Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Comparing acoustic and optical forces for biomedical research

A Publisher Correction to this article was published on 21 August 2020

This article has been updated

Abstract

The application of acoustic and optical waves to exert non-contact forces on microscopic and mesoscopic objects has grown considerably in importance in the past few decades. Different physical principles govern the acoustic and optical forces, leading to diverse biomedical applications. Biocompatibility is crucial, and useful optical and acoustic forces can be applied in devices that maintain local heating to acceptable levels. Current acoustic and optical devices work on complementary length scales, with both modalities having useful capabilities at the scale of the cell. Optical devices also cover subcellular scales and acoustic devices also cover supercellular scales. This complementarity has led to the emergence of multimode manipulation, often with integrated imaging. In this Technical Review, we provide an overview of optical and acoustic forces, before comparing and contrasting the use of these modalities, or combinations thereof, in terms of sample manipulation and suitability for biomedical studies. We conclude with our perspective on the applications in which we expect to see notable developments in the near future.

Key points

  • Acoustic and optical forces are governed by different physical principles, but both enable the application of non-contact forces to biomedically important objects such as cells and microorganisms.

  • Acoustic and optical forces in the piconewton to nanonewton range can be applied to a typical cell, with optical devices having capabilities extending below this scale and acoustic devices above.

  • Biocompatibility cannot be assumed as both modalities can produce local heating; however, careful device design has led to many examples of biocompatible devices.

  • Biomedical applications of optical and acoustic devices are rapidly increasing and include manipulation, patterning and mechanical probing, often combined with imaging.

  • The number of applications is expected to increase, and we anticipate more examples of multimode or hybrid devices to emerge, increasingly sophisticated integration of imaging, and the development of more versatile and fully reconfigurable manipulation systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical and acoustic trapping fields.
Fig. 2: Forces in optical tweezers.
Fig. 3: Acoustic forces.
Fig. 4: Acoustic and optical trapping regimes.

Similar content being viewed by others

Change history

References

  1. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    ADS  Google Scholar 

  2. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    ADS  Google Scholar 

  3. Jones, P. H., Maragò, O. M. & Volpe, G. Optical Tweezers: Principles and Applications (Cambridge Univ. Press, 2015).

  4. Sonnleitner, M., Ritsch-Marte, M. & Ritsch, H. Optical forces, trapping and strain on extended dielectric objects. Europhys. Lett. 94, 34005 (2011).

    MATH  ADS  Google Scholar 

  5. Sonnleitner, M., Ritsch-Marte, M. & Ritsch, H. Optomechanical deformation and strain in elastic dielectrics. New J. Phys. 14, 103011 (2012).

    MATH  ADS  Google Scholar 

  6. Neto, P. M. & Nussenzveig, H. Theory of optical tweezers. Europhys. Lett. 50, 702 (2000).

    ADS  Google Scholar 

  7. Stilgoe, A. B., Nieminen, T. A., Knöner, G., Heckenberg, N. R. & Rubinsztein-Dunlop, H. The effect of Mie resonances on trapping in optical tweezers. Opt. Express 16, 15039–15051 (2008).

    ADS  Google Scholar 

  8. Nieminen, T. A. et al. Optical tweezers computational toolbox. J. Opt. A 9, S196 (2007).

    ADS  Google Scholar 

  9. Nieminen, T. A., Loke, V. L., Stilgoe, A. B., Heckenberg, N. R. & Rubinsztein-Dunlop, H. T-matrix method for modelling optical tweezers. J. Mod. Opt. 58, 528–544 (2011).

    MATH  ADS  Google Scholar 

  10. Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A. & Ashkin, A. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55, 48–51 (1985).

    ADS  Google Scholar 

  11. Prentice, P. et al. Manipulation and filtration of low index particles with holographic Laguerre–Gaussian optical trap arrays. Opt. Express 12, 593–600 (2004).

    ADS  Google Scholar 

  12. Ruffner, D. B. & Grier, D. G. Optical conveyors: a class of active tractor beams. Phys. Rev. Lett. 109, 163903 (2012).

