Abstract
Interactions between light and matter play an instrumental role in spectroscopy, sensing, quantum information processing and lasers. In most of these applications, light is considered in terms of electromagnetic plane waves propagating at the speed of light in vacuum. As a result, light–matter interactions can usually be treated as very weak and captured at the lowest order in quantum electrodynamics. However, progress in understanding the coupling of photons to material quasiparticles (plasmons, phonons and excitons) brings the need for a generalized view of the photon at the core of every light–matter interaction. In this new picture, the photon can have greatly different polarization and dispersion and be confined to the scale of a few nanometres. Such photonic quasiparticles enable a wealth of otherwise unobservable light–matter interaction phenomena, in interactions with both bound and free electrons. This Review focuses on the theoretical and experimental developments in realizing new light–matter interactions with photonic quasiparticles. Examples include room-temperature strong coupling, ultrafast ‘forbidden’ transitions in atoms and new applications of the Cherenkov effect, as well as breakthroughs in ultrafast electron microscopy and new concepts for compact X-ray sources.
Key points
-
Photonic quasiparticles are quantized time-harmonic solutions of Maxwell’s equations in an arbitrary inhomogeneous, dispersive and possibly non-local medium. Surface plasmon–polaritons, phonon–polaritons, exciton–polaritons and all other polaritons are examples of photonic quasiparticles. Moreover, photons in cavities, localized and bulk plasmons, and even acoustic phonons are also special cases of photonic quasiparticles.
-
Certain photonic quasiparticles can confine electromagnetic fields to dimensions much smaller than the wavelength of a photon. Specifically, polaritons in 2D materials, such as graphene and hexagonal boron nitride, allow simultaneously high confinement and low optical losses.
-
Macroscopic quantum electrodynamics prescribes the quantization of the photonic quasiparticles in an arbitrary medium, and can describe the interaction of any photonic quasiparticle with any type of quantum matter (for example, arbitrary emitters) in terms of elementary emission and absorption processes.
-
For bound-electron emitters, the confinement of photonic quasiparticles enables ultrafast spontaneous emission and few-molecule strong coupling, as well as possible new phenomena, such as forbidden transitions and multiphoton spontaneous emission.
-
For free-electron emitters, photonic quasiparticles enable new applications of the Cherenkov effect in particle detectors, as well as new concepts for compact X-ray sources and new applications in ultrafast electron microscopy.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Giant spin ensembles in waveguide magnonics
Nature Communications Open Access 08 December 2022
-
Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor
Light: Science & Applications Open Access 14 April 2022
-
Free electrons can induce entanglement between photons
npj Quantum Information Open Access 23 March 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Dirac, P. M. The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. A 114, 243–265 (1927).
Fermi, E. Quantum theory of radiation. Rev. Mod. Phys. 4, 87–132 (1932).
Basov, D. N., Foglerm, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).
Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).
Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).
Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). This study, along with Fei et al. (2012), experimentally demonstrates highly confined graphene plasmons by infrared scanning optical near-field microscopy.
Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012). This study, along with Chen et al. (2012), experimentally demonstrates highly confined graphene plasmons by infrared scanning optical near-field microscopy.
Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). This paper shows the existence of highly confined low-loss phonon-polaritons in hexagonal boron nitride.
Iranzo, D. A. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018). This study demonstrates an ultimate limit of confinement of graphene plasmons, showing by means of graphene–gold structures that graphene plasmons can be confined to single-nanometre dimensions.
Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018). This study demonstrates fundamental limits to the propagation losses of graphene plasmons coming from acoustic phonons, demonstrating further that at low temperatures, highly confined graphene plasmons can propagate for long distances.
Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016). This paper demonstrates that sub-single-nanometre plasmonic cavities have such tight confinement of electromagnetic fields that they enable strong coupling at room temperature with just a few molecules.
Benz, F. et al. Single-molecule optomechanics in “picocavities”. Science 354, 726–729 (2016).
Baumberg, J. J. et al. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).
Guzzinati, G. et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat. Commun. 8, 14999 (2017).
Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).
Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photon. 9, 427 (2015).
Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78.1, 013901 (2014).
Forn-Díaz, P., Lamata, L., Rico, E., Kono, J. & Solano, E. Ultrastrong coupling regimes of light–matter interaction. Rev. Mod. Phys. 91, 025005 (2019).
Kockum, A. F., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).
Polman, A., Kociak, M. & Garcia de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 1, 1158–1171 (2019).
Scheel, S. & Buhmann, S. Macroscopic quantum electrodynamics — concepts and applications. Acta Phys. Slov. Rev. Tut. 58, 675–809 (2008). This review paper derives the framework of macroscopic quantum electrodynamics, and reviews its application to practical problems in light–matter interaction, such as enhanced spontaneous emission, Casimir–Polder forces and cavity QED strong coupling.
Ginzburg, V. L. Theoretical Physics and Astrophysics (Elsevier, 2013).
Lifshitz, E. M. & Pitaevskii L. P. Statistical Physics: Theory of the Condensed State Vol. 9 (Elsevier, 2013).
Friedman, A., Gover, A., Kurizki, G., Ruschin, S. & Yariv, A. Spontaneous and stimulated emission from quasifree electrons. Rev. Mod. Phys. 60, 471–535 (1988).
Garcia de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).
Giustino, F. Electron–phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2017).
Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).
Greffet, J. J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).
Bliokh, K. Y., Rodriguez-Fortuno, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).
Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).
Karzig, T., Bardyn, C. E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015).
Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018).
Song, J. C. W. & Rudner, M. S. Chiral plasmons without magnetic field. Proc. Natl Acad. Sci. USA 113, 4658–4663 (2016).
Jin, D. et al. Topological magnetoplasmon. Nat. Commun. 7, 13486 (2016).
Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).
Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009). This paper predicts the possibility of low-loss and highly confined plasmons in doped graphene, and shows an upper limit (in frequency) to low-loss behaviour arising from optical phonon coupling.
Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).
Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).
McLeod, A. S. et al. Nanotextured phase coexistence in the correlated insulator V2O3. Nat. Phys. 13, 80–86 (2017).
McLeod, A. S. et al. Multi-messenger nanoprobes of hidden magnetism in a strained manganite. Nat. Mater. 19, 397–404 (2019).
Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).
Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172 (2018).
Tielrooij, K. J. et al. Electrical control of optical emitter relaxation pathways enabled by graphene. Nat. Phys. 11, 281–287 (2015).
Le Kien, F., Balykin, V. I. & Hakuta, K. Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber. Phys. Rev. A 70, 063403 (2004).
Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394–399 (2013).
Junge, C., O’Shea, D., Volz, J. & Rauschenbeutel, A. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, 213604 (2013).
Joannopoulos, J. D. et al. Molding the Flow of Light (Princeton Univ. Press, 2008).
Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).
Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).
Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).
Akahane, Y., Asano, T., Song, B. S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).
Song, B. S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Mater. 4, 207–210 (2005).
Akselrod, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014). This study demonstrates directly the ability of plasmonic nanostructures to strongly enhance spontaneous emission (by a factor of nearly 104), verifying an early prediction in the field of plasmonics.
Tanaka, K., Plum, E., Ou, J. Y., Uchino, T. & Zheludev, N. I. Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. Phys. Rev. Lett. 105, 227403 (2010).
David, A., Gjonaj, B., Blau, Y., Dolev, S. & Bartal, G. Nanoscale shaping and focusing of visible light in planar metal–oxide–silicon waveguides. Optica 2, 1045–1048 (2015).
Spektor, G. et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 187–1191 (2017).
Spektor, G. et al. Mixing the light spin with plasmon orbit by nonlinear light-matter interaction in gold. Phys. Rev. X 9, 021031 (2019).
Du, L. & Tang, D. Manipulating propagating graphene plasmons at near field by shaped graphene nano-vacancies. J. Opt. Soc. Am. A 31, 691–695 (2014).
Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).
Babiker, M., Bennett, C. R., Andrews, D. L. & Romero, L. C. D. Orbital angular momentum exchange in the interaction of twisted light with molecules. Phys. Rev. Lett. 89, 143601 (2002).
Schmiegelow, C. T. et al. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 7, 12998 (2016).
Machado, F., Rivera, N., Buljan, H., Soljacic, M. & Kaminer, I. Shaping polaritons to reshape selection rules. ACS Photon. 5, 3064–3072 (2018).
Cai, W., Reinhardt, O., Kaminer, I. & Garcia de Abajo, F. J. Efficient orbital angular momentum transfer between plasmons and free electrons. Phys. Rev. B 98, 045424 (2018).
Vanacore, G. M. et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater. 18, 573–579 (2019).
Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).
Baumberg, J. J. et al. Spontaneous polarization buildup in a room-temperature polariton laser. Phys. Rev. Lett. 101, 136409 (2008).
Deng, H., Haug, H. & Yoshihisa, Yamamoto Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).
Klaers, J. et al. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).
Byrnes, T., Kim, N. Y. & Yoshihisa, Yamamoto Exciton–polariton condensates. Nat. Phys. 10, 803–813 (2014).
Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).
Baumberg, J. J. et al. Parametric oscillation in a vertical microcavity: a polariton condensate or micro-optical parametric oscillation. Phys. Rev. B 62, R16247 (2000).
Amo, A. et al. Exciton–polariton spin switches. Nat. Photon. 4, 361–366 (2010).
Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 2734, 1778 (2013).
Daskalakis, K. S., Maier, S. A., Murray, R. & Kena-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).
Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).
Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).
Li, P. et al. Hyperbolic phonon–polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 8507 (2015).
Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015).
Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).
Hu, F. et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat. Photon. 11, 356–360 (2017).
Mrejen, M., Yadgarov, L., Levanon, A. & Suchowski, H. Transient exciton–polariton dynamics in WSe2 by ultrafast near-field imaging. Sci. Adv. 5, eaat9618 (2019).
Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).
Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).
Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).
Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).
Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 9, 4371 (2018).
Principi, A. et al. Plasmon losses due to electron-phonon scattering: the case of graphene encapsulated in hexagonal boron nitride. Phys. Rev. B 90, 165408 (2014).
Epstein, I. et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science 368, 1219–1223 (2020).
Yang, Y., Miller, O. D., Christensen, T., Joannopoulos, J. D. & Soljacic, M. Low-loss plasmonic dielectric nanoresonators. Nano Lett. 17, 3238–3245 (2017).
Yang, Y. et al. A general theoretical and experimental framework for nanoscale electromagnetism. Nature 576, 248–252 (2019).
Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).
Altewischer, E., Van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).
Fakonas, J. S., Lee, H., Kelaita, Y. A. & Atwater, H. A. Two-plasmon quantum interference. Nat. Photon. 8, 317–320 (2014).
Knoll, L., Scheel, S. & Welsch, D. G. QED in dispersing and absorbing media. Preprint at https://arxiv.org/abs/quant-ph/0006121 (2000).
Philbin, T. G. Canonical quantization of macroscopic electromagnetism. New J. Phys. 12, 123008 (2010).
Knöll, L., Vogel, W. & Welsch, D. G. Action of passive, lossless optical systems in quantum optics. Phys. Rev. A 36, 3803–3818 (1987).
Glauber, R. J. & Lewenstein, M. Quantum optics of dielectric media. Phys. Rev. A 43, 467–491 (1991).
Archambault, A., Marquier, F., Greffet, J. J. & Arnold, C. Quantum theory of spontaneous and stimulated emission of surface plasmons. Phys. Rev. B 82, 035411 (2010).
Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. P. Electrodynamics of Continuous Media Vol. 8 (Elsevier, 2013).
Landau, L. D. & Lifshitz, E. M. Quantum Mechanics: Non-Relativistic Theory Vol. 3 (Elsevier, 2013).
Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. IV. General theory for spontaneous emission in finite geometries. Phys. Rev. A 12, 1475–1497 (1975).
Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D. & Soljacic, M. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263–269 (2016). This paper predicts situations in which the confinement of plasmons in 2D materials is sufficient to allow ‘forbidden’ decays (for example, multipolar and multiplasmon decays) to be nearly as fast as allowed decays.
Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries. Phys. Rev. A 11, 230–242 (1975).
Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. II. Theory of dispersion forces. Phys. Rev. A 11, 243–252 (1975).
Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. III. Relations among one-photon transition probabilities in stationary and nonstationary fields, density of states, the field-correlation functions, and surface-dependent response functions. Phys. Rev. A 11, 253–264 (1975).
Rivera, N., Rosolen, G., Joannopoulos, J. D., Kaminer, I. & Soljacic, M. Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons. Proc. Natl Acad. Sci. USA 114, 13607–13612 (2017).
Kurman, Y. et al. Control of semiconductor emitter frequency by increasing polariton momenta. Nat. Photon. 12, 423–429 (2018).
Kurman, Y. & Kaminer, I. Tunable bandgap renormalization by nonlocal ultrastrong coupling in nanophotonics. Nat. Phys. https://doi.org/10.1038/s41567-020-0890-0 (2020).
Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).
Kleppner, D. Inhibited spontaneous emission. Phys. Rev. Lett. 47, 233–236 (1981).
John, S. & Wang, J. Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms. Phys. Rev. Lett. 64, 2418–2421 (1990).
John, S. & Quang, T. Spontaneous emission near the edge of a photonic band gap. Phys. Rev. A 50, 1764–1769 (1994).
Zhu, S. Y., Yang, Y., Chen, H., Zheng, H. & Zubairy, M. S. Spontaneous radiation and Lamb shift in three-dimensional photonic crystals. Phys. Rev. Lett. 84, 2136–2139 (2000).
Yao, P. et al. Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides. Phys. Rev. B 80, 195106 (2009).
González-Tudela, A. et al. Theory of strong coupling between quantum emitters and propagating surface plasmons. Phys. Rev. Lett. 110, 126801 (2013).
González-Tudela, A., Huidobro, P. A., Martin-Moreno, L., Tejedor, C. & Garcia-Vidal, F. J. Reversible dynamics of single quantum emitters near metal–dielectric interfaces. Phys. Rev. B 89, 041402 (2014).
Power, E. A. & Thirunamachandran, T. Quantum electrodynamics in a cavity. Phys. Rev. A 25, 2473–2484 (1982).
Ribeiro, Sofia, Buhmann, S. Y., Stielow, T. & Scheel, S. Casimir–Polder interaction from exact diagonalization and surface-induced state mixing. Europhys. Lett. 110, 51003 (2015).
Buhmann, S. Y. & Welsch, D. G. Dispersion forces in macroscopic quantum electrodynamics. Prog. Quantum Electron. 31, 51–130 (2007).
Buhmann, S. Y. & Scheel, S. Thermal Casimir versus Casimir–Polder forces: equilibrium and nonequilibrium forces. Phys. Rev. Lett. 100, 253201 (2008).
Rivera, N., Wong, L. J., Joannopoulos, J. D., Soljacic, M. & Kaminer, I. Light emission based on nanophotonic vacuum forces. Nat. Phys. 15, 1284–1289 (2019).
Kaminer, I. et al. Quantum Čerenkov radiation: spectral cutoffs and the role of spin and orbital angular momentum. Phys. Rev. X 6, 011006 (2016). This paper predicts quantum corrections to the Cherenkov effect, both from the recoil due to the quantized nature of light emission and from the wave nature of the emitting electron.
Rivera, N., Wong, L. J., Soljacic, M. & Kaminer, I. Ultrafast multiharmonic plasmon generation by optically dressed electrons. Phys. Rev. Lett. 122, 053901 (2019).
Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2012).
Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).
Rose, A. et al. Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Lett. 14, 4797–4802 (2014).
Koppens, F. H. L., Chang, D. E. & Garcia de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).
Nikitin, A. Y. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photon. 10, 239–243 (2016).
Caldwell, J. D. et al. Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 13, 3690–3697 (2013).
Schädler, K. G. et al. Electrical control of lifetime-limited quantum emitters using 2D materials. Nano Lett. 19, 3789–3795 (2019).
Zurita-Sánchez, J. R. & Novotny, L. Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement. J. Opt. Soc. Am. B 19, 1355–1362 (2002).
Zurita-Sánchez, J. R. & Novotny, L. Multipolar interband absorption in a semiconductor quantum dot. II. Magnetic dipole enhancement. J. Opt. Soc. Am. B 19, 2722–2726 (2002).
Kern, A. M. & Martin, O. J. F. Strong enhancement of forbidden atomic transitions using plasmonic nanostructures. Phys. Rev. A 85, 022501 (2012).
Jain, P. K., Ghosh, D., Baer, R., Rabani, E. & Alivisatos, P. A. Near-field manipulation of spectroscopic selection rules on the nanoscale. Proc. Natl Acad. Sci. USA 109, 8016–8019 (2012).
Andersen, M. L., Stobbe, S., Sorensen, A. S. & Lodahl, P. Strongly modified plasmon–matter interaction with mesoscopic quantum emitters. Nat. Phys. 7, 215–218 (2011).
Takase, M. et al. Selection-rule breakdown in plasmon-induced electronic excitation of an isolated single-walled carbon nanotube. Nat. Photon. 7, 550–554 (2013).
Nevet, A. et al. Plasmonic nanoantennas for broad-band enhancement of two-photon emission from semiconductors. Nano Lett. 10, 1848–1852 (2010).
Konzelmann, A. M., Krüger, S. O. & Giessen, H. Interaction of orbital angular momentum light with Rydberg excitons: modifying dipole selection rules. Phys. Rev. B 100, 115308 (2019).
Neuman, T., Esteban, R., Casanova, D., Garcia-Vidal, F. J. & Aizpurua, J. Coupling of molecular emitters and plasmonic cavities beyond the point-dipole approximation. Nano Lett. 18, 2358–2364 (2018).
Cuartero-González, A. & Fernández-Domínguez, A. I. Light-forbidden transitions in plasmon–emitter interactions beyond the weak coupling regime. ACS Photon. 5, 3415–3420 (2018).
