Light–matter interactions with photonic quasiparticles

Abstract

Interactions between light and matter play an instrumental role in spectroscopy, sensing, quantum information processing and lasers. In most of these applications, light is considered in terms of electromagnetic plane waves propagating at the speed of light in vacuum. As a result, light–matter interactions can usually be treated as very weak and captured at the lowest order in quantum electrodynamics. However, progress in understanding the coupling of photons to material quasiparticles (plasmons, phonons and excitons) brings the need for a generalized view of the photon at the core of every light–matter interaction. In this new picture, the photon can have greatly different polarization and dispersion and be confined to the scale of a few nanometres. Such photonic quasiparticles enable a wealth of otherwise unobservable light–matter interaction phenomena, in interactions with both bound and free electrons. This Review focuses on the theoretical and experimental developments in realizing new light–matter interactions with photonic quasiparticles. Examples include room-temperature strong coupling, ultrafast ‘forbidden’ transitions in atoms and new applications of the Cherenkov effect, as well as breakthroughs in ultrafast electron microscopy and new concepts for compact X-ray sources.

Key points

  • Photonic quasiparticles are quantized time-harmonic solutions of Maxwell’s equations in an arbitrary inhomogeneous, dispersive and possibly non-local medium. Surface plasmon–polaritons, phonon–polaritons, exciton–polaritons and all other polaritons are examples of photonic quasiparticles. Moreover, photons in cavities, localized and bulk plasmons, and even acoustic phonons are also special cases of photonic quasiparticles.

  • Certain photonic quasiparticles can confine electromagnetic fields to dimensions much smaller than the wavelength of a photon. Specifically, polaritons in 2D materials, such as graphene and hexagonal boron nitride, allow simultaneously high confinement and low optical losses.

  • Macroscopic quantum electrodynamics prescribes the quantization of the photonic quasiparticles in an arbitrary medium, and can describe the interaction of any photonic quasiparticle with any type of quantum matter (for example, arbitrary emitters) in terms of elementary emission and absorption processes.

  • For bound-electron emitters, the confinement of photonic quasiparticles enables ultrafast spontaneous emission and few-molecule strong coupling, as well as possible new phenomena, such as forbidden transitions and multiphoton spontaneous emission.

  • For free-electron emitters, photonic quasiparticles enable new applications of the Cherenkov effect in particle detectors, as well as new concepts for compact X-ray sources and new applications in ultrafast electron microscopy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Diagrammatic representation of physical processes contained within macroscopic quantum electrodynamics.
Fig. 2: Microscopic origin of photonic quasiparticles.
Fig. 3: Photonic manipulations with highly confined polaritons.
Fig. 4: Bound-electron interactions with photonic quasiparticles.
Fig. 5: Free-electron spontaneous radiation.
Fig. 6: The similarity of electron–photon, electron–plasmon and electron–phonon interactions.
Fig. 7: Effects enabled by strong fields of photonic quasiparticles.

References

  1. 1.

    Dirac, P. M. The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. A 114, 243–265 (1927).

    ADS  MATH  Google Scholar 

  2. 2.

    Fermi, E. Quantum theory of radiation. Rev. Mod. Phys. 4, 87–132 (1932).

    ADS  MATH  Google Scholar 

  3. 3.

    Basov, D. N., Foglerm, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Google Scholar 

  4. 4.

    Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    ADS  Google Scholar 

  5. 5.

    Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Google Scholar 

  6. 6.

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). This study, along with Fei et al. (2012), experimentally demonstrates highly confined graphene plasmons by infrared scanning optical near-field microscopy.

    ADS  Google Scholar 

  7. 7.

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012). This study, along with Chen et al. (2012), experimentally demonstrates highly confined graphene plasmons by infrared scanning optical near-field microscopy.

    ADS  Google Scholar 

  8. 8.

    Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). This paper shows the existence of highly confined low-loss phonon-polaritons in hexagonal boron nitride.

    ADS  Google Scholar 

  9. 9.

    Iranzo, D. A. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018). This study demonstrates an ultimate limit of confinement of graphene plasmons, showing by means of graphene–gold structures that graphene plasmons can be confined to single-nanometre dimensions.

    Google Scholar 

  10. 10.

    Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018). This study demonstrates fundamental limits to the propagation losses of graphene plasmons coming from acoustic phonons, demonstrating further that at low temperatures, highly confined graphene plasmons can propagate for long distances.

    ADS  Google Scholar 

  11. 11.

    Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016). This paper demonstrates that sub-single-nanometre plasmonic cavities have such tight confinement of electromagnetic fields that they enable strong coupling at room temperature with just a few molecules.

    ADS  Google Scholar 

  12. 12.

    Benz, F. et al. Single-molecule optomechanics in “picocavities”. Science 354, 726–729 (2016).

    ADS  Google Scholar 

  13. 13.

    Baumberg, J. J. et al. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).

    ADS  Google Scholar 

  14. 14.

    Guzzinati, G. et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat. Commun. 8, 14999 (2017).

    ADS  Google Scholar 

  15. 15.

    Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

    Google Scholar 

  16. 16.

    Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photon. 9, 427 (2015).

    ADS  Google Scholar 

  17. 17.

    Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78.1, 013901 (2014).

    Google Scholar 

  18. 18.

    Forn-Díaz, P., Lamata, L., Rico, E., Kono, J. & Solano, E. Ultrastrong coupling regimes of light–matter interaction. Rev. Mod. Phys. 91, 025005 (2019).

    ADS  Google Scholar 

  19. 19.

    Kockum, A. F., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

    Google Scholar 

  20. 20.

    Polman, A., Kociak, M. & Garcia de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 1, 1158–1171 (2019).

    ADS  Google Scholar 

  21. 21.

    Scheel, S. & Buhmann, S. Macroscopic quantum electrodynamics — concepts and applications. Acta Phys. Slov. Rev. Tut. 58, 675–809 (2008). This review paper derives the framework of macroscopic quantum electrodynamics, and reviews its application to practical problems in light–matter interaction, such as enhanced spontaneous emission, Casimir–Polder forces and cavity QED strong coupling.

    ADS  Google Scholar 

  22. 22.

    Ginzburg, V. L. Theoretical Physics and Astrophysics (Elsevier, 2013).

  23. 23.

    Lifshitz, E. M. & Pitaevskii L. P. Statistical Physics: Theory of the Condensed State Vol. 9 (Elsevier, 2013).

  24. 24.

    Friedman, A., Gover, A., Kurizki, G., Ruschin, S. & Yariv, A. Spontaneous and stimulated emission from quasifree electrons. Rev. Mod. Phys. 60, 471–535 (1988).

    ADS  Google Scholar 

  25. 25.

    Garcia de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    ADS  Google Scholar 

  26. 26.

    Giustino, F. Electron–phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2017).

    ADS  MathSciNet  Google Scholar 

  27. 27.

    Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    ADS  Google Scholar 

  28. 28.

    Greffet, J. J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    ADS  Google Scholar 

  29. 29.

    Bliokh, K. Y., Rodriguez-Fortuno, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    ADS  Google Scholar 

  30. 30.

    Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    ADS  Google Scholar 

  31. 31.

    Karzig, T., Bardyn, C. E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015).

    Google Scholar 

  32. 32.

    Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018).

    ADS  Google Scholar 

  33. 33.

    Song, J. C. W. & Rudner, M. S. Chiral plasmons without magnetic field. Proc. Natl Acad. Sci. USA 113, 4658–4663 (2016).

    ADS  Google Scholar 

  34. 34.

    Jin, D. et al. Topological magnetoplasmon. Nat. Commun. 7, 13486 (2016).

    ADS  Google Scholar 

  35. 35.

    Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).

    ADS  Google Scholar 

  36. 36.

    Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009). This paper predicts the possibility of low-loss and highly confined plasmons in doped graphene, and shows an upper limit (in frequency) to low-loss behaviour arising from optical phonon coupling.

    ADS  Google Scholar 

  37. 37.

    Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    ADS  Google Scholar 

  38. 38.

    Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    ADS  Google Scholar 

  39. 39.

    McLeod, A. S. et al. Nanotextured phase coexistence in the correlated insulator V2O3. Nat. Phys. 13, 80–86 (2017).

    Google Scholar 

  40. 40.

    McLeod, A. S. et al. Multi-messenger nanoprobes of hidden magnetism in a strained manganite. Nat. Mater. 19, 397–404 (2019).

    ADS  Google Scholar 

  41. 41.

    Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    ADS  Google Scholar 

  42. 42.

    Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172 (2018).

    Google Scholar 

  43. 43.

    Tielrooij, K. J. et al. Electrical control of optical emitter relaxation pathways enabled by graphene. Nat. Phys. 11, 281–287 (2015).

    Google Scholar 

  44. 44.

    Le Kien, F., Balykin, V. I. & Hakuta, K. Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber. Phys. Rev. A 70, 063403 (2004).

    ADS  Google Scholar 

  45. 45.

    Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394–399 (2013).

    ADS  Google Scholar 

  46. 46.

    Junge, C., O’Shea, D., Volz, J. & Rauschenbeutel, A. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, 213604 (2013).

    ADS  Google Scholar 

  47. 47.

    Joannopoulos, J. D. et al. Molding the Flow of Light (Princeton Univ. Press, 2008).

  48. 48.

    Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    ADS  Google Scholar 

  49. 49.

    Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    ADS  Google Scholar 

  50. 50.

    Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    ADS  Google Scholar 

  51. 51.

    Akahane, Y., Asano, T., Song, B. S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    ADS  Google Scholar 

  52. 52.

    Song, B. S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Mater. 4, 207–210 (2005).

    ADS  Google Scholar 

  53. 53.

    Akselrod, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014). This study demonstrates directly the ability of plasmonic nanostructures to strongly enhance spontaneous emission (by a factor of nearly 104), verifying an early prediction in the field of plasmonics.

    ADS  Google Scholar 

  54. 54.

    Tanaka, K., Plum, E., Ou, J. Y., Uchino, T. & Zheludev, N. I. Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. Phys. Rev. Lett. 105, 227403 (2010).

    ADS  Google Scholar 

  55. 55.

    David, A., Gjonaj, B., Blau, Y., Dolev, S. & Bartal, G. Nanoscale shaping and focusing of visible light in planar metal–oxide–silicon waveguides. Optica 2, 1045–1048 (2015).

    ADS  Google Scholar 

  56. 56.

    Spektor, G. et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 187–1191 (2017).

    Google Scholar 

  57. 57.

    Spektor, G. et al. Mixing the light spin with plasmon orbit by nonlinear light-matter interaction in gold. Phys. Rev. X 9, 021031 (2019).

    Google Scholar 

  58. 58.

    Du, L. & Tang, D. Manipulating propagating graphene plasmons at near field by shaped graphene nano-vacancies. J. Opt. Soc. Am. A 31, 691–695 (2014).

    ADS  Google Scholar 

  59. 59.

    Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  60. 60.

    Babiker, M., Bennett, C. R., Andrews, D. L. & Romero, L. C. D. Orbital angular momentum exchange in the interaction of twisted light with molecules. Phys. Rev. Lett. 89, 143601 (2002).

    ADS  Google Scholar 

  61. 61.

    Schmiegelow, C. T. et al. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 7, 12998 (2016).

    ADS  Google Scholar 

  62. 62.

    Machado, F., Rivera, N., Buljan, H., Soljacic, M. & Kaminer, I. Shaping polaritons to reshape selection rules. ACS Photon. 5, 3064–3072 (2018).

    Google Scholar 

  63. 63.

    Cai, W., Reinhardt, O., Kaminer, I. & Garcia de Abajo, F. J. Efficient orbital angular momentum transfer between plasmons and free electrons. Phys. Rev. B 98, 045424 (2018).

    ADS  Google Scholar 

  64. 64.

    Vanacore, G. M. et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater. 18, 573–579 (2019).

    ADS  Google Scholar 

  65. 65.

    Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    ADS  Google Scholar 

  66. 66.

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    ADS  Google Scholar 

  67. 67.

    Baumberg, J. J. et al. Spontaneous polarization buildup in a room-temperature polariton laser. Phys. Rev. Lett. 101, 136409 (2008).

    ADS  Google Scholar 

  68. 68.

    Deng, H., Haug, H. & Yoshihisa, Yamamoto Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    ADS  Google Scholar 

  69. 69.

    Klaers, J. et al. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    ADS  Google Scholar 

  70. 70.

    Byrnes, T., Kim, N. Y. & Yoshihisa, Yamamoto Exciton–polariton condensates. Nat. Phys. 10, 803–813 (2014).

    Google Scholar 

  71. 71.

    Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    ADS  Google Scholar 

  72. 72.

    Baumberg, J. J. et al. Parametric oscillation in a vertical microcavity: a polariton condensate or micro-optical parametric oscillation. Phys. Rev. B 62, R16247 (2000).

    ADS  Google Scholar 

  73. 73.

    Amo, A. et al. Exciton–polariton spin switches. Nat. Photon. 4, 361–366 (2010).

    ADS  Google Scholar 

  74. 74.

    Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 2734, 1778 (2013).

    ADS  Google Scholar 

  75. 75.

    Daskalakis, K. S., Maier, S. A., Murray, R. & Kena-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).

    ADS  Google Scholar 

  76. 76.

    Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    Google Scholar 

  77. 77.

    Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    ADS  Google Scholar 

  78. 78.

    Li, P. et al. Hyperbolic phonon–polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 8507 (2015).

    ADS  Google Scholar 

  79. 79.

    Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015).

    ADS  Google Scholar 

  80. 80.

    Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    ADS  Google Scholar 

  81. 81.

    Hu, F. et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat. Photon. 11, 356–360 (2017).

    ADS  Google Scholar 

  82. 82.

    Mrejen, M., Yadgarov, L., Levanon, A. & Suchowski, H. Transient exciton–polariton dynamics in WSe2 by ultrafast near-field imaging. Sci. Adv. 5, eaat9618 (2019).

    ADS  Google Scholar 

  83. 83.

    Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    ADS  Google Scholar 

  84. 84.

    Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    ADS  Google Scholar 

  85. 85.

    Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    ADS  Google Scholar 

  86. 86.

    Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    ADS  Google Scholar 

  87. 87.

    Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 9, 4371 (2018).

    ADS  Google Scholar 

  88. 88.

    Principi, A. et al. Plasmon losses due to electron-phonon scattering: the case of graphene encapsulated in hexagonal boron nitride. Phys. Rev. B 90, 165408 (2014).

    ADS  Google Scholar 

  89. 89.

    Epstein, I. et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science 368, 1219–1223 (2020).

    ADS  Google Scholar 

  90. 90.

    Yang, Y., Miller, O. D., Christensen, T., Joannopoulos, J. D. & Soljacic, M. Low-loss plasmonic dielectric nanoresonators. Nano Lett. 17, 3238–3245 (2017).

    ADS  Google Scholar 

  91. 91.

    Yang, Y. et al. A general theoretical and experimental framework for nanoscale electromagnetism. Nature 576, 248–252 (2019).

    ADS  Google Scholar 

  92. 92.

    Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    ADS  Google Scholar 

  93. 93.

    Altewischer, E., Van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

    ADS  Google Scholar 

  94. 94.

    Fakonas, J. S., Lee, H., Kelaita, Y. A. & Atwater, H. A. Two-plasmon quantum interference. Nat. Photon. 8, 317–320 (2014).

    ADS  Google Scholar 

  95. 95.

    Knoll, L., Scheel, S. & Welsch, D. G. QED in dispersing and absorbing media. Preprint at https://arxiv.org/abs/quant-ph/0006121 (2000).

  96. 96.

    Philbin, T. G. Canonical quantization of macroscopic electromagnetism. New J. Phys. 12, 123008 (2010).

    ADS  Google Scholar 

  97. 97.

    Knöll, L., Vogel, W. & Welsch, D. G. Action of passive, lossless optical systems in quantum optics. Phys. Rev. A 36, 3803–3818 (1987).

    ADS  Google Scholar 

  98. 98.

    Glauber, R. J. & Lewenstein, M. Quantum optics of dielectric media. Phys. Rev. A 43, 467–491 (1991).

    ADS  Google Scholar 

  99. 99.

    Archambault, A., Marquier, F., Greffet, J. J. & Arnold, C. Quantum theory of spontaneous and stimulated emission of surface plasmons. Phys. Rev. B 82, 035411 (2010).

    ADS  Google Scholar 

  100. 100.

    Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. P. Electrodynamics of Continuous Media Vol. 8 (Elsevier, 2013).

  101. 101.

    Landau, L. D. & Lifshitz, E. M. Quantum Mechanics: Non-Relativistic Theory Vol. 3 (Elsevier, 2013).

  102. 102.

    Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. IV. General theory for spontaneous emission in finite geometries. Phys. Rev. A 12, 1475–1497 (1975).

    ADS  Google Scholar 

  103. 103.

    Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D. & Soljacic, M. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263–269 (2016). This paper predicts situations in which the confinement of plasmons in 2D materials is sufficient to allow ‘forbidden’ decays (for example, multipolar and multiplasmon decays) to be nearly as fast as allowed decays.

    ADS  MathSciNet  MATH  Google Scholar 

  104. 104.

    Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries. Phys. Rev. A 11, 230–242 (1975).

    ADS  Google Scholar 

  105. 105.

    Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. II. Theory of dispersion forces. Phys. Rev. A 11, 243–252 (1975).

    ADS  Google Scholar 

  106. 106.

    Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. III. Relations among one-photon transition probabilities in stationary and nonstationary fields, density of states, the field-correlation functions, and surface-dependent response functions. Phys. Rev. A 11, 253–264 (1975).

    ADS  Google Scholar 

  107. 107.

    Rivera, N., Rosolen, G., Joannopoulos, J. D., Kaminer, I. & Soljacic, M. Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons. Proc. Natl Acad. Sci. USA 114, 13607–13612 (2017).

    ADS  Google Scholar 

  108. 108.

    Kurman, Y. et al. Control of semiconductor emitter frequency by increasing polariton momenta. Nat. Photon. 12, 423–429 (2018).

    ADS  Google Scholar 

  109. 109.

    Kurman, Y. & Kaminer, I. Tunable bandgap renormalization by nonlocal ultrastrong coupling in nanophotonics. Nat. Phys. https://doi.org/10.1038/s41567-020-0890-0 (2020).

  110. 110.

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Google Scholar 

  111. 111.

    Kleppner, D. Inhibited spontaneous emission. Phys. Rev. Lett. 47, 233–236 (1981).

    ADS  Google Scholar 

  112. 112.

    John, S. & Wang, J. Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms. Phys. Rev. Lett. 64, 2418–2421 (1990).

    ADS  Google Scholar 

  113. 113.

    John, S. & Quang, T. Spontaneous emission near the edge of a photonic band gap. Phys. Rev. A 50, 1764–1769 (1994).

    ADS  Google Scholar 

  114. 114.

    Zhu, S. Y., Yang, Y., Chen, H., Zheng, H. & Zubairy, M. S. Spontaneous radiation and Lamb shift in three-dimensional photonic crystals. Phys. Rev. Lett. 84, 2136–2139 (2000).

    ADS  Google Scholar 

  115. 115.

    Yao, P. et al. Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides. Phys. Rev. B 80, 195106 (2009).

    ADS  Google Scholar 

  116. 116.

    González-Tudela, A. et al. Theory of strong coupling between quantum emitters and propagating surface plasmons. Phys. Rev. Lett. 110, 126801 (2013).

    ADS  Google Scholar 

  117. 117.

    González-Tudela, A., Huidobro, P. A., Martin-Moreno, L., Tejedor, C. & Garcia-Vidal, F. J. Reversible dynamics of single quantum emitters near metal–dielectric interfaces. Phys. Rev. B 89, 041402 (2014).

    ADS  Google Scholar 

  118. 118.

    Power, E. A. & Thirunamachandran, T. Quantum electrodynamics in a cavity. Phys. Rev. A 25, 2473–2484 (1982).

    ADS  MathSciNet  Google Scholar 

  119. 119.

    Ribeiro, Sofia, Buhmann, S. Y., Stielow, T. & Scheel, S. Casimir–Polder interaction from exact diagonalization and surface-induced state mixing. Europhys. Lett. 110, 51003 (2015).

    ADS  Google Scholar 

  120. 120.

    Buhmann, S. Y. & Welsch, D. G. Dispersion forces in macroscopic quantum electrodynamics. Prog. Quantum Electron. 31, 51–130 (2007).

    ADS  Google Scholar 

  121. 121.

    Buhmann, S. Y. & Scheel, S. Thermal Casimir versus Casimir–Polder forces: equilibrium and nonequilibrium forces. Phys. Rev. Lett. 100, 253201 (2008).

    ADS  Google Scholar 

  122. 122.

    Rivera, N., Wong, L. J., Joannopoulos, J. D., Soljacic, M. & Kaminer, I. Light emission based on nanophotonic vacuum forces. Nat. Phys. 15, 1284–1289 (2019).

    Google Scholar 

  123. 123.

    Kaminer, I. et al. Quantum Čerenkov radiation: spectral cutoffs and the role of spin and orbital angular momentum. Phys. Rev. X 6, 011006 (2016). This paper predicts quantum corrections to the Cherenkov effect, both from the recoil due to the quantized nature of light emission and from the wave nature of the emitting electron.

    Google Scholar 

  124. 124.

    Rivera, N., Wong, L. J., Soljacic, M. & Kaminer, I. Ultrafast multiharmonic plasmon generation by optically dressed electrons. Phys. Rev. Lett. 122, 053901 (2019).

    ADS  Google Scholar 

  125. 125.

    Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2012).

  126. 126.

    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Google Scholar 

  127. 127.

    Rose, A. et al. Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Lett. 14, 4797–4802 (2014).

    ADS  Google Scholar 

  128. 128.

    Koppens, F. H. L., Chang, D. E. & Garcia de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    ADS  Google Scholar 

  129. 129.

    Nikitin, A. Y. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photon. 10, 239–243 (2016).

    ADS  Google Scholar 

  130. 130.

    Caldwell, J. D. et al. Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 13, 3690–3697 (2013).

    ADS  Google Scholar 

  131. 131.

    Schädler, K. G. et al. Electrical control of lifetime-limited quantum emitters using 2D materials. Nano Lett. 19, 3789–3795 (2019).

    ADS  Google Scholar 

  132. 132.

    Zurita-Sánchez, J. R. & Novotny, L. Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement. J. Opt. Soc. Am. B 19, 1355–1362 (2002).

    ADS  Google Scholar 

  133. 133.

    Zurita-Sánchez, J. R. & Novotny, L. Multipolar interband absorption in a semiconductor quantum dot. II. Magnetic dipole enhancement. J. Opt. Soc. Am. B 19, 2722–2726 (2002).

    ADS  Google Scholar 

  134. 134.

    Kern, A. M. & Martin, O. J. F. Strong enhancement of forbidden atomic transitions using plasmonic nanostructures. Phys. Rev. A 85, 022501 (2012).

    ADS  Google Scholar 

  135. 135.

    Jain, P. K., Ghosh, D., Baer, R., Rabani, E. & Alivisatos, P. A. Near-field manipulation of spectroscopic selection rules on the nanoscale. Proc. Natl Acad. Sci. USA 109, 8016–8019 (2012).

    ADS  Google Scholar 

  136. 136.

    Andersen, M. L., Stobbe, S., Sorensen, A. S. & Lodahl, P. Strongly modified plasmon–matter interaction with mesoscopic quantum emitters. Nat. Phys. 7, 215–218 (2011).

    Google Scholar 

  137. 137.

    Takase, M. et al. Selection-rule breakdown in plasmon-induced electronic excitation of an isolated single-walled carbon nanotube. Nat. Photon. 7, 550–554 (2013).

    ADS  Google Scholar 

  138. 138.

    Nevet, A. et al. Plasmonic nanoantennas for broad-band enhancement of two-photon emission from semiconductors. Nano Lett. 10, 1848–1852 (2010).

    ADS  Google Scholar 

  139. 139.

    Konzelmann, A. M., Krüger, S. O. & Giessen, H. Interaction of orbital angular momentum light with Rydberg excitons: modifying dipole selection rules. Phys. Rev. B 100, 115308 (2019).

    ADS  Google Scholar 

  140. 140.

    Neuman, T., Esteban, R., Casanova, D., Garcia-Vidal, F. J. & Aizpurua, J. Coupling of molecular emitters and plasmonic cavities beyond the point-dipole approximation. Nano Lett. 18, 2358–2364 (2018).

    ADS  Google Scholar 

  141. 141.

    Cuartero-González, A. & Fernández-Domínguez, A. I. Light-forbidden transitions in plasmon–emitter interactions beyond the weak coupling regime. ACS Photon. 5, 3415–3420 (2018).

    Google Scholar 

  142. 142.

    Rusak, E. et al. Enhancement of and interference among higher order multipole transitions in molecules near a plasmonic nanoantenna. Nat. Commun. 10, 5775 (2019).

    ADS  Google Scholar 

  143. 143.

    Sloan, J., Rivera, N., Joannopoulos, J. D., Kaminer, I. & Soljacic, M. Controlling spins with surface magnon polaritons. Phys. Rev. B 100, 235453 (2019).

    ADS  Google Scholar 

  144. 144.

    Karanikolas, V. D., Marocico, C. A., Eastham, P. R. & Bradley, L. A. Near-field relaxation of a quantum emitter to two-dimensional semiconductors: surface dissipation and exciton polaritons. Phys. Rev. B 94, 195418 (2016).

    ADS  Google Scholar 

  145. 145.

    Karanikolas, V. D., Thanopulos, I. & Paspalakis, E. Strong interaction of quantum emitters with a WS2 layer enhanced by a gold substrate. Opt. Lett. 44, 2049–2052 (2019).

    ADS  Google Scholar 

  146. 146.

    Gonçalves, P. A. D. et al. Plasmon–emitter interactions at the nanoscale. Nat. Commun. 11, 366 (2020).

    ADS  Google Scholar 

  147. 147.

    Buhmann, S. Y., Butcher, D. T. & Scheel, S. Macroscopic quantum electrodynamics in nonlocal and nonreciprocal media. New J. Phys. 14, 083034 (2012).

    Google Scholar 

  148. 148.

    Schmidt, P. et al. Nano-imaging of intersubband transitions in van der Waals quantum wells. Nat. Nanotechnol. 13, 1035 (2018).

    ADS  Google Scholar 

  149. 149.

    Zhang, J., Zhou, R., Minamimoto, H., Yasuda, S. & Murakoshi, K. Nonzero wavevector excitation of graphene by localized surface plasmons. Nano Lett. 19, 7887–7894 (2019).

    ADS  Google Scholar 

  150. 150.

    Chan, E. A. et al. Coupling of atomic quadrupole transitions with resonant surface plasmons. Phys. Rev. A 99, 063801 (2019).

    ADS  Google Scholar 

  151. 151.

    Roth, D. J. et al. Singlet–triplet transition rate enhancement inside hyperbolic metamaterials. Laser Photon. Rev. 13, 1900101 (2019).

    ADS  Google Scholar 

  152. 152.

    Flick, J., Rivera, N. & Narang, P. Strong light–matter coupling in quantum chemistry and quantum photonics. Nanophotonics 7, 1479–1501 (2018).

    Google Scholar 

  153. 153.

    Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    ADS  Google Scholar 

  154. 154.

    Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    ADS  Google Scholar 

  155. 155.

    Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    ADS  Google Scholar 

  156. 156.

    Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006).

    ADS  Google Scholar 

  157. 157.

    Santhosh, K., Bitton, O., Chuntonov, L. & Haran, G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 7, 11823 (2016).

    ADS  Google Scholar 

  158. 158.

    Shalabney, A. et al. Coherent coupling of molecular resonators with a microcavity mode. Nat. Commun. 6, 5981 (2015).

    ADS  Google Scholar 

  159. 159.

    Long, J. P. & Simpkins, B. S. Coherent coupling between a molecular vibration and Fabry–Perot optical cavity to give hybridized states in the strong coupling limit. ACS Photon. 2, 130–136 (2015).

    Google Scholar 

  160. 160.

    George, J. et al. Multiple Rabi splittings under ultrastrong vibrational coupling. Phys. Rev. Lett. 117, 153601 (2016).

    ADS  Google Scholar 

  161. 161.

    Ahn, W. et al. Vibrational strong coupling controlled by spatial distribution of molecules within the optical cavity. ACS Photon. 5, 158–166 (2018).

    Google Scholar 

  162. 162.

    Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363, 615–619 (2019).

    ADS  Google Scholar 

  163. 163.

    Runnerstrom, E. L. et al. Polaritonic hybrid-epsilon-near-zero modes: beating the plasmonic confinement vs propagation-length trade-off with doped cadmium oxide bilayers. Nano Lett. 19, 948–957 (2018).

    ADS  Google Scholar 

  164. 164.

    Passler, N. C. et al. Strong coupling of epsilon-near-zero phonon polaritons in polar dielectric heterostructures. Nano Lett. 18, 4285–4292 (2018).

    ADS  Google Scholar 

  165. 165.

    Forn-Díaz, P. et al. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat. Phys. 13, 39–43 (2017).

    Google Scholar 

  166. 166.

    Yoshihara, F. et al. Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13, 44–47 (2017).

    Google Scholar 

  167. 167.

    Cristiano, C., Bastard, G. & Carusotto, I. Quantum vacuum properties of the intersubband cavity polariton field. Phys. Rev. B 72, 115303 (2005).

    ADS  Google Scholar 

  168. 168.

    Wilson, C. M. et al. Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376–379 (2011).

    ADS  Google Scholar 

  169. 169.

    De Liberato, S. Light–matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect. Phys. Rev. Lett. 112, 016401 (2014).

    ADS  Google Scholar 

  170. 170.

    Garcia-Ripoll, J. J., Peropadre, B. & De Liberato, S. Light-matter decoupling and A2 term detection in superconducting circuits. Sci. Rep. 5, 16055 (2015).

    ADS  Google Scholar 

  171. 171.

    Rivera, N., Flick, J. & Narang, P. Variational theory of nonrelativistic quantum electrodynamics. Phys. Rev. Lett. 122, 193603 (2019).

    ADS  Google Scholar 

  172. 172.

    Niemczyk, T. et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010).

    Google Scholar 

  173. 173.

    Forn-Díaz, P. et al. Observation of the Bloch–Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010).

    ADS  Google Scholar 

  174. 174.

    Ginzburg, V. L. Quantum theory of radiation of electron uniformly moving in medium. Zh. Eksp. Teor. Fiz. 10, 589–600 (1940).

    Google Scholar 

  175. 175.

    Sokolow, A. Quantum theory of Cherenkov effect. Dokl. Akad. Nauk. SSSR 28, 415 (1940).

    MATH  Google Scholar 

  176. 176.

    Cherenkov, P. A. Visible emission of clean liquids by action of γ radiation. Dokl. Akad. Nauk. SSSR 2, 451–454 (1934).

    Google Scholar 

  177. 177.

    Tamm, I. E. & Frank, I. M. Coherent radiation of fast electrons in a medium. Dokl. Akad. Nauk. SSSR 14, 107–112 (1937).

    Google Scholar 

  178. 178.

    Chiyan, L., Ibanescu, M., Johnson, S. G. & Joannopoulos, J. D. Cerenkov radiation in photonic crystals. Science 299, 368–371 (2003).

    ADS  Google Scholar 

  179. 179.

    Gover, A. et al. Superradiant and stimulated-superradiant emission of bunched electron beams. Rev. Mod. Phys. 91, 035003 (2019).

    ADS  MathSciNet  Google Scholar 

  180. 180.

    Veselago, V. G. Electrodynamics of substances with simultaneously negative values of ε and μ. Usp. Fiz. Nauk. 92, 509–514 (1967).

    Google Scholar 

  181. 181.

    Xi, S. et al. Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Phys. Rev. Lett. 103, 194801 (2009).

    ADS  Google Scholar 

  182. 182.

    Genevet, P. et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nat. Nanotechnol. 10, 804–809 (2015).

    ADS  Google Scholar 

  183. 183.

    Lin, X. et al. Controlling Cherenkov angles with resonance transition radiation. Nat. Phys. 14, 816–821 (2018).

    Google Scholar 

  184. 184.

    Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of light. Nat. Mater. 11, 781–787 (2012).

    ADS  Google Scholar 

  185. 185.

    Peng, S. et al. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett. 122, 117401 (2019).

    ADS  Google Scholar 

  186. 186.

    Kaminer, I. et al. Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene. Nat. Commun. 7, 11800 (2016).

    Google Scholar 

  187. 187.

    Tsesses, S., Bartal, G. & Kaminer, I. Light generation via quantum interaction of electrons with periodic nanostructures. Phys. Rev. A 95, 013832 (2017).

    ADS  Google Scholar 

  188. 188.

    Remez, R. et al. Observing the quantum wave nature of free electrons through spontaneous emission. Phys. Rev. Lett. 123, 060401 (2019).

    ADS  Google Scholar 

  189. 189.

    Murdia, C. et al. Controlling light emission with electron wave interference. Preprint at https://arxiv.org/abs/1712.04529 (2017).

  190. 190.

    Yiming, P. & Gover, A. Spontaneous and stimulated emissions of a preformed quantum free-electron wave function. Phys. Rev. A 99, 052107 (2019).

    ADS  Google Scholar 

  191. 191.

    Garcia de Abajo, F. J. Multiple excitation of confined graphene plasmons by single free electrons. ACS Nano 7, 11409–11419 (2013).

    Google Scholar 

  192. 192.

    Liu, S. et al. Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam. Appl. Phys. Lett. 104, 201104 (2014).

    ADS  Google Scholar 

  193. 193.

    Sundararaman, R., Narang, P., Jermyn, A. S., Goddard, W. A. & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014).

    ADS  Google Scholar 

  194. 194.

    Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016).

    Google Scholar 

  195. 195.

    Andersen, T. I. et al. Electron-phonon instability in graphene revealed by global and local noise probes. Science 364, 154–157 (2019).

    ADS  Google Scholar 

  196. 196.

    Zhao, C. X., Xu, W. & Peeters, F. M. Cerenkov emission of terahertz acoustic-phonons from graphene. Appl. Phys. Lett. 102, 222101 (2013).

    ADS  Google Scholar 

  197. 197.

    Hutson, A. R., McFee, J. H. & White, D. L. Ultrasonic amplification in CdS. Phys. Rev. Lett. 7, 237–239 (1961).

    ADS  Google Scholar 

  198. 198.

    Pippard, A. B. Acoustic amplification in semiconductors and metals. Phil. Mag. 8, 161–165 (1963).

    ADS  Google Scholar 

  199. 199.

    Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 016103 (2019).

    ADS  Google Scholar 

  200. 200.

    Venkatraman, K., Levin, B. D. A., March, K., Rez, P. & Crozier, K. Vibrational spectroscopy at atomic resolution with electron impact scattering. Nat. Phys. 15, 1237–1241 (2019).

    Google Scholar 

  201. 201.

    Hachtel, J. A. et al. Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope. Science 363, 525–528 (2019).

    ADS  Google Scholar 

  202. 202.

    Ginzburg, V. L. Radiation of uniformly moving sources (Vavilov–Cherenkov effect, transition radiation, and other phenomena). Sov. Phys. Uspekhi 37, 973–982 (1996).

    ADS  Google Scholar 

  203. 203.

    Smith, S. J. & Purcell, E. M. Visible light from localized surface charges moving across a grating. Phys. Rev. 92, 1069 (1953).

    ADS  Google Scholar 

  204. 204.

    Ye, Y. et al. Deep-ultraviolet Smith–Purcell radiation. Optica 6, 592–597 (2019).

    ADS  Google Scholar 

  205. 205.

    Giorgio, A. et al. Light well: a tunable free-electron light source on a chip. Phys. Rev. Lett. 103, 113901 (2009).

    Google Scholar 

  206. 206.

    Kaminer, I. et al. Spectrally and spatially resolved Smith–Purcell radiation in plasmonic crystals with short-range disorder. Phys. Rev. X 7, 011003 (2017).

    Google Scholar 

  207. 207.

    Clarke, B. P., Gholipour, B., MacDonald, K. F. & Zheludev, N. I. All-dielectric free-electron-driven holographic light sources. Appl. Phys. Lett. 113, 241902 (2018).

    Google Scholar 

  208. 208.

    Doucas, G., Mulvey, J. H., Omori, M., Walsh, J. & Kimmitt, M. F. First observation of Smith–Purcell radiation from relativistic electrons. Phys. Rev. Lett. 69, 1761 (1992).

    ADS  Google Scholar 

  209. 209.

    Roques-Carmes, C. et al. Towards integrated tunable all-silicon free-electron light sources. Nat. Commun. 10, 3176 (2019).

    ADS  Google Scholar 

  210. 210.

    Yang, Y. et al. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys. 14, 894–899 (2018).

    Google Scholar 

  211. 211.

    Wong, L. J., Kaminer, I., Ilic, O., Joannopoulos, J. D. & Soljacic, M. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photon. 10, 46–52 (2016).

    ADS  Google Scholar 

  212. 212.

    Rosolen, G. et al. Metasurface-based multi-harmonic free-electron light source. Light Sci. Appl. 7, 64 (2018).

    ADS  Google Scholar 

  213. 213.

    Pizzi, A. et al. Graphene metamaterials for intense, tunable, and compact extreme ultraviolet and X-ray sources. Adv. Sci. 7, 1901609 (2020).

    Google Scholar 

  214. 214.

    Kfir, O. Entanglements of electrons and cavity photons in the strong-coupling regime. Phys. Rev. Lett. 123, 103602 (2019).

    ADS  Google Scholar 

  215. 215.

    Di Giulio, V., Kociak, M. & García de Abajo, F. J. Probing quantum optical excitations with fast electrons. Optica 6, 1524–1534 (2019).

    ADS  Google Scholar 

  216. 216.

    Roques-Carmes, C., Rivera, N., Joannopoulos, J. D., Soljacic, M. & Kaminer, I. Nonperturbative quantum electrodynamics in the Cherenkov effect. Phys. Rev. X 8, 041013 (2018).

    Google Scholar 

  217. 217.

    Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323–1326 (2012).

    ADS  Google Scholar 

  218. 218.

    Bayer, A. et al. Terahertz light–matter interaction beyond unity coupling strength. Nano Lett. 17, 6340–6344 (2017).

    ADS  Google Scholar 

  219. 219.

    Paravicini-Bagliani, G. L. et al. Magneto-transport controlled by Landau polariton states. Nat. Phys. 15, 186–190 (2019).

    Google Scholar 

  220. 220.

    Dini, D., Kohler, R., Trediucci, A., Biasiol, G. & Sorba, L. Microcavity polariton splitting of intersubband transitions. Phys. Rev. Lett. 90, 116401 (2003).

    ADS  Google Scholar 

  221. 221.

    Todorov, Y. et al. Ultrastrong light–matter coupling regime with polariton dots. Phys. Rev. Lett. 105, 196402 (2010).

    ADS  Google Scholar 

  222. 222.

    Schalch, J. S. et al. Strong metasurface–Josephson plasma resonance coupling in superconducting La2−xSrxCuO4. Adv. Opt. Mater. 7, 1900712 (2019).

    Google Scholar 

  223. 223.

    Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009). This study demonstrates photon-induced near-field electron microscopy, observing clearly quantized peaks corresponding to multiple absorption and stimulated emissions by a single free electron.

    ADS  Google Scholar 

  224. 224.

    Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).

    ADS  Google Scholar 

  225. 225.

    Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200 (2015). This paper shows the quantum nature of free electrons in the form of Rabi oscillations due to their interaction with a laser.

    ADS  Google Scholar 

  226. 226.

    Yurtsever, A., Baskin, J. S. & Zewail, A. H. Entangled nanoparticles: discovery by visualization in 4D electron microscopy. Nano Lett. 12, 5027–5032 (2012).

    ADS  Google Scholar 

  227. 227.

    Pomarico, E. et al. meV resolution in laser-assisted energy-filtered transmission electron microscopy. ACS Photon. 5, 759–764 (2017).

    Google Scholar 

  228. 228.

    Wang, K. et al. Coherent interaction between free electrons and cavity photons. Nature 582, 50–54 (2020).

    ADS  Google Scholar 

  229. 229.

    Kfir, O. et al. Controlling free electrons with optical whispering-gallery modes. Nature 582, 46–49 (2020).

    ADS  Google Scholar 

  230. 230.

    Lummen, T. T. A. et al. Imaging and controlling plasmonic interference fields at buried interfaces. Nat. Commun. 7, 13156 (2016).

    ADS  Google Scholar 

  231. 231.

    Petek, H. & Ogawa, S. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci. 56, 239–310 (1997).

    ADS  Google Scholar 

  232. 232.

    Stockman, M. I. et al. Attosecond nanoplasmonic-field microscope. Nat. Photon. 1, 539–544 (2007).

    ADS  Google Scholar 

  233. 233.

    Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020).

    Google Scholar 

  234. 234.

    Yamamoto, N. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures. J. Electron Microsc. 65, 282–295 (2016).

    Google Scholar 

  235. 235.

    Peralta, E. A. et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91–94 (2013).

    ADS  Google Scholar 

  236. 236.

    England, R. J. et al. Dielectric laser accelerators. Rev. Mod. Phys. 86, 1337–1389 (2014).

    ADS  Google Scholar 

  237. 237.

    Dahan, R. et al. Observation of the stimulated quantum Cherenkov effect. Preprint at https://arxiv.org/abs/1909.00757 (2019).

  238. 238.

    Sapra, N. V. et al. On-chip integrated laser-driven particle accelerator. Science 367, 79–83 (2020).

    ADS  Google Scholar 

  239. 239.

    Piazza, L. et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 6, 6407 (2015).

    ADS  Google Scholar 

  240. 240.

    Vanacore, G. M. et al. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat. Commun. 9, 2694 (2018).

    ADS  Google Scholar 

  241. 241.

    Priebe, K. E. et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photon. 11, 793–797 (2017).

    ADS  Google Scholar 

  242. 242.

    Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018).

    Google Scholar 

  243. 243.

    Kozák, M., Schönenberger, N. & Hommelhoff, P. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 120, 103203 (2018).

    ADS  Google Scholar 

  244. 244.

    Bliokh, K. Y., Bliokh, Y. P., Savel’ev, S. & Nori, F. Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett. 99, 190404 (2007).

    ADS  Google Scholar 

  245. 245.

    Tsytovich, V. N. Macroscopic mass renormalization and energy losses of charged particles in a medium. Sov. Phys. JETP 15, 320 (1962).

    MATH  Google Scholar 

  246. 246.

    Ni, G. X. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).

    ADS  Google Scholar 

  247. 247.

    Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    ADS  MathSciNet  Google Scholar 

  248. 248.

    Bienfait, A. et al. Controlling spin relaxation with a cavity. Nature 531, 74–77 (2016).

    ADS  Google Scholar 

  249. 249.

    Kawabata, A. & Kubo, R. Electronic properties of fine metallic particles. II. Plasma resonance absorption. J. Phys. Soc. Jpn 21, 1765–1772 (1966).

    ADS  Google Scholar 

  250. 250.

    Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    ADS  Google Scholar 

  251. 251.

    Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).

    ADS  MathSciNet  Google Scholar 

  252. 252.

    Kramers, H. A. & Heisenberg, W. Über die streuung von strahlung durch atome. Z. Phys. 31, 681–708 (1925).

    ADS  MATH  Google Scholar 

  253. 253.

    Göppert-Mayer, M. Über elementarakte mit zwei quantensprüngen. Ann. Phys. 401, 273–294 (1931).

    MATH  Google Scholar 

  254. 254.

    Lamb, W. E. & Retherford, R. C. Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947).

    ADS  Google Scholar 

  255. 255.

    Sukenik, C. I. et al. Measurement of the Casimir–Polder force. Phys. Rev. Lett. 70, 560–563 (1993).

    ADS  Google Scholar 

  256. 256.

    Förster, T. & Sinanoglu O. in Modern Quantum Chemistry. Part III Action of Light and Organic Crystals (ed. Sinanoglu, O.)93–137 (Academic Press, 1965).

  257. 257.

    Compton, A. H. A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21, 483–502 (1923).

    ADS  Google Scholar 

  258. 258.

    Frank, I. M. Optics of light sources moving in refractive media. Science 131, 702–712 (1960).

    ADS  Google Scholar 

  259. 259.

    Hayat, A., Ginzburg, P. & Orenstein, M. Observation of two-photon emission from semiconductors. Nat. Photon. 2, 238–241 (2008).

    Google Scholar 

  260. 260.

    Schwartz, M. D. Quantum Field Theory and the Standard Model (Cambridge Univ. Press, 2014).

  261. 261.

    Fröhlich, H. Theory of the superconducting state. I. The ground state at the absolute zero of temperature. Phys. Rev. 79, 845–856 (1950).

    ADS  MATH  Google Scholar 

  262. 262.

    Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Google Scholar 

  263. 263.

    Chen, S., Maksimchuk, A. & Umstadter, D. Experimental observation of relativistic nonlinear Thomson scattering. Nature 396, 653–655 (1998).

    ADS  Google Scholar 

  264. 264.

    Raman, C. V. & Krishnan, K. S. A new type of secondary radiation. Nature 121, 501–502 (1928).

    ADS  Google Scholar 

  265. 265.

    Peskin, M. E. & Schoeder, D. An Introduction to Quantum Field Theory (CRC Press, 2018).

  266. 266.

    Cesar, C. L. et al. Two-photon spectroscopy of trapped atomic hydrogen. Phys. Rev. Lett. 77, 255–258 (1996).

    ADS  Google Scholar 

  267. 267.

    McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Y. Kurman, A. Gorlach, O. Eyal, J. Sloan, T. Christensen, D. Basov, S. Scheel and M. Segev for their helpful comments on the Review. The authors also acknowledge M. Soljacic and J. Joannopoulos for the fruitful collaborations that led to this Review. N.R. was supported by Department of Energy Fellowship DE-FG02-97ER25308 and a Dean’s Fellowship of the MIT School of Science. I.K. was supported by the Azrieli Faculty Fellowship, the ERC starting grant NanoEP 851780 from the European Research Council, the Israel Science Foundation grant number 831/19 and the GIF Young Scientists’ Program by the German-Israeli Foundation for Scientific Research and Development.

Author information

Affiliations

Authors

Contributions

Both authors have read, discussed and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Nicholas Rivera or Ido Kaminer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Alexey Kavokin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Nonlinear Compton/Thomson scattering

The scattering of multiple photons from a free electron, leading to many photons being converted into a single photon with a much higher frequency.

Hong–Ou–Mandel effect

A quantum effect in which two indistinguishable photons, incident on a 50/50 beamsplitter, never appear in different output ports of the beamsplitter, owing to quantum interference.

Lamb shifts

Shifts in the energy levels of a quantum emitter, due to virtual absorption and re-emission of photons, or more generally, photonic quasiparticles (Fig. 1).

Casimir–Polder forces

Forces on an emitter in the vicinity of an inhomogeneous optical structure, arising from the spatial inhomogeneity of the Lamb shift.

Purcell effect

The enhancement of spontaneous emission of an excited quantum emitter in the vicinity of an optical structure, relative to its spontaneous emission in free space.

Vacuum field

The fluctuating electromagnetic field that exists in the absence of photonic quasiparticles, owing to quantum mechanics.

Epsilon-near-zero materials

Materials for which the real part of the permittivity, at some frequency, is nearly zero (limited by losses).

Cherenkov cone

Photons emitted via the Cherenkov effect take the form of a cone, symmetrical around the motion of the emitting particle.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rivera, N., Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat Rev Phys 2, 538–561 (2020). https://doi.org/10.1038/s42254-020-0224-2

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing