Abstract
The past two decades have seen the emergence of remarkable interconnections among previously remotely related disciplines, such as condensed matter, nuclear physics, gravity and quantum information, fuelled both by experimental advances and by the new powerful theoretical methods offered by holographic duality. In this Review, we sample some recent developments in holographic duality in connection with quantum many-body dynamics. These include insights into strongly correlated phases without quasiparticles and their transport properties, quantum many-body chaos and the scrambling of quantum information. We also discuss recent progress in understanding the structure of holographic duality itself using quantum information, including a ‘local’ version of the duality, as well as the quantum error-correction interpretation of quantum many-body states with a gravity dual, and how such notions help to demonstrate the unitarity of black hole evaporation.
Key points
-
Holographic duality is an equivalence relation between a gravitational theory in d + 1 dimensions and ordinary quantum systems in d dimensions.
-
The duality provides powerful analytical and numerical approaches to study properties of strongly correlated quantum systems without quasiparticles in otherwise inaccessible regimes.
-
Holographic duality gives new insights into equilibrium and non-equilibrium properties of strange metallic phases, and leads to new conceptual and technical breakthroughs in the study of quantum chaos.
-
The duality reveals deep connections between quantum information and geometry, which in turn lead to new understanding of propagation of quantum information and the structure of spacetime itself.
-
Combining ideas from holography and quantum information theory results in innovative approaches to the long-standing question of whether a black hole destroys information.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Maldacena, J. M. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998).
Gubser, S., Klebanov, I. R. & Polyakov, A. M. Gauge theory correlators from noncritical string theory. Phys. Lett B 428, 105–114 (1998).
Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998).
Zaanen, J. Why the temperature is high. Nature 430, 512–513 (2004).
Sachdev, S. Quantum Phase Transitions 2nd edn (Cambridge Univ. Press, 2011)
Adams, A., Carr, L. D., Schäfer, T., Steinberg, P. & Thomas, J. E. Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas, and holographic duality. New J. Phys. 14, 115009 (2012).
DeWolfe, O., Gubser, S. S., Rosen, C. & Teaney, D. Heavy ions and string theory. Prog. Part. Nucl. Phys. 75, 86–132 (2014).
Erdmenger, J. Introduction to gauge/gravity duality. PoS TASI2017, 001 (2018).
Liu, H. & Sonner, J. Holographic systems far from equilibrium: a review. Rep. Prog. Phys. 83, 016001 (2019).
Casalderrey-Solana, J., Liu, H., Mateos, D., Rajagopal, K. & Wiedemann, U. A. Gauge/string duality, hot QCD and heavy ion collisions. Preprint at arXiv https://arxiv.org/abs/1101.0618 (2011).
Năstase, H. Introduction to the ADS/CFT Correspondence (Cambridge Univ. Press, 2015).
Ammon, M. & Erdmenger, J. Gauge/gravity Duality: Foundations and Applications (Cambridge Univ. Press, 2015).
Zaanen, J., Liu, Y., Sun, Y.-W. & Schalm, K. Holographic Duality in Condensed Matter Physics (Cambridge Univ. Press, 2015).
Hartnoll, S. A., Lucas, A. & Sachdev, S. Holographic Quantum Matter (MIT Press, 2018).
Hayden, P. & Preskill, J. Black holes as mirrors: quantum information in random subsystems. J. High Energ. Phys. 09, 120 (2007).
Sekino, Y. & Susskind, L. Fast scramblers. J. High Energ. Phys. 2008, 65 (2008).
Klebanov, I. & Polyakov, A. AdS dual of the critical O(N) vector model. Phys. Lett. B550, 213–219 (2002).
Giombi, S. & Yin, X. Higher spin gauge theory and holography: the three-point functions. J. High Energ. Phys. 2010, 115 (2010).
Vasiliev, M. A. Nonlinear equations for symmetric massless higher spin fields in (A)dSd. Phys. Lett. B 567, 139–151 (2003).
Sachdev, S. & Ye, J. Gapless spin fluid ground state in a random, quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339 (1993).
Kitaev, A. A simple model of quantum holography. Presented at Kavli Institute for Theoretical Physics (2015).
Polchinski, J. & Rosenhaus, V. The spectrum in the Sachdev–Ye–Kitaev model. J. High Energ. Phys. 2016, 1 (2016).
Maldacena, J. & Stanford, D. Remarks on the Sachdev–Ye–Kitaev model. Phys. Rev. D 94, 106002 (2016).