Rusak, E. et al. Enhancement of and interference among higher order multipole transitions in molecules near a plasmonic nanoantenna. Nat. Commun. 10, 5775 (2019).
Sloan, J., Rivera, N., Joannopoulos, J. D., Kaminer, I. & Soljacic, M. Controlling spins with surface magnon polaritons. Phys. Rev. B 100, 235453 (2019).
Karanikolas, V. D., Marocico, C. A., Eastham, P. R. & Bradley, L. A. Near-field relaxation of a quantum emitter to two-dimensional semiconductors: surface dissipation and exciton polaritons. Phys. Rev. B 94, 195418 (2016).
Karanikolas, V. D., Thanopulos, I. & Paspalakis, E. Strong interaction of quantum emitters with a WS2 layer enhanced by a gold substrate. Opt. Lett. 44, 2049–2052 (2019).
Gonçalves, P. A. D. et al. Plasmon–emitter interactions at the nanoscale. Nat. Commun. 11, 366 (2020).
Buhmann, S. Y., Butcher, D. T. & Scheel, S. Macroscopic quantum electrodynamics in nonlocal and nonreciprocal media. New J. Phys. 14, 083034 (2012).
Schmidt, P. et al. Nano-imaging of intersubband transitions in van der Waals quantum wells. Nat. Nanotechnol. 13, 1035 (2018).
Zhang, J., Zhou, R., Minamimoto, H., Yasuda, S. & Murakoshi, K. Nonzero wavevector excitation of graphene by localized surface plasmons. Nano Lett. 19, 7887–7894 (2019).
Chan, E. A. et al. Coupling of atomic quadrupole transitions with resonant surface plasmons. Phys. Rev. A 99, 063801 (2019).
Roth, D. J. et al. Singlet–triplet transition rate enhancement inside hyperbolic metamaterials. Laser Photon. Rev. 13, 1900101 (2019).
Flick, J., Rivera, N. & Narang, P. Strong light–matter coupling in quantum chemistry and quantum photonics. Nanophotonics 7, 1479–1501 (2018).
Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).
Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).
Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).
Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006).
Santhosh, K., Bitton, O., Chuntonov, L. & Haran, G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 7, 11823 (2016).
Shalabney, A. et al. Coherent coupling of molecular resonators with a microcavity mode. Nat. Commun. 6, 5981 (2015).
Long, J. P. & Simpkins, B. S. Coherent coupling between a molecular vibration and Fabry–Perot optical cavity to give hybridized states in the strong coupling limit. ACS Photon. 2, 130–136 (2015).
George, J. et al. Multiple Rabi splittings under ultrastrong vibrational coupling. Phys. Rev. Lett. 117, 153601 (2016).
Ahn, W. et al. Vibrational strong coupling controlled by spatial distribution of molecules within the optical cavity. ACS Photon. 5, 158–166 (2018).
Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363, 615–619 (2019).
Runnerstrom, E. L. et al. Polaritonic hybrid-epsilon-near-zero modes: beating the plasmonic confinement vs propagation-length trade-off with doped cadmium oxide bilayers. Nano Lett. 19, 948–957 (2018).
Passler, N. C. et al. Strong coupling of epsilon-near-zero phonon polaritons in polar dielectric heterostructures. Nano Lett. 18, 4285–4292 (2018).
Forn-Díaz, P. et al. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat. Phys. 13, 39–43 (2017).
Yoshihara, F. et al. Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13, 44–47 (2017).
Cristiano, C., Bastard, G. & Carusotto, I. Quantum vacuum properties of the intersubband cavity polariton field. Phys. Rev. B 72, 115303 (2005).
Wilson, C. M. et al. Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376–379 (2011).
De Liberato, S. Light–matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect. Phys. Rev. Lett. 112, 016401 (2014).
Garcia-Ripoll, J. J., Peropadre, B. & De Liberato, S. Light-matter decoupling and A2 term detection in superconducting circuits. Sci. Rep. 5, 16055 (2015).
Rivera, N., Flick, J. & Narang, P. Variational theory of nonrelativistic quantum electrodynamics. Phys. Rev. Lett. 122, 193603 (2019).
Niemczyk, T. et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010).
Forn-Díaz, P. et al. Observation of the Bloch–Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010).
Ginzburg, V. L. Quantum theory of radiation of electron uniformly moving in medium. Zh. Eksp. Teor. Fiz. 10, 589–600 (1940).
Sokolow, A. Quantum theory of Cherenkov effect. Dokl. Akad. Nauk. SSSR 28, 415 (1940).
Cherenkov, P. A. Visible emission of clean liquids by action of γ radiation. Dokl. Akad. Nauk. SSSR 2, 451–454 (1934).
Tamm, I. E. & Frank, I. M. Coherent radiation of fast electrons in a medium. Dokl. Akad. Nauk. SSSR 14, 107–112 (1937).
Chiyan, L., Ibanescu, M., Johnson, S. G. & Joannopoulos, J. D. Cerenkov radiation in photonic crystals. Science 299, 368–371 (2003).
Gover, A. et al. Superradiant and stimulated-superradiant emission of bunched electron beams. Rev. Mod. Phys. 91, 035003 (2019).
Veselago, V. G. Electrodynamics of substances with simultaneously negative values of ε and μ. Usp. Fiz. Nauk. 92, 509–514 (1967).
Xi, S. et al. Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Phys. Rev. Lett. 103, 194801 (2009).
Genevet, P. et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nat. Nanotechnol. 10, 804–809 (2015).
Lin, X. et al. Controlling Cherenkov angles with resonance transition radiation. Nat. Phys. 14, 816–821 (2018).
Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of light. Nat. Mater. 11, 781–787 (2012).
Peng, S. et al. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett. 122, 117401 (2019).
Kaminer, I. et al. Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene. Nat. Commun. 7, 11800 (2016).
Tsesses, S., Bartal, G. & Kaminer, I. Light generation via quantum interaction of electrons with periodic nanostructures. Phys. Rev. A 95, 013832 (2017).
Remez, R. et al. Observing the quantum wave nature of free electrons through spontaneous emission. Phys. Rev. Lett. 123, 060401 (2019).
Murdia, C. et al. Controlling light emission with electron wave interference. Preprint at https://arxiv.org/abs/1712.04529 (2017).
Yiming, P. & Gover, A. Spontaneous and stimulated emissions of a preformed quantum free-electron wave function. Phys. Rev. A 99, 052107 (2019).
Garcia de Abajo, F. J. Multiple excitation of confined graphene plasmons by single free electrons. ACS Nano 7, 11409–11419 (2013).
Liu, S. et al. Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam. Appl. Phys. Lett. 104, 201104 (2014).
Sundararaman, R., Narang, P., Jermyn, A. S., Goddard, W. A. & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014).
Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016).
Andersen, T. I. et al. Electron-phonon instability in graphene revealed by global and local noise probes. Science 364, 154–157 (2019).
Zhao, C. X., Xu, W. & Peeters, F. M. Cerenkov emission of terahertz acoustic-phonons from graphene. Appl. Phys. Lett. 102, 222101 (2013).
Hutson, A. R., McFee, J. H. & White, D. L. Ultrasonic amplification in CdS. Phys. Rev. Lett. 7, 237–239 (1961).
Pippard, A. B. Acoustic amplification in semiconductors and metals. Phil. Mag. 8, 161–165 (1963).
Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 016103 (2019).
Venkatraman, K., Levin, B. D. A., March, K., Rez, P. & Crozier, K. Vibrational spectroscopy at atomic resolution with electron impact scattering. Nat. Phys. 15, 1237–1241 (2019).
Hachtel, J. A. et al. Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope. Science 363, 525–528 (2019).
Ginzburg, V. L. Radiation of uniformly moving sources (Vavilov–Cherenkov effect, transition radiation, and other phenomena). Sov. Phys. Uspekhi 37, 973–982 (1996).
Smith, S. J. & Purcell, E. M. Visible light from localized surface charges moving across a grating. Phys. Rev. 92, 1069 (1953).
Ye, Y. et al. Deep-ultraviolet Smith–Purcell radiation. Optica 6, 592–597 (2019).
Giorgio, A. et al. Light well: a tunable free-electron light source on a chip. Phys. Rev. Lett. 103, 113901 (2009).
Kaminer, I. et al. Spectrally and spatially resolved Smith–Purcell radiation in plasmonic crystals with short-range disorder. Phys. Rev. X 7, 011003 (2017).
Clarke, B. P., Gholipour, B., MacDonald, K. F. & Zheludev, N. I. All-dielectric free-electron-driven holographic light sources. Appl. Phys. Lett. 113, 241902 (2018).
Doucas, G., Mulvey, J. H., Omori, M., Walsh, J. & Kimmitt, M. F. First observation of Smith–Purcell radiation from relativistic electrons. Phys. Rev. Lett. 69, 1761 (1992).
Roques-Carmes, C. et al. Towards integrated tunable all-silicon free-electron light sources. Nat. Commun. 10, 3176 (2019).
Yang, Y. et al. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys. 14, 894–899 (2018).
Wong, L. J., Kaminer, I., Ilic, O., Joannopoulos, J. D. & Soljacic, M. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photon. 10, 46–52 (2016).
Rosolen, G. et al. Metasurface-based multi-harmonic free-electron light source. Light Sci. Appl. 7, 64 (2018).
Pizzi, A. et al. Graphene metamaterials for intense, tunable, and compact extreme ultraviolet and X-ray sources. Adv. Sci. 7, 1901609 (2020).
Kfir, O. Entanglements of electrons and cavity photons in the strong-coupling regime. Phys. Rev. Lett. 123, 103602 (2019).
Di Giulio, V., Kociak, M. & García de Abajo, F. J. Probing quantum optical excitations with fast electrons. Optica 6, 1524–1534 (2019).
Roques-Carmes, C., Rivera, N., Joannopoulos, J. D., Soljacic, M. & Kaminer, I. Nonperturbative quantum electrodynamics in the Cherenkov effect. Phys. Rev. X 8, 041013 (2018).
Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323–1326 (2012).
Bayer, A. et al. Terahertz light–matter interaction beyond unity coupling strength. Nano Lett. 17, 6340–6344 (2017).
Paravicini-Bagliani, G. L. et al. Magneto-transport controlled by Landau polariton states. Nat. Phys. 15, 186–190 (2019).
Dini, D., Kohler, R., Trediucci, A., Biasiol, G. & Sorba, L. Microcavity polariton splitting of intersubband transitions. Phys. Rev. Lett. 90, 116401 (2003).
Todorov, Y. et al. Ultrastrong light–matter coupling regime with polariton dots. Phys. Rev. Lett. 105, 196402 (2010).
Schalch, J. S. et al. Strong metasurface–Josephson plasma resonance coupling in superconducting La2−xSrxCuO4. Adv. Opt. Mater. 7, 1900712 (2019).
Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009). This study demonstrates photon-induced near-field electron microscopy, observing clearly quantized peaks corresponding to multiple absorption and stimulated emissions by a single free electron.
Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).
Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200 (2015). This paper shows the quantum nature of free electrons in the form of Rabi oscillations due to their interaction with a laser.
Yurtsever, A., Baskin, J. S. & Zewail, A. H. Entangled nanoparticles: discovery by visualization in 4D electron microscopy. Nano Lett. 12, 5027–5032 (2012).
Pomarico, E. et al. meV resolution in laser-assisted energy-filtered transmission electron microscopy. ACS Photon. 5, 759–764 (2017).
Wang, K. et al. Coherent interaction between free electrons and cavity photons. Nature 582, 50–54 (2020).
Kfir, O. et al. Controlling free electrons with optical whispering-gallery modes. Nature 582, 46–49 (2020).
Lummen, T. T. A. et al. Imaging and controlling plasmonic interference fields at buried interfaces. Nat. Commun. 7, 13156 (2016).
Petek, H. & Ogawa, S. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci. 56, 239–310 (1997).
Stockman, M. I. et al. Attosecond nanoplasmonic-field microscope. Nat. Photon. 1, 539–544 (2007).
Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020).
Yamamoto, N. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures. J. Electron Microsc. 65, 282–295 (2016).
Peralta, E. A. et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91–94 (2013).
England, R. J. et al. Dielectric laser accelerators. Rev. Mod. Phys. 86, 1337–1389 (2014).
Dahan, R. et al. Observation of the stimulated quantum Cherenkov effect. Preprint at https://arxiv.org/abs/1909.00757 (2019).
Sapra, N. V. et al. On-chip integrated laser-driven particle accelerator. Science 367, 79–83 (2020).
Piazza, L. et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 6, 6407 (2015).
Vanacore, G. M. et al. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat. Commun. 9, 2694 (2018).
Priebe, K. E. et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photon. 11, 793–797 (2017).
Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018).
Kozák, M., Schönenberger, N. & Hommelhoff, P. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 120, 103203 (2018).
Bliokh, K. Y., Bliokh, Y. P., Savel’ev, S. & Nori, F. Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett. 99, 190404 (2007).
Tsytovich, V. N. Macroscopic mass renormalization and energy losses of charged particles in a medium. Sov. Phys. JETP 15, 320 (1962).
Ni, G. X. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).
Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).
Bienfait, A. et al. Controlling spin relaxation with a cavity. Nature 531, 74–77 (2016).
Kawabata, A. & Kubo, R. Electronic properties of fine metallic particles. II. Plasma resonance absorption. J. Phys. Soc. Jpn 21, 1765–1772 (1966).
Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).
Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).
Kramers, H. A. & Heisenberg, W. Über die streuung von strahlung durch atome. Z. Phys. 31, 681–708 (1925).
Göppert-Mayer, M. Über elementarakte mit zwei quantensprüngen. Ann. Phys. 401, 273–294 (1931).
Lamb, W. E. & Retherford, R. C. Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947).
Sukenik, C. I. et al. Measurement of the Casimir–Polder force. Phys. Rev. Lett. 70, 560–563 (1993).
Förster, T. & Sinanoglu O. in Modern Quantum Chemistry. Part III Action of Light and Organic Crystals (ed. Sinanoglu, O.)93–137 (Academic Press, 1965).
Compton, A. H. A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21, 483–502 (1923).
Frank, I. M. Optics of light sources moving in refractive media. Science 131, 702–712 (1960).
Hayat, A., Ginzburg, P. & Orenstein, M. Observation of two-photon emission from semiconductors. Nat. Photon. 2, 238–241 (2008).
Schwartz, M. D. Quantum Field Theory and the Standard Model (Cambridge Univ. Press, 2014).
Fröhlich, H. Theory of the superconducting state. I. The ground state at the absolute zero of temperature. Phys. Rev. 79, 845–856 (1950).
Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).
Chen, S., Maksimchuk, A. & Umstadter, D. Experimental observation of relativistic nonlinear Thomson scattering. Nature 396, 653–655 (1998).
Raman, C. V. & Krishnan, K. S. A new type of secondary radiation. Nature 121, 501–502 (1928).
Peskin, M. E. & Schoeder, D. An Introduction to Quantum Field Theory (CRC Press, 2018).
Cesar, C. L. et al. Two-photon spectroscopy of trapped atomic hydrogen. Phys. Rev. Lett. 77, 255–258 (1996).
McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).
Acknowledgements
The authors acknowledge Y. Kurman, A. Gorlach, O. Eyal, J. Sloan, T. Christensen, D. Basov, S. Scheel and M. Segev for their helpful comments on the Review. The authors also acknowledge M. Soljacic and J. Joannopoulos for the fruitful collaborations that led to this Review. N.R. was supported by Department of Energy Fellowship DE-FG02-97ER25308 and a Dean’s Fellowship of the MIT School of Science. I.K. was supported by the Azrieli Faculty Fellowship, the ERC starting grant NanoEP 851780 from the European Research Council, the Israel Science Foundation grant number 831/19 and the GIF Young Scientists’ Program by the German-Israeli Foundation for Scientific Research and Development.
Author information
Authors and Affiliations
Contributions
Both authors have read, discussed and contributed to the writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Physics thanks Alexey Kavokin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Nonlinear Compton/Thomson scattering
-
The scattering of multiple photons from a free electron, leading to many photons being converted into a single photon with a much higher frequency.
- Hong–Ou–Mandel effect
-
A quantum effect in which two indistinguishable photons, incident on a 50/50 beamsplitter, never appear in different output ports of the beamsplitter, owing to quantum interference.
- Lamb shifts
-
Shifts in the energy levels of a quantum emitter, due to virtual absorption and re-emission of photons, or more generally, photonic quasiparticles (Fig. 1).
- Casimir–Polder forces
-
Forces on an emitter in the vicinity of an inhomogeneous optical structure, arising from the spatial inhomogeneity of the Lamb shift.
- Purcell effect
-
The enhancement of spontaneous emission of an excited quantum emitter in the vicinity of an optical structure, relative to its spontaneous emission in free space.
- Vacuum field
-
The fluctuating electromagnetic field that exists in the absence of photonic quasiparticles, owing to quantum mechanics.
- Epsilon-near-zero materials
-
Materials for which the real part of the permittivity, at some frequency, is nearly zero (limited by losses).
- Cherenkov cone
-
Photons emitted via the Cherenkov effect take the form of a cone, symmetrical around the motion of the emitting particle.
Rights and permissions
About this article
Cite this article
Rivera, N., Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat Rev Phys 2, 538–561 (2020). https://doi.org/10.1038/s42254-020-0224-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-020-0224-2
This article is cited by
-
Detection of a plasmon-polariton quantum wave packet
Nature Physics (2023)
-
Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes
Nature Nanotechnology (2023)
-
Quasiparticles, flat bands and the melting of hydrodynamic matter
Nature Physics (2023)
-
Selective substitution induced anomalous phonon stiffening within quasi-one-dimensional P—P chains in SiP2
Nano Research (2023)
-
Controlling two-photon emission from superluminal and accelerating index perturbations
Nature Physics (2022)