phys. Rev. C 71, 055202 (2005).
MacLachlan, G. et al. The ratio of proton electromagnetic form factors via recoil polarimetry at Q2 = 1.13(GeV/c)2. Nucl. Phys. A 764, 261–273 (2006).
Jones, M. K. et al. Proton GE/GM from beam-target asymmetry. Phys. Rev. C 74, 035201 (2006).
Crawford, C. B. et al. Measurement of the proton’s electric to magnetic form factor ratio from \({}^{1}\overrightarrow{{\rm{H}}}(\overrightarrow{e},{e}^{{\prime} }p)\). Phys. Rev. Lett. 98, 052301 (2007).
Paolone, M. et al. Polarization transfer in the \({}^{4}{\rm{He}}{(\overrightarrow{e},{e}^{{\prime} }\overrightarrow{p})}^{3}{\rm{H}}\) reaction at Q2 = 0.8 and 1.3 (GeV/c)2. Phys. Rev. Lett. 105, 072001 (2010).
Meziane, M. et al. Search for effects beyond the Born approximation in polarization transfer observables in \(\overrightarrow{e}p\) elastic scattering. Phys. Rev. Lett. 106, 132501 (2011).
Ron, G. et al. Low-Q2 measurements of the proton form factor ratio μpGE/GM. Phys. Rev. C 84, 055204 (2011).
Puckett, A. J. R. et al. Final analysis of proton form factor ratio data at Q2 = 4.0, 4.8, and 5.6 GeV2. Phys. Rev. C 85, 045203 (2012).
Puckett, A. J. R. et al. Polarization transfer observables in elastic electron–proton scattering at Q2 = 2.5, 5.2, 6.8, and 8.5 GeV2. Phys. Rev. C 96, 055203 (2017).
Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant number 824093. The authors thank R. Pohl for discussions and advice on the section on atomic spectroscopy.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the Review.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Physics thanks A. Gasparian, T. Udem and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
CODATA internationally recommended 2018 values of the fundamental physical constants: https://physics.nist.gov/cuu/Constants/
Rights and permissions
About this article
Cite this article
Karr, JP., Marchand, D. & Voutier, E. The proton size. Nat Rev Phys 2, 601–614 (2020). https://doi.org/10.1038/s42254-020-0229-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-020-0229-x
This article is cited by
-
Quantum-enhanced metrology with large Fock states
Nature Physics (2024)
-
Proton puzzles
Nature Reviews Physics (2021)