Maldacena, J., Stanford, D. & Yang, Z. Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space. Prog. Theor. Exp. Phys. 2016, 12C104 (2016).
Kitaev, A. & Suh, S. J. The soft mode in the Sachdev–Ye–Kitaev model and its gravity dual. J. High Energ. Phys. 2018, 183 (2018).
Engelsöy, J., Mertens, T. G. & Verlinde, H. An investigation of AdS2 backreaction and holography. J. High Energ. Phys. 2016, 139 (2016).
Jensen, K. Chaos in AdS2 holography. Phys. Rev. Lett. 117, 111601 (2016).
Jevicki, A., Suzuki, K. & Yoon, J. Bi-local holography in the Syk model. J. High Energ. Phys. 2016, 7 (2016).
Jevicki, A. & Suzuki, K. Bi-local holography in the Syk model: perturbations. J. High Energ. Phys. 2016, 46 (2016).
Holzhey, C., Larsen, F. & Wilczek, F. Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424, 443–467 (1994).
Calabrese, P. & Cardy, J. L. Entanglement entropy and quantum field theory. J. Stat. Mech. 0406, P06002 (2004).
Ryu, S. & Takayanagi, T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006).
Hubeny, V. E., Rangamani, M. & Takayanagi, T. A covariant holographic entanglement entropy proposal. J. High Energ. Phys. 2007, 62 (2007).
Klebanov, I. R. & Strassler, M. J. Supergravity and a confining gauge theory: duality cascades and Chi Sb resolution of naked singularities. J. High Energ. Phys. 2000, 52 (2000).
Iqbal, N., Liu, H. & Mezei, M. Semi-local quantum liquids. J. High Energ. Phys. 2012, 86 (2012).
Iqbal, N., Liu, H. & Mezei, M. Lectures on holographic non-Fermi liquids and quantum phase transitions. in String Theory and Its Applications: From meV to the Planck Scale (World Scientific, 2011).
Varma, C., Littlewood, P. B., Schmitt-Rink, S., Abrahams, E. & Ruckenstein, A. Phenomenology of the normal state of Cu–O high-temperature superconductors. Phys. Rev. Lett. 63, 1996 (1989).
Coleman, P. Theories of non-Fermi liquid behavior in heavy fermions. Phys. B Condens. Matter 259, 353–358 (1999).
Si, Q., Rabello, S., Ingersent, K. & Smith, J. L. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001).
Mitrano, M. et al. Anomalous density fluctuations in a strange metal. Proc. Natl Acad. Sci. USA 115, 5392–5396 (2018).
Liu, H., McGreevy, J. & Vegh, D. Non-Fermi liquids from holography. Phys. Rev. D83, 065029 (2011).
Cubrovic, M., Zaanen, J. & Schalm, K. String theory, quantum phase transitions and the emergent Fermi-liquid. Science 325, 439–444 (2009).
Faulkner, T., Liu, H., McGreevy, J. & Vegh, D. Emergent quantum criticality, Fermi surfaces, and AdS(2). Phys. Rev. D 83, 125002 (2011).
Faulkner, T., Iqbal, N., Liu, H., McGreevy, J. & Vegh, D. Strange metal transport realized by gauge/gravity duality. Science 329, 1043–1047 (2010).
Faulkner, T., Iqbal, N., Liu, H., McGreevy, J. & Vegh, D. Charge transport by holographic Fermi surfaces. Phys. Rev. D88, 045016 (2013).
Faulkner, T., Horowitz, G. T. & Roberts, M. M. Holographic quantum criticality from multi-trace deformations. J. High Energ. Phys. 2011, 51 (2011).
Iqbal, N., Liu, H. & Mezei, M. Quantum phase transitions in semilocal quantum liquids. Phys. Rev. D 91, 025024 (2015).
Jensen, K. Semi-holographic quantum criticality. Phys. Rev. Lett. 107, 231601 (2011).
Gubser, S. S. Breaking an Abelian gauge symmetry near a black hole horizon. Phys. Rev. D 78, 065034 (2008).
Hartnoll, S. A., Herzog, C. P. & Horowitz, G. T. Building a holographic superconductor. Phys. Rev. Lett. 101, 031601 (2008).
Iqbal, N., Liu, H., Mezei, M. & Si, Q. Quantum phase transitions in holographic models of magnetism and superconductors. Phys. Rev. D 82, 045002 (2010).
Donos, A., Gauntlett, J. P., Sonner, J. & Withers, B. Competing orders in M-theory: superfluids, stripes and metamagnetism. J. High Energ. Phys. 2013, 108 (2013).
D’Hoker, E. & Kraus, P. Holographic metamagnetism, quantum criticality, and crossover behavior. J. High Energ. Phys. 2010, 83 (2010).
Hartnoll, S. A., Hofman, D. M. & Vegh, D. Stellar spectroscopy: fermions and holographic Lifshitz criticality. J. High Energ. Phys. 2011, 96 (2011).
Nakamura, S., Ooguri, H. & Park, C.-S. Gravity dual of spatially modulated phase. Phys. Rev. D 81, 044018 (2010).
Ooguri, H. & Park, C.-S. Holographic end-point of spatially modulated phase transition. Phys. Rev. D 82, 126001 (2010).
Donos, A. & Gauntlett, J. P. Holographic striped phases. J. High Energ. Phys. 2011, 140 (2011).
Donos, A. & Gauntlett, J. P. Holographic helical superconductors. J. High Energ. Phys. 2011, 91 (2011).
Rozali, M., Smyth, D., Sorkin, E. & Stang, J. B. Holographic stripes. Phys. Rev. Lett. 110, 201603 (2013).
Rozali, M., Smyth, D., Sorkin, E. & Stang, J. B. Striped order in AdS/CFT correspondence. Phys. Rev. D 87, 126007 (2013).
Donos, A. Striped phases from holography. J. High Energ. Phys. 2013, 59 (2013).
Withers, B. Black branes dual to striped phases. Classical Quant. Grav. 30, 155025 (2013).
Withers, B. Holographic checkerboards. J. High Energ. Phys. 2014, 102 (2014).
Bu, Y.-Y., Erdmenger, J., Shock, J. P. & Strydom, M. Magnetic field induced lattice ground states from holography. J. High Energ. Phys. 2013, 165 (2013).
Donos, A. & Gauntlett, J. P. Minimally packed phases in holography. J. High Energ. Phys. 2016, 148 (2016).
Cai, R.-G., Li, L., Wang, Y.-Q. & Zaanen, J. Intertwined order and holography: the case of parity breaking pair density waves. Phys. Rev. Lett. 119, 181601 (2017).
Donos, A. & Hartnoll, S. A. Interaction-driven localization in holography. Nat. Phys. 9, 649–655 (2013).
Andrade, T., Krikun, A., Schalm, K. & Zaanen, J. Doping the holographic Mott insulator. Nat. Phys. 14, 1049–1055 (2018).
Donos, A. & Gauntlett, J. P. Black holes dual to helical current phases. Phys. Rev. D 86, 064010 (2012).
Iizuka, N. et al. Bianchi attractors: a classification of extremal black brane geometries. J. High Energ. Phys. 2012, 193 (2012).
Preskill, J., Schwarz, P., Shapere, A. D., Trivedi, S. & Wilczek, F. Limitations on the statistical description of black holes. Mod. Phys. Lett. A 6, 2353–2362 (1991).
Jensen, K., Kachru, S., Karch, A., Polchinski, J. & Silverstein, E. Towards a holographic marginal Fermi liquid. Phys. Rev. D 84, 126002 (2011).
Sachdev, S. Bekenstein–Hawking entropy and strange metals. Phys. Rev. X 5, 041025 (2015).
Song, X.-Y., Jian, C.-M. & Balents, L. A strongly correlated metal built from Sachdev–Ye–Kitaev models. Phys. Rev. Lett. 119, 216601 (2017).
Ben-Zion, D. & McGreevy, J. Strange metal from local quantum chaos. Phys. Rev. B 97, 155117 (2018).
Patel, A. A., McGreevy, J., Arovas, D. P. & Sachdev, S. Magnetotransport in a model of a disordered strange metal. Phys. Rev. X 8, 021049 (2018).
Chowdhury, D., Werman, Y., Berg, E. & Senthil, T. Translationally invariant non-Fermi liquid metals with critical Fermi-surfaces: solvable models. Phys. Rev. X 8, 031024 (2018).
Altland, A., Bagrets, D. & Kamenev, A. Quantum criticality of granular Sachdev–Ye–Kitaev matter. Phys. Rev. Lett. 123, 106601 (2019).
Altland, A., Bagrets, D. & Kamenev, A. Sachdev–Ye–Kitaev non-Fermi-liquid correlations in nanoscopic quantum transport. Phys. Rev. Lett. 123, 226801 (2019).
Blake, M., Davison, R. A. & Sachdev, S. Thermal diffusivity and chaos in metals without quasiparticles. Phys. Rev. D 96, 106008 (2017).
Sachdev, S. Holographic metals and the fractionalized Fermi liquid. Phys. Rev. Lett. 105, 151602 (2010).
Gubser, S. S. & Rocha, F. D. Peculiar properties of a charged dilatonic black hole in AdS5. Phys. Rev. D 81, 046001 (2010).
Goldstein, K., Kachru, S., Prakash, S. & Trivedi, S. P. Holography of charged dilaton black holes. J. High Energ. Phys. 2010, 78 (2010).
Goldstein, K. et al. Holography of dyonic dilaton black branes. J. High Energ. Phys. 2010, 27 (2010).
Charmousis, C., Gouteraux, B., Kim, B. S., Kiritsis, E. & Meyer, R. Effective holographic theories for low-temperature condensed matter systems. J. High Energ. Phys. 2010, 151 (2010).
Huijse, L., Sachdev, S. & Swingle, B. Hidden Fermi surfaces in compressible states of gauge–gravity duality. Phys. Rev. B 85, 035121 (2012).
Dong, X., Harrison, S., Kachru, S., Torroba, G. & Wang, H. Aspects of holography for theories with hyperscaling violation. J. High Energ. Phys. 2012, 41 (2012).
Donos, A., Gauntlett, J. P., Griffin, T. & Ziogas, V. Incoherent transport for phases that spontaneously break translations. J. High Energ. Phys. 2018, 53 (2018).
Adams, A. & Yaida, S. Disordered holographic systems: functional renormalization. Phys. Rev. D 92, 126008 (2015).
Adams, A. & Yaida, S. Disordered holographic systems: marginal relevance of imperfection. Phys. Rev. D 90, 046007 (2014).
Hartnoll, S. A. & Herzog, C. P. Impure AdS/CFT correspondence. Phys. Rev. D 77, 106009 (2008).
Lucas, A., Sachdev, S. & Schalm, K. Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder. Phys. Rev. D 89, 066018 (2014).
Lucas, A. Hydrodynamic transport in strongly coupled disordered quantum field theories. New J. Phys. 17, 113007 (2015).
Hartnoll, S. A. & Santos, J. E. Disordered horizons: holography of randomly disordered fixed points. Phys. Rev. Lett. 112, 231601 (2014).
Vegh, D. Holography without translational symmetry. Preprint at arXiv https://arxiv.org/abs/1301.0537 (2013).
Davison, R. A. Momentum relaxation in holographic massive gravity. Phys. Rev. D 88, 086003 (2013).
Blake, M., Tong, D. & Vegh, D. Holographic lattices give the graviton an effective mass. Phys. Rev. Lett. 112, 071602 (2014).
Horowitz, G. T., Santos, J. E. & Tong, D. Optical conductivity with holographic lattices. J. High Energ. Phys. 2012, 168 (2012).
Erdmenger, J., Ge, X.-H. & Pang, D.-W. Striped phases in the holographic insulator/superconductor transition. J. High Energ. Phys. 2013, 27 (2013).
Chesler, P., Lucas, A. & Sachdev, S. Conformal field theories in a periodic potential: results from holography and field theory. Phys. Rev. D 89, 026005 (2014).
Donos, A. & Gauntlett, J. P. Holographic Q-lattices. J. High Energ. Phys. 2014, 40 (2014).
Alberte, L., Ammon, M., Jiménez-Alba, A., Baggioli, M. & Pujolás, O. Holographic phonons. Phys. Rev. Lett. 120, 171602 (2018).
Ling, Y., Niu, C., Wu, J.-P., Xian, Z.-Y. & Zhang, H.-b Holographic fermionic liquid with lattices. J. High Energ. Phys. 2013, 45 (2013).
Donos, A., Goutéraux, B. & Kiritsis, E. Holographic metals and insulators with helical symmetry. J. High Energ. Phys. 2014, 38 (2014).
Andrade, T. & Krikun, A. Commensurability effects in holographic homogeneous lattices. J. High Energ. Phys. 2016, 39 (2016).
Andrade, T. & Krikun, A. Commensurate lock-in in holographic non-homogeneous lattices. J. High Energ. Phys. 2017, 168 (2017).
Andrade, T. & Withers, B. A simple holographic model of momentum relaxation. J. High Energ. Phys. 2014, 101 (2014).
Davison, R. A. & Goutéraux, B. Momentum dissipation and effective theories of coherent and incoherent transport. J. High Energ. Phys. 2015, 39 (2015).
Davison, R. A. & Goutéraux, B. Dissecting holographic conductivities. J. High Energ. Phys. 2015, 90 (2015).
Hartnoll, S. A. & Hofman, D. M. Locally critical resistivities from umklapp scattering. Phys. Rev. Lett. 108, 241601 (2012).
Emery, V. & Kivelson, S. Superconductivity in bad metals. Phys. Rev. Lett. 74, 3253 (1995).
Damour, T. Quelques Propriétés Mécaniques, Electromagnétiques, Thermodynamiques et Quantiques des Trous Noirs. Thesis, Univ. Paris 6 (1979).
Thorne, K. S., Price, R. H. & MacDonald, D. A. Black Holes: The Membrane Paradigm (Yale Univ. Press, 1986).
Iqbal, N. & Liu, H. Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm. Phys. Rev. D 79, 025023 (2009).
Policastro, G., Son, D. T. & Starinets, A. O. The shear viscosity of strongly coupled \({\mathcal{N}}\,=4\) supersymmetric Yang–Mills plasma. Phys. Rev. Lett. 87, 081601 (2001).
Donos, A. & Gauntlett, J. P. Novel metals and insulators from holography. J. High Energ. Phys. 2014, 7 (2014).
Donos, A. & Gauntlett, J. P. Thermoelectric DC conductivities from black hole horizons. J. High Energ. Phys. 2014, 81 (2014).
Banks, E., Donos, A. & Gauntlett, J. P. Thermoelectric DC conductivities and Stokes flows on black hole horizons. J. High Energ. Phys. 2015, 103 (2015).
Baggioli, M. & Pujolas, O. Electron–phonon interactions, metal–insulator transitions, and holographic massive gravity. Phys. Rev. Lett. 114, 251602 (2015).
Goutéraux, B., Kiritsis, E. & Li, W.-J. Effective holographic theories of momentum relaxation and violation of conductivity bound. J. High Energ. Phys. 2016, 122 (2016).
Tranquada, J., Sternlieb, B., Axe, J., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).
Larkin, A. & Ovchinnikov, Y. N. Quasiclassical method in the theory of superconductivity. J. Exp. Theor. Phys. 28, 1200–1205 (1969).
Shenker, S. H. & Stanford, D. Black holes and the butterfly effect. J. High Energ. Phys. 2014, 67 (2014).
Roberts, D. A., Stanford, D. & Susskind, L. Localized shocks. J. High Energ. Phys. 2015, 51 (2015).
Hosur, P., Qi, X.-L., Roberts, D. A. & Yoshida, B. Chaos in quantum channels. J. High Energ. Phys. 2016, 4 (2016).
Blake, M. Universal charge diffusion and the butterfly effect in holographic theories. Phys. Rev. Lett. 117, 091601 (2016).
Blake, M. Universal diffusion in incoherent black holes. Phys. Rev. D 94, 086014 (2016).
Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos. J. High Energ. Phys. 2016, 106 (2016).
Gu, Y., Qi, X.-L. & Stanford, D. Local criticality, diffusion and chaos in generalized Sachdev–Ye–Kitaev models. J. High Energ. Phys. 2017, 125 (2017).
Swingle, B. & Chowdhury, D. Slow scrambling in disordered quantum systems. Phys. Rev. B 95, 060201 (2017).
Aleiner, I. L., Faoro, L. & Ioffe, L. B. Microscopic model of quantum butterfly effect: out-of-time-order correlators and traveling combustion waves. Ann. Phys. 375, 378–406 (2016).
Patel, A. A. & Sachdev, S. Quantum chaos on a critical Fermi surface. Proc. Natl Acad. Sci. USA 114, 1844–1849 (2017).
Shenker, S. H. & Stanford, D. Stringy effects in scrambling. J. High Energ. Phys. 2015, 132 (2015).
Nahum, A., Vijay, S. & Haah, J. Operator spreading in random unitary circuits. Phys. Rev. X 8, 021014 (2018).
von Keyserlingk, C., Rakovszky, T., Pollmann, F. & Sondhi, S. Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws. Phys. Rev. X 8, 021013 (2018).
Blake, M., Lee, H. & Liu, H. A quantum hydrodynamical description for scrambling and many-body chaos. J. High Energ. Phys. 2018, 127 (2018).
Grozdanov, S., Schalm, K. & Scopelliti, V. Black hole scrambling from hydrodynamics. Phys. Rev. Lett. 120, 231601 (2018).
Crossley, M., Glorioso, P. & Liu, H. Effective field theory of dissipative fluids. J. High Energ. Phys. 2017, 95 (2017).
Haehl, F. M. & Rozali, M. Effective field theory for chaotic CFTs. J. High Energ. Phys. 2018, 118 (2018).
Blake, M., Davison, R. A., Grozdanov, S. & Liu, H. Many-body chaos and energy dynamics in holography. J. High Energ. Phys. 2018, 35 (2018).
Haehl, F. M., Reeves, W. & Rozali, M. Reparametrization modes, shadow operators, and quantum chaos in higher-dimensional CFTs. J. High Energ. Phys. 2019, 102 (2019).
Hartnoll, S. A. Theory of universal incoherent metallic transport. Nat. Phys. 11, 54 (2015).
Lucas, A. & Steinberg, J. Charge diffusion and the butterfly effect in striped holographic matter. J. High Energ. Phys. 2016, 143 (2016).
Davison, R. A. et al. thermoelectric transport in disordered metals without quasiparticles: the Sachdev–Ye–Kitaev models and holography. Phys. Rev. B 95, 155131 (2017).
Zhang, J., Kountz, E. D., Behnia, K. & Kapitulnik, A. Thermalization and possible signatures of quantum chaos in complex crystalline materials. Proc. Natl Acad. Sci. USA 116, 19869 (2019).
Gao, P., Jafferis, D. L. & Wall, A. C. Traversable wormholes via a double trace deformation. J. High Energ. Phys. 2017, 151 (2017).
Maldacena, J., Stanford, D. & Yang, Z. Diving into traversable wormholes. Fortschr. Phys. 65, 1700034 (2017).
Gao, P. & Liu, H. Regenesis and quantum traversable wormholes. J. High Energ. Phys. 2019, 48 (2019).
Yoshida, B. & Kitaev, A. Efficient decoding for the Hayden–Preskill protocol. Preprint at arXiv https://arxiv.org/abs/1710.03363 (2017).
Danshita, I., Hanada, M. & Tezuka, M. Creating and probing the Sachdev–Ye–Kitaev model with ultracold gases: towards experimental studies of quantum gravity. Prog. Theor. Exp. Phys. 2017, 083I01 (2017).
García-Álvarez, L. et al. Digital quantum simulation of minimal AdS/CFT. Phys. Rev. Lett. 119, 040501 (2017).
Franz, M. & Rozali, M. Mimicking black hole event horizons in atomic and solid-state systems. Nat. Rev. Mater. 3, 491–501 (2018).
Landsman, K. et al. Verified quantum information scrambling. Nature 567, 61–65 (2019).
Brown, A. R. et al. Quantum gravity in the lab: teleportation by size and traversable wormholes. Preprint at arXiv https://arxiv.org/abs/1911.06314 (2019).
Gao, P. & Jafferis, D. L. A traversable wormhole teleportation protocol in the SYK model. Preprint at arXiv https://arxiv.org/abs/1911.07416 (2019).
Bohigas, O., Giannoni, M.-J. & Schmit, C. Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1–4 (1984).
Mehta, M. L. Random Matrices (Elsevier, 2004).
Haake, F. in Quantum Coherence in Mesoscopic Systems (ed. Kramer, B.) 583–595 (Springer, 1991).
Jackiw, R. Lower dimensional gravity. Nucl. Phys. B 252, 343–356 (1985).
Teitelboim, C. Gravitation and Hamiltonian structure in two space-time dimensions. Phys. Lett. B 126, 41–45 (1983).
Stanford, D. & Witten, E. JT gravity and the ensembles of random matrix theory. Preprint at arXiv https://arxiv.org/abs/1907.03363 (2019).
Saad, P., Shenker, S. H. & Stanford, D. JT gravity as a matrix integral. Preprint at arXiv https://arxiv.org/abs/1903.11115 (2019).
Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991).
Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994).
Fitzpatrick, A. L., Kaplan, J. & Walters, M. T. Universality of long-distance AdS physics from the CFT bootstrap. J. High Energ. Phys. 2014, 145 (2014).
Fitzpatrick, A. L., Kaplan, J., Walters, M. T. & Wang, J. Hawking from Catalan. J. High Energ. Phys. 2016, 69 (2016).
Lashkari, N., Dymarsky, A. & Liu, H. Universality of quantum information in chaotic CFTs. J. High Energ. Phys. 2018, 70 (2018).
Basu, P., Das, D., Datta, S. & Pal, S. Thermality of eigenstates in conformal field theories. Phys. Rev. E 96, 022149 (2017).
Brehm, E. M., Das, D. & Datta, S. Probing thermality beyond the diagonal. Phys. Rev. D 98, 126015 (2018).
Das, D., Datta, S. & Pal, S. Universal asymptotics of three-point coefficients from elliptic representation of Virasoro blocks. Phys. Rev. D 98, 101901 (2018).
Lam, H. T., Mertens, T. G., Turiaci, G. J. & Verlinde, H. Shockwave S-matrix from Schwarzian quantum mechanics. J. High Energ. Phys. 2018, 182 (2018).
Nayak, P., Sonner, J. & Vielma, M. Extended eigenstate thermalization and the role of FZZT branes in the Schwarzian theory. Preprint at arXiv https://arxiv.org/abs/1907.10061 (2019).
Saad, P. Late time correlation functions, baby universes, and ETH in JT gravity. Preprint at arXiv https://arxiv.org/abs/1907.10311 (2019).
Kraus, P. & Maloney, A. A Cardy formula for three-point coefficients or how the black hole got its spots. J. High Energ. Phys. 2017, 160 (2017).
Dymarsky, A. & Pavlenko, K. Generalized eigenstate thermalization hypothesis in 2D conformal field theories. Phys. Rev. Lett. 123, 111602 (2019).
Myers, R. C. & Sinha, A. Seeing a C-theorem with holography. Phys. Rev. D 82, 046006 (2010).
Myers, R. C. & Sinha, A. Holographic C-theorems in arbitrary dimensions. J. High Energ. Phys. 2011, 125 (2011).
Liu, H. & Mezei, M. A refinement of entanglement entropy and the number of degrees of freedom. J. High Energ. Phys. 2013, 162 (2013).
Liu, H. & Mezei, M. Probing renormalization group flows using entanglement entropy. J. High Energ. Phys. 2014, 98 (2014).
Abajo-Arrastia, J., Aparicio, J. & Lopez, E. Holographic evolution of entanglement entropy. J. High Energ. Phys. 2010, 149 (2010).
Albash, T. & Johnson, C. V. Evolution of holographic entanglement entropy after thermal and electromagnetic quenches. New J. Phys. 13, 045017 (2011).
Balasubramanian, V. et al. Thermalization of strongly coupled field theories. Phys. Rev. Lett. 106, 191601 (2011).
Galante, D. & Schvellinger, M. Thermalization with a chemical potential from AdS spaces. J. High Energ. Phys. 2012, 96 (2012).
Caceres, E. & Kundu, A. Holographic thermalization with chemical potential. J. High Energ. Phys. 2012, 55 (2012).
Aref’eva, I., Bagrov, A. & Koshelev, A. S. Holographic thermalization from Kerr–AdS. J. High Energ. Phys. 2013, 170 (2013).
Hartman, T. & Maldacena, J. Time evolution of entanglement entropy from black hole interiors. J. High Energ. Phys. 2013, 14 (2013).
Liu, H. & Suh, S. J. Entanglement tsunami: universal scaling in holographic thermalization. Phys. Rev. Lett. 112, 011601 (2014).
Anous, T., Hartman, T., Rovai, A. & Sonner, J. Black hole collapse in the 1/c expansion. J. High Energ. Phys. 2016, 123 (2016).
Penington, G. Entanglement wedge reconstruction and the information paradox. Preprint at arXiv https://arxiv.org/abs/1905.08255 (2019).
Almheiri, A., Engelhardt, N., Marolf, D. & Maxfield, H. The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole. J. High Energ. Phys. 2019, 63 (2019).
Almheiri, A., Mahajan, R., Maldacena, J. & Zhao, Y. The Page curve of Hawking radiation from semiclassical geometry. Preprint at arXiv https://arxiv.org/abs/1908.10996 (2019).
Rangamani, M. & Takayanagi, T. Holographic entanglement entropy. Lect. Notes Phys. 931, 1–246 (2017).
Harlow, D. Jerusalem lectures on black holes and quantum information. Rev. Mod. Phys. 88, 015002 (2016).
Harlow, D. TASI lectures on the emergence of bulk physics in AdS/CFT. PoS TASI2017, 002 (2018).
Maldacena, J. Black holes and quantum information. Nat. Rev. Phys. 2, 123–125 (2020).
Faulkner, T., Lewkowycz, A. & Maldacena, J. Quantum corrections to holographic entanglement entropy. J. High Energ. Phys. 2013, 74 (2013).
Jafferis, D. L., Lewkowycz, A., Maldacena, J. & Suh, S. J. Relative entropy equals bulk relative entropy. J. High Energ. Phys. 2016, 4 (2016).
Czech, B., Karczmarek, J. L., Nogueira, F. & Van Raamsdonk, M. The gravity dual of a density matrix. Class. Quant. Grav. 29, 155009 (2012).
Wall, A. C. Maximin surfaces, and the strong subadditivity of the covariant holographic entanglement entropy. Class. Quant. Grav. 31, 225007 (2014).
Dong, X., Harlow, D. & Wall, A. C. Reconstruction of bulk operators within the entanglement wedge in gauge–gravity duality. Phys. Rev. Lett. 117, 021601 (2016).
Hamilton, A., Kabat, D. N., Lifschytz, G. & Lowe, D. A. Holographic representation of local bulk operators. Phys. Rev. D 74, 066009 (2006).
Morrison, I. A. Boundary-to-bulk maps for AdS causal wedges and the Reeh–Schlieder property in holography. J. High Energ. Phys. 2014, 53 (2014).
Almheiri, A., Dong, X. & Harlow, D. Bulk locality and quantum error correction in AdS/CFT. J. High Energ. Phys. 2015, 163 (2015).
Cotler, J. et al. Entanglement wedge reconstruction via universal recovery channels. Phys. Rev. X 9, 031011 (2019).
Harlow, D. The Ryu–Takayanagi formula from quantum error correction. Commun. Math. Phys. 354, 865–912 (2017).
Hayden, P. & Penington, G. Learning the alpha-bits of black holes. J. High Energ. Phys. 2019, 7 (2019).
Engelhardt, N. & Wall, A. C. Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime. J. High Energ. Phys. 2015, 73 (2015).
Bekenstein, J. D. Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973).
Hawking, S. W. Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975).
Bousso, R., Fisher, Z., Leichenauer, S. & Wall, A. C. Quantum focusing conjecture. Phys. Rev. D 93, 064044 (2016).
Dong, X. Holographic entanglement entropy for general higher derivative gravity. J. High Energ. Phys. 2014, 44 (2014).
Dong, X. & Lewkowycz, A. Entropy, extremality, Euclidean variations, and the equations of motion. J. High Energ. Phys. 2018, 81 (2018).
Hawking, S. W. Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2473 (1976).
Page, D. N. Information in black hole radiation. Phys. Rev. Lett. 71, 3743–3746 (1993).
Lubkin, E. Entropy of an n-system from its correlation with a k-reservoir. J. Math. Phys. 19, 1028–1031 (1978).
Lloyd, S. & Pagels, H. Complexity as thermodynamic depth. Ann. Phys. 188, 186 (1988).
Page, D. N. Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291–1294 (1993).
Almheiri, A., Hartman, T., Maldacena, J., Shaghoulian, E. & Tajdini, A. Replica wormholes and the entropy of Hawking radiation. J. High Energ. Phys. 2020, 13 (2020).
Penington, G., Shenker, S. H., Stanford, D. & Yang, Z. Replica wormholes and the black hole interior. Preprint at arXiv https://arxiv.org/abs/1911.11977 (2019).
Zaanen, J. Planckian dissipation, minimal viscosity and the transport in cuprate strange metals. Preprint at arXiv https://arxiv.org/abs/1807.10951 (2018).
Busza, W., Rajagopal, K. & van der Schee, W. Heavy ion collisions: the big picture, and the big questions. Annu. Rev. Nucl. Part. Sci. 68, 339–376 (2018).
Acknowledgements
The authors thank N. Engelhardt, D. Harlow, A. Krikun, J. Minahan and J. Zaanen for discussions. This work is supported by the Office of High Energy Physics of the US Department of Energy under grant contract number DE-SC0012567. This work has also been supported by the Fonds National Suisse de la Recherche Scientifique (Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung) through project grants 200021_162796 and 200020_182513 as well as the NCCR 51NF40-141869 The Mathematics of Physics (SwissMAP).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, H., Sonner, J. Quantum many-body physics from a gravitational lens. Nat Rev Phys 2, 615–633 (2020). https://doi.org/10.1038/s42254-020-0225-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-020-0225-1