    ADS  Google Scholar 

  13. Dogariu, A., Sukhov, S. & Sáenz, J. Optically induced ‘negative forces’. Nat. Photonics 7, 24–27 (2013).

    ADS  Google Scholar 

  14. Thomas, J.-L. & Marchiano, R. Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. Phys. Rev. Lett. 91, 244302 (2003).

    ADS  Google Scholar 

  15. Zhang, L. & Marston, P. L. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Phys. Rev. E, 84, 065601 (2011).

    ADS  Google Scholar 

  16. Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002).

    ADS  Google Scholar 

  17. Thalhammer, G., Steiger, R., Bernet, S. & Ritsch-Marte, M. Optical macro-tweezers: trapping of highly motile micro-organisms. J. Opt. 13, 044024 (2011).

    ADS  Google Scholar 

  18. Farré, A. & Montes-Usategui, M. A force detection technique for single-beam optical traps based on direct measurement of light momentum changes. Opt. Express 18, 11955–11968 (2010).

    ADS  Google Scholar 

  19. Thalhammer, G., Obmascher, L. & Ritsch-Marte, M. Direct measurement of axial optical forces. Opt. Express 23, 6112–6129 (2015).

    ADS  Google Scholar 

  20. Bustamante, C., Macosko, J. C. & Wuite, G. J. Grabbing the cat by the tail: manipulating molecules one by one. Nat. Rev. Mol. Cell Biol. 1, 130–136 (2000).

    Google Scholar 

  21. Carter, A. R., Seol, Y. & Perkins, T. T. Precision surface-coupled optical-trapping assay with one-basepair resolution. Biophys. J. 96, 2926–2934 (2009).

    ADS  Google Scholar 

  22. Pang, Y. & Gordon, R. Optical trapping of a single protein. Nano Lett. 12, 402–406 (2011).

    ADS  Google Scholar 

  23. Oddershede, L., Dreyer, J. K., Grego, S., Brown, S. & Berg-Sørensen, K. The motion of a single molecule, the λ-receptor, in the bacterial outer membrane. Biophys. J. 83, 3152–3161 (2002).

    ADS  Google Scholar 

  24. Montange, R., Bull, M. S., Shanblatt, E. R. & Perkins, T. T. Optimizing bead size reduces errors in force measurements in optical traps. Opt. Express 21, 39–48 (2012).

    ADS  Google Scholar 

  25. Dyson, M., Woodward, B. & Pond, J. Flow of red blood cells stopped by ultrasound. Nature 232, 572–573 (1971).

    ADS  Google Scholar 

  26. Gorkov, L. P. On the forces acting on a small particle in an acoustic field in an ideal fluid. Sov. Phys. Dokl. 6, 773–775 (1962).

    ADS  Google Scholar 

  27. Bruus, H. Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12, 1014–1021 (2012).

    Google Scholar 

  28. Bruus, H. Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip 12, 20–28 (2012).

    Google Scholar 

  29. Laurell, T., Petersson, F. & Nilsson, A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 36, 492–506 (2007).

    Google Scholar 

  30. Gesellchen, F., Bernassau, A., Dejardin, T., Cumming, D. & Riehle, M. Cell patterning with a heptagon acoustic tweezer — application in neurite guidance. Lab Chip 14, 2266–2275 (2014).

    Google Scholar 

  31. Armstrong, J. P. et al. Engineering anisotropic muscle tissue using acoustic cell patterning. Adv. Mater. 30, 1802649 (2018).

    Google Scholar 

  32. Marzo, A. et al. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 6, 8661 (2015).

    ADS  Google Scholar 

  33. Guo, F. et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl Acad. Sci. USA 113, 1522–1527 (2016).

    ADS  Google Scholar 

  34. Baresch, D., Thomas, J.-L. & Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys. Rev. Lett. 116, 024301 (2016).

    ADS  Google Scholar 

  35. Franklin, A., Marzo, A., Malkin, R. & Drinkwater, B. Three-dimensional ultrasonic trapping of micro-particles in water with a simple and compact two-element transducer. Appl. Phys. Lett. 111, 094101 (2017).

    ADS  Google Scholar 

  36. Ozcelik, A. et al. Acoustic tweezers for the life sciences. Nat. Methods 15, 1021–1028 (2018).

    Google Scholar 

  37. Allen, L., Beijersbergen, M. W., Spreeuw, R. & Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    ADS  Google Scholar 

  38. Yao, A. & Padgett, M. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011).

    Google Scholar 

  39. Bliokh, K. Y. & Nori, F. Spin and orbital angular momenta of acoustic beams. Phys. Rev. B 99, 174310 (2019).

    ADS  Google Scholar 

  40. Volke-Sepúlveda, K., Santillán, A. O. & Boullosa, R. R. Transfer of angular momentum to matter from acoustical vortices in free space. Phys. Rev. Lett. 100, 024302 (2008).

    ADS  Google Scholar 

  41. Marzo, A., Caleap, M. & Drinkwater, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of Mie particles. Phys. Rev. Lett. 120, 044301 (2018).

    ADS  Google Scholar 

  42. Karlsen, J. T. & Bruus, H. Forces acting on a small particle in an acoustical field in a thermoviscous fluid. Phys. Rev. E 92, 043010 (2015).

    ADS  Google Scholar 

  43. Silva, G. T., Lopes, J. H., Leão-Neto, J. P., Nichols, M. K. & Drinkwater, B. W. Particle patterning by ultrasonic standing waves in a rectangular cavity. Phys. Rev. Appl. 11, 054044 (2019).

    ADS  Google Scholar 

  44. Lam, K. H. et al. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging. Sci. Rep. 6, 37554 (2016).

    ADS  Google Scholar 

  45. Blake Jr, F. Bjerknes forces in stationary sound fields. J. Acoust. Soc. Am. 21, 551–551 (1949).

    ADS  Google Scholar 

  46. Burns, M. M., Fournier, J.-M. & Golovchenko, J. A. Optical binding. Phys. Rev. Lett. 63, 1233–1236 (1989).

    ADS  Google Scholar 

  47. Dholakia, K. & Zemánek, P. Colloquium: Gripped by light: optical binding. Rev. Mod. Phys. 82, 1767–1791 (2010).

    ADS  Google Scholar 

  48. Ku, A. et al. Acoustic enrichment of extracellular vesicles from biological fluids. Anal. Chem. 90, 8011–8019 (2018).

    Google Scholar 

  49. Shi, J. et al. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890–2895 (2009).

    Google Scholar 

  50. Beyeler, F. et al. Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J. Microelectromech. Syst. 16, 7–15 (2007).

    Google Scholar 

  51. Yeo, L. Y. & Friend, J. R. Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46, 379–406 (2014).

    MathSciNet  MATH  ADS  Google Scholar 

  52. Chen, K. et al. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Lab Chip 16, 2636–2643 (2016).

    Google Scholar 

  53. Bachman, H. et al. Low-frequency flexural wave based microparticle manipulation. Lab Chip 20, 1281–1289 (2020).

    Google Scholar 

  54. Devendran, C., Gralinski, I. & Neild, A. Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel. Microfluid. Nanofluid. 17, 879–890 (2014).

    Google Scholar 

  55. Muller, P. B., Barnkob, R., Jensen, M. J. H. & Bruus, H. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12, 4617–4627 (2012).

    Google Scholar 

  56. Bruus, H. Acoustofluidics 10: scaling laws in acoustophoresis. Lab Chip 12, 1578–1586 (2012).

    Google Scholar 

  57. Barnkob, R., Augustsson, P., Laurell, T. & Bruus, H. Acoustic radiation-and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Phys. Rev. E 86, 056307 (2012).

    ADS  Google Scholar 

  58. Schmid, L., Weitz, D. A. & Franke, T. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14, 3710–3718 (2014).

    Google Scholar 

  59. Bruus, H. et al. Forthcoming lab on a chip tutorial series on acoustofluidics: acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11, 3579–3580 (2011).

    Google Scholar 

  60. Lenshof, A., Magnusson, C. & Laurell, T. Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. Lab Chip 12, 1210–1223 (2012).

    Google Scholar 

  61. Drinkwater, B. W. Dynamic-field devices for the ultrasonic manipulation of microparticles. Lab Chip 16, 2360–2375 (2016).

    Google Scholar 

  62. Tian, Z. et al. Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Sci. Adv. 5, eaau6062 (2019).

    ADS  Google Scholar 

  63. Marzo, A. & Drinkwater, B. W. Holographic acoustic tweezers. Proc. Natl Acad. Sci. USA 116, 84–89 (2019).

    ADS  Google Scholar 

  64. Alsteens, D., Tay, S. & Müller, D. J. Toward high-throughput biomechanical phenotyping of single molecules. Nat. Methods 12, 45–46 (2015).

    Google Scholar 

  65. Abdelaziz, M. A. & Grier, D. G. Acoustokinetics: crafting force landscapes from sound waves. Phys. Rev. Res. 2, 013172 (2020).

    Google Scholar 

  66. Démoré, C. E. et al. Acoustic tractor beam. Phys. Rev. Lett. 112, 174302 (2014).

    ADS  Google Scholar 

  67. Maragò, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G. & Ferrari, A. C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 8, 807–819 (2013).

    ADS  Google Scholar 

  68. Barredo, D., Lienhard, V., De Leseleuc, S., Lahaye, T. & Browaeys, A. Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561, 79–82 (2018).

    ADS  Google Scholar 

  69. Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).

    ADS  Google Scholar 

  70. Wang, K., Schonbrun, E., Steinvurzel, P. & Crozier, K. B. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun. 2, 469 (2011).

    ADS  Google Scholar 

  71. Chen, M. et al. Observation of metal nanoparticles for acoustic manipulation. Adv. Sci. 4, 1600447 (2017).

    Google Scholar 

  72. Wang, M. M. et al. Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 23, 83–87 (2005).

    Google Scholar 

  73. MacDonald, M., Spalding, G. & Dholakia, K. Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003).

    ADS  Google Scholar 

  74. Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).

    ADS  Google Scholar 

  75. Yang, Z., Piksarv, P., Ferrier, D. E., Gunn-Moore, F. J. & Dholakia, K. Macro-optical trapping for sample confinement in light sheet microscopy. Biomed. Opt. Express 6, 2778–2785 (2015).

    Google Scholar 

  76. Neuman, K. C., Chadd, E. H., Liou, G. F., Bergman, K. & Block, S. M. Characterization of photodamage to escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999).

    Google Scholar 

  77. Peterman, E. J., Gittes, F. & Schmidt, C. F. Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316 (2003).

    ADS  Google Scholar 

  78. Ding, X. et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl Acad. Sci. USA 109, 11105–11109 (2012).

    ADS  Google Scholar 

  79. Wiklund, M. Acoustofluidics 12: biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 12, 2018–2028 (2012).

    Google Scholar 

  80. Iranmanesh, I. et al. Acoustic micro-vortexing of fluids, particles and cells in disposable microfluidic chips. Biomed. Microdevices 18, 71 (2016).

    Google Scholar 

  81. Fowlkes, J. B. & Crum, L. A. Cavitation threshold measurements for microsecond length pulses of ultrasound. J. Acoust. Soc. Am. 83, 2190–2201 (1988).

    ADS  Google Scholar 

  82. Chen, Y. & Lee, S. Manipulation of biological objects using acoustic bubbles: a review. Integr. Comp. Biol. 54, 959–968 (2014).

    Google Scholar 

  83. Jonnalagadda, U. S. et al. Acoustically modulated biomechanical stimulation for human cartilage tissue engineering. Lab Chip 18, 473–485 (2018).

    Google Scholar 

  84. Christakou, A. E., Ohlin, M., Önfelt, B. & Wiklund, M. Ultrasonic three-dimensional on-chip cell culture for dynamic studies of tumor immune surveillance by natural killer cells. Lab Chip 15, 3222–3231 (2015).

    Google Scholar 

  85. Sundvik, M., Nieminen, H. J., Salmi, A., Panula, P. & Hæggström, E. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos. Sci. Rep. 5, 13596 (2015).

    ADS  Google Scholar 

  86. Devendran, C., Carthew, J., Frith, J. E. & Neild, A. Cell adhesion, morphology, and metabolism variation via acoustic exposure within microfluidic cell handling systems. Adv. Sci. 6, 1902326 (2019).

    Google Scholar 

  87. Heller, I. et al. STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat. Methods 10, 910–916 (2013).

    Google Scholar 

  88. van Dijk, M., Kapitein, L., van Mameren, J., Schmidt, C. & Peterman, E. J. G. Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. Phys. Chem. B 108, 6479–6484 (2004).

    Google Scholar 

  89. Jess, P. et al. Dual beam fibre trap for raman microspectroscopy of single cells. Opt. Express 14, 5779–5791 (2006).

    ADS  Google Scholar 

  90. Thalhammer, G., McDougall, C., MacDonald, M. P. & Ritsch-Marte, M. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging. Lab Chip 16, 1523–1532 (2016).

    Google Scholar 

  91. Baudoin, M. et al. Folding a focalized acoustical vortex on a flat holographic transducer: miniaturized selective acoustical tweezers. Sci. Adv. 5, eaav1967 (2019).

    ADS  Google Scholar 

  92. Weber, M. & Huisken, J. Light sheet microscopy for real-time developmental biology. Curr. Opin. Genet. Dev. 21, 566–572 (2011).

    Google Scholar 

  93. Berndt, F., Shah, G., Power, R. M., Brugués, J. & Huisken, J. Dynamic and non-contact 3D sample rotation for microscopy. Nat. Commun. 9, 5025 (2018).

    ADS  Google Scholar 

  94. Yang, Z. et al. Light sheet microscopy with acoustic sample confinement. Nat. Commun. 10, 669 (2019).

    ADS  Google Scholar 

  95. Baker, B. M. & Chen, C. S. Deconstructing the third dimension — how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

    Google Scholar 

  96. Gómez-González, M., Latorre, E., Arroyo, M. & Trepat, X. Measuring mechanical stress in living tissues. Nat. Rev. Phys. 2, 300–317 (2020).

    Google Scholar 

  97. Berg-Sørensen, K. Optical two-beam traps in microfluidic systems. Jpn J. Appl. Phys. 55, 08RA01 (2016).

    Google Scholar 

  98. Guck, J. et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001).

    ADS  Google Scholar 

  99. Lincoln, B., Wottawah, F., Schinkinger, S., Ebert, S. & Guck, J. High-throughput rheological measurements with an optical stretcher. Methods Cell Biol. 83, 397–423 (2007).

    Google Scholar 

  100. Nava, G. et al. All-silica microfluidic optical stretcher with acoustophoretic prefocusing. Microfluid. Nanofluid. 19, 837–844 (2015).

    Google Scholar 

  101. Mishra, P., Hill, M. & Glynne-Jones, P. Deformation of red blood cells using acoustic radiation forces. Biomicrofluidics 8, 034109 (2014).

    Google Scholar 

  102. Hwang, J. Y. et al. Cell deformation by single-beam acoustic trapping: a promising tool for measurements of cell mechanics. Sci. Rep. 6, 27238 (2016).

    ADS  Google Scholar 

  103. Silva, G. T. et al. Acoustic deformation for the extraction of mechanical properties of lipid vesicle populations. Phys. Rev. E 99, 063002 (2019).

    ADS  Google Scholar 

  104. Guck, J., Ananthakrishnan, R., Moon, T. J., Cunningham, C. & Käs, J. Optical deformability of soft biological dielectrics. Phys. Rev. Lett. 84, 5451 (2000).

    ADS  Google Scholar 

  105. Sitters, G. et al. Acoustic force spectroscopy. Nat. Methods 12, 47–50 (2015).

    Google Scholar 

  106. Urbanska, M., Rosendahl, P., Kraeter, M. & Guck, J. High-throughput single-cell mechanical phenotyping with real-time deformability cytometry. Methods Cell Biol. 147, 175–198 (2018).

  107. Bishop, A. I., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett. 92, 198104 (2004).

    ADS  Google Scholar 

  108. Marston, P. L. & Crichton, J. H. Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave. Phys. Rev. A 30, 2508–2516 (1984).

    ADS  Google Scholar 

  109. Favre-Bulle, I. A., Stilgoe, A. B., Rubinsztein-Dunlop, H. & Scott, E. K. Optical trapping of otoliths drives vestibular behaviours in larval zebrafish. Nat. Commun. 8, 630 (2017).

    ADS  Google Scholar 

  110. Ma, Z. et al. Acoustic holographic cell patterning in a biocompatible hydrogel. Adv. Mater. 32, 1904181 (2020).

    Google Scholar 

  111. Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016).

    ADS  Google Scholar 

  112. Chen, P., Güven, S., Usta, O. B., Yarmush, M. L. & Demirci, U. Biotunable acoustic node assembly of organoids. Adv. Healthc. Mater. 4, 1937–1943 (2015).

    Google Scholar 

  113. Li, S. et al. Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering. Lab Chip 14, 4475–4485 (2014).

    Google Scholar 

  114. Wu, T. et al. A photon-driven micromotor can direct nerve fibre growth. Nat. Photonics 6, 62–67 (2012).

    ADS  Google Scholar 

  115. Thalhammer, G. et al. Combined acoustic and optical trapping. Biomed. Opt. Express 2, 2859–2870 (2011).

    Google Scholar 

  116. Glynne-Jones, P. & Hill, M. Acoustofluidics 23: acoustic manipulation combined with other force fields. Lab Chip 13, 1003–1010 (2013).

    Google Scholar 

  117. Bassindale, P., Phillips, D., Barnes, A. & Drinkwater, B. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers. Appl. Phys. Lett. 104, 163504 (2014).

    ADS  Google Scholar 

  118. Lamprecht, A., Lakämper, S., Baasch, T., Schaap, I. A. & Dual, J. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming. Lab Chip 16, 2682–2693 (2016).

    Google Scholar 

  119. Memoli, G., Fury, C. R., Baxter, K. O., Gélat, P. N. & Jones, P. H. Acoustic force measurements on polymer-coated microbubbles in a microfluidic device. J. Acoust. Soc. Am. 141, 3364–3378 (2017).

    ADS  Google Scholar 

  120. Zhong, M.-C. Z., Wei, X.-B., Jin-Hua, Z., Wang, Z.-Q. & Li, Y.-M. Trapping red blood cells in living animals using optical tweezers. Nat. Commun. 4, 1111 (2013).

    Google Scholar 

Download references

Acknowledgements

K.D. thanks the UK Engineering and Physical Sciences Research Council for funding (grant number EP/P030017/1). B.W.D. gratefully acknowledges funding from the Wolfson Foundation and the Royal Society. M.R.-M. gratefully acknowledges support from the Austrian Science Fund FWF (SFB-project F6806-N36) and helpful discussions with G. Thalhammer and M. Kvåle Løvmo. The authors thank G. Bruce and P. Poulton for assistance with the figures.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Monika Ritsch-Marte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks H. Rubinsztein-Dunlop, T. J. Huang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dholakia, K., Drinkwater, B.W. & Ritsch-Marte, M. Comparing acoustic and optical forces for biomedical research. Nat Rev Phys 2, 480–491 (2020). https://doi.org/10.1038/s42254-020-0215-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-020-0215-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing