Emergent mystery in the Kondo insulator samarium hexaboride

A Publisher Correction to this article was published on 14 August 2020

This article has been updated

Abstract

Samarium hexaboride (SmB6) is an example of a Kondo insulator, in which strong electron correlations cause a band gap to open. SmB6 hosts both a bulk insulating state and a conductive surface state. Within a Fermi-liquid framework, the strongly correlated ground-state electronic structure can be mapped to a simple state resembling a topological insulator. Although uncertainties remain, many experiments provide compelling evidence that the conductive surface states have a topological origin. However, the bulk behaviour is less well understood and some experiments indicate bulk in-gap states. This has inspired the development of many theories that predict the emergence of new bulk quantum phases beyond Landau’s Fermi-liquid model. We review the current progress on understanding both the surface and the bulk states, especially the experimental evidence for each. A mystery centres on the existence of the bulk in-gap states and why they appear in some experiments but not others. Adding to the mystery is why quantum oscillations in SmB6 appear only in magnetization but not in resistivity. We conclude by elaborating on three questions: why SmB6 is worth studying, what can be done to move forwards and what other correlated insulators could give additional insight.

Key points

  • The Kondo insulator samarium hexaboride (SmB6) is a perfect insulator owing to strong electronic correlations. It is the first experimentally confirmed example of a strongly correlated topological material.

  • The topological band structure and the consequent metallic surface states are determined and protected by the crystal point symmetry in SmB6. The universal topological predictions are confirmed by spin-resolved and angle-resolved photoemission spectroscopy, although some unresolved issues remain.

  • Surface electrical transport is established in SmB6. Spin-dependent experiments both confirm basic topological predictions and indicate the potential for spin-based electronic applications.

  • There is a mystery as to whether Landau-level quantum oscillations in SmB6 have a bulk or surface-state origin, and why they appear only in magnetization.

  • The mystery calls for a new growth method for SmB6, a broad search for other strongly correlated topological materials and further detailed theoretical pictures for the possible ground states of mixed-valent materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic bulk band structure and topological surface states of SmB6.
Fig. 2: Transport characterization of SmB6.
Fig. 3: ARPES data on (100) and (111) surfaces, supporting the theory of a topological surface state.
Fig. 4: Alternative understanding of SmB6 (100) surface states, based on ARPES spectra of cleaved float-zone samples.
Fig. 5: Quantum oscillations in magnetization of SmB6 indicating a 2D Fermi surface.
Fig. 6: Bulk quantum-oscillation pattern in SmB6 crystals.
Fig. 7: Bulk magnetic excitations of SmB6.

Change history

  • 14 August 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Hasan, M. Z. et al. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    ADS  Google Scholar 

  2. 2.

    Qi, X.-L. et al. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    ADS  Google Scholar 

  3. 3.

    Varma, C. Mixed-valence compounds. Rev. Mod. Phys. 48, 219 (1976).

    ADS  Google Scholar 

  4. 4.

    Menth, A. et al. Magnetic and semiconducting properties of SmB6. Phys. Rev. Lett. 22, 295 (1969).

    ADS  Google Scholar 

  5. 5.

    Dzero, M. et al. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010). This letter proposed the concept of topological Kondo insulators and theoretically predicted that such a topological state shall emerge in heavy fermion insulators such as SmB 6.

    ADS  Google Scholar 

  6. 6.

    Dzero, M. et al. Topological Kondo insulators. Annu. Rev. Condens. Matter Phys. 7, 249–280 (2016).

    ADS  Google Scholar 

  7. 7.

    Wolgast, S. et al. Low-temperature surface conduction in the Kondo insulator SmB6. Phys. Rev. B 88, 180405 (2013). This paper presents one of the first indications of the surface states in SmB 6.

    ADS  Google Scholar 

  8. 8.

    Zhang, X. et al. Hybridization, inter-ion correlation, and surface states in the Kondo insulator SmB6. Phys. Rev. X 3, 011011 (2013). This paper shows another of the first indications of the surface states in SmB 6.

    Google Scholar 

  9. 9.

    Kim, D. J. et al. Surface Hall effect and nonlocal transport in SmB6: evidence for surface conduction. Sci. Rep. 3, 3150 (2013). This paper is also one of the first indications of the surface states in SmB 6.

    Google Scholar 

  10. 10.

    Li, G. et al. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science 346, 1208–1212 (2014). This study is the first report of the quantum oscillations in magnetization in Kondo insulators.

    ADS  Google Scholar 

  11. 11.

    Rößler, S. et al. Hybridization gap and Fano resonance in SmB6. Proc. Natl Acad. Sci. USA 111, 4798–4802 (2014).

    ADS  Google Scholar 

  12. 12.

    Xu, N. et al. Surface and bulk electronic structure of the strongly correlated system SmB6 and implications for a topological Kondo insulator. Phys. Rev. B 88, 121102 (2013). First of the early reports of surface states observed by ARPES in SmB 6.

    ADS  Google Scholar 

  13. 13.

    Neupane, M. et al. Non-Kondo-like electronic structure in the correlated rare-earth hexaboride YbB6. Phys. Rev. Lett. 114, 016403 (2015).

    ADS  Google Scholar 

  14. 14.

    Song, Q. et al. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB6. Nat. Commun. 7, 13485 (2016).

    ADS  Google Scholar 

  15. 15.

    Lee, S. et al. Observation of the superconducting proximity effect in the surface state of SmB6 thin films. Phys. Rev. X 6, 031031 (2016).

    Google Scholar 

  16. 16.

    Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).

    ADS  Google Scholar 

  17. 17.

    Knolle, J. et al. Excitons in topological Kondo insulators: theory of thermodynamic and transport anomalies in SmB6. Phys. Rev. Lett. 118, 096604 (2017).

    ADS  Google Scholar 

  18. 18.

    Erten, O. et al. Skyrme insulators: insulators at the brink of superconductivity. Phys. Rev. Lett. 119, 057603 (2017).

    ADS  Google Scholar 

  19. 19.

    Chowdhury, D. et al. Mixed-valence insulators with neutral Fermi surfaces. Nat. Commun. 9, 1766 (2018).

    ADS  Google Scholar 

  20. 20.

    Sodemann, I. et al. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018).

    ADS  Google Scholar 

  21. 21.

    Lai, H.-H. et al. Weyl–Kondo semimetal in heavy-fermion systems. Proc. Natl Acad. Sci. USA 115, 93–97 (2018).

    ADS  Google Scholar 

  22. 22.

    Dresselhaus, M. S. et al. Group Theory: Application to the Physics of Condensed Matter (Springer, 2008).

  23. 23.

    Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    ADS  Google Scholar 

  24. 24.

    Po, H. C. et al. Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun. 8, 50 (2017).

    ADS  Google Scholar 

  25. 25.

    Song, Z. et al. Quantitative mappings between symmetry and topology in solids. Nat. Commun. 9, 3530 (2018).

    ADS  Google Scholar 

  26. 26.

    Song, Z. et al. Diagnosis for nonmagnetic topological semimetals in the absence of spin-orbital coupling. Phys. Rev. X 8, 031069 (2018).

    Google Scholar 

  27. 27.

    Kruthoff, J. et al. Topological classification of crystalline insulators through band structure combinatorics. Phys. Rev. X 7, 041069 (2017).

    Google Scholar 

  28. 28.

    Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).

    ADS  Google Scholar 

  29. 29.

    Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    ADS  Google Scholar 

  30. 30.

    Tang, F. et al. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019).

    ADS  Google Scholar 

  31. 31.

    Fu, L. et al. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    ADS  Google Scholar 

  32. 32.

    Fang, C. et al. Bulk topological invariants in noninteracting point group symmetric insulators. Phys. Rev. B 86, 115112 (2012).

    ADS  Google Scholar 

  33. 33.

    Ye, M. et al. Topological crystalline Kondo insulators and universal topological surface states of SmB6. Preprint at arXiv https://arxiv.org/abs/1307.7191 (2013).

  34. 34.

    Baruselli, P. P. et al. Distinct topological crystalline phases in models for the strongly correlated topological insulator SmB6. Phys. Rev. Lett. 115, 156404 (2015).

    ADS  Google Scholar 

  35. 35.

    Legner, M. et al. Surface-state spin textures and mirror Chern numbers in topological Kondo insulators. Phys. Rev. Lett. 115, 156405 (2015).

    ADS  Google Scholar 

  36. 36.

    Baruselli, P. P. et al. Spin textures on general surfaces of the correlated topological insulator SmB6. Phys. Rev. B 93, 195117 (2016).

    ADS  Google Scholar 

  37. 37.

    Lu, F. et al. Correlated topological insulators with mixed valence. Phys. Rev. Lett. 110, 096401 (2013).

    ADS  Google Scholar 

  38. 38.

    Thunström, P. et al. Multiplet effects in the electronic structure of intermediate-valence compounds. Phys. Rev. B 79, 165104 (2009).

    ADS  Google Scholar 

  39. 39.

    Denlinger, J. D. et al. Temperature dependence of linked gap and surface state evolution in the mixed valent topological insulator SmB6. Preprint at arXiv https://arxiv.org/abs/1312.6637 (2013).

  40. 40.

    Kim, J. et al. Termination-dependent surface in-gap states in a potential mixed-valent topological insulator: SmB6. Phys. Rev. B 90, 075131 (2014).

    ADS  Google Scholar 

  41. 41.

    Shick, A. B. et al. Racah materials: role of atomic multiplets in intermediate valence systems. Sci. Rep. 5, 15429 (2015).

    ADS  Google Scholar 

  42. 42.

    Peters, R. et al. Coexistence of light and heavy surface states in a topological multiband Kondo insulator. Phys. Rev. B 93, 235159 (2016).

    ADS  Google Scholar 

  43. 43.

    Thunström, P. et al. Topology of SmB6 determined by dynamical mean field theory. Preprint at arXiv https://arxiv.org/abs/1907.03899 (2019).

  44. 44.

    Werner, J. et al. Dynamically generated edge states in topological Kondo insulators. Phys. Rev. B 89, 245119 (2014).

    ADS  Google Scholar 

  45. 45.

    Knolle, J. et al. Quantum oscillations without a Fermi surface and the anomalous de Haas–van Alphen effect. Phys. Rev. Lett. 115, 146401 (2015).

    ADS  Google Scholar 

  46. 46.

    Shen, H. et al. Quantum oscillation from in-gap states and a non-Hermitian Landau level problem. Phys. Rev. Lett. 121, 026403 (2018).

    ADS  Google Scholar 

  47. 47.

    Harrison, N. Highly asymmetric nodal semimetal in bulk SmB6. Phys. Rev. Lett. 121, 026602 (2018).

    ADS  Google Scholar 

  48. 48.

    Hartstein, M. et al. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6. Nat. Phys. 14, 166–172 (2017).

    Google Scholar 

  49. 49.

    Laurita, N. J. et al. Anomalous three-dimensional bulk ac conduction within the Kondo gap of SmB6 single crystals. Phys. Rev. B 94, 165154 (2016).

    ADS  Google Scholar 

  50. 50.

    Fuhrman, W. T. et al. Screened moments and extrinsic in-gap states in samarium hexaboride. Nat. Commun. 9, 1539 (2018).

    ADS  Google Scholar 

  51. 51.

    Fuhrman, W. T. et al. Interaction driven subgap spin exciton in the Kondo insulator SmB6. Phys. Rev. Lett. 114, 036401 (2015).

    ADS  Google Scholar 

  52. 52.

    Canfield, P. C. et al. Growth of single crystals from metallic fluxes. Philos. Mag. B 65, 1117–1123 (1992).

    ADS  Google Scholar 

  53. 53.

    Balakrishnan, G. et al. Growth of large single crystals of rare earth hexaborides. J. Cryst. Growth 256, 206–209 (2003).

    ADS  Google Scholar 

  54. 54.

    Ruan, W. et al. Emergence of a coherent in-gap state in the SmB6 Kondo insulator revealed by scanning tunneling spectroscopy. Phys. Rev. Lett. 112, 136401 (2014).

    ADS  Google Scholar 

  55. 55.

    Rößler, S. et al. Surface and electronic structure of SmB through scanning tunneling microscopy. Philos. Mag. 96, 3262–3273 (2016).

    ADS  Google Scholar 

  56. 56.

    Jiao, L. et al. Additional energy scale in SmB6 at low-temperature. Nat. Commun. 7, 13762 (2016).

    ADS  Google Scholar 

  57. 57.

    Miyamachi, T. et al. Evidence for in-gap surface states on the single phase SmB6(001) surface. Sci. Rep. 7, 12837 (2017).

    ADS  Google Scholar 

  58. 58.

    Sun, Z. et al. Observation of a well-defined hybridization gap and in-gap states on the SmB6 (001) surface. Phys. Rev. B 97, 235107 (2018).

    ADS  Google Scholar 

  59. 59.

    Jiao, L. et al. Magnetic and defect probes of the SmB6 surface state. Sci. Adv. 4, eaau4886 (2018).

    ADS  Google Scholar 

  60. 60.

    Pirie, H. et al. Imaging emergent heavy Dirac fermions of a topological Kondo insulator. Nat. Phys. 16, 52–56 (2020).

    Google Scholar 

  61. 61.

    Herrmann, H. et al. Contrast reversal in scanning tunneling microscopy and its implications for the topological classification of SmB6. Adv. Mater. 32, 1906725 (2020).

  62. 62.

    Heming, N. et al. Surface properties of SmB6 from x-ray photoelectron spectroscopy. Phys. Rev. B 90, 195128 (2014).

    ADS  Google Scholar 

  63. 63.

    Lutz, P. et al. Valence characterisation of the subsurface region in SmB6. Philos. Mag. 96, 3307–3321 (2016).

    ADS  Google Scholar 

  64. 64.

    He, H. et al. Irreversible proliferation of magnetic moments at cleaved surfaces of the topological Kondo insulator SmB6. Phys. Rev. B 95, 195126 (2017).

    ADS  Google Scholar 

  65. 65.

    Zabolotnyy, V. B. et al. Chemical and valence reconstruction at the surface of SmB6 revealed by means of resonant soft x-ray reflectometry. Phys. Rev. B 97, 205416 (2018).

    ADS  Google Scholar 

  66. 66.

    Paderno, Y. B. et al. Electrical properties of hexaborides of the alkaline- and rare-earth metals at low temperatures. Sov. Powder Metall. Met. Ceram. 8, 921–923 (1969).

    Google Scholar 

  67. 67.

    Cohen, R. L. et al. Electronic and magnetic structure of SmB6. Phys. Rev. Lett. 24, 383 (1970).

    ADS  Google Scholar 

  68. 68.

    Allen, J. W. et al. Large low-temperature Hall effect and resistivity in mixed-valent SmB6. Phys. Rev. B 20, 4807 (1979). First report of Hall-effect data proving that SmB 6 is an insulator.

    ADS  Google Scholar 

  69. 69.

    Cooley, J. C. et al. SmB6: Kondo insulator or exotic metal? Phys. Rev. Lett. 74, 1629 (1995).

    ADS  Google Scholar 

  70. 70.

    Coleman, P. et al. Theory for the anomalous Hall constant of mixed-valence systems. Phys. Rev. Lett. 55, 414 (1985).

    ADS  Google Scholar 

  71. 71.

    Nickerson, J. C. et al. Physical properties of SmB6. Phys. Rev. B 3, 2030 (1971).

    ADS  Google Scholar 

  72. 72.

    von Molnar, S. et al. in Valence Instabilities: Proceedings of the International Conference (eds Wachter, P. et al.) 385 (North Holland, 1982).

  73. 73.

    Stankiewicz, J. et al. Physical properties of SmxB6 single crystals. Phys. Rev. B 99, 045138 (2019).

    ADS  Google Scholar 

  74. 74.

    Rakoski, A. et al. Investigation of high-temperature bulk transport characteristics and skew scattering in samarium hexaboride. J. Supercond. Nov. Magn. 33, 265–268 (2020).

  75. 75.

    Mott, N. F. Rare-earth compounds with mixed valencies. Philos. Mag. 30, 403–416 (1974).

    ADS  Google Scholar 

  76. 76.

    Martin, R. M. et al. Theory of mixed valence: Metals or small gap insulators (invited). J. Appl. Phys. 50, 7561 (1979).

    ADS  Google Scholar 

  77. 77.

    Riseborough, P. S. The electrical resistivity of mixed valence materials due to impurities. Solid State Commun. 38, 79–82 (1981).

    ADS  Google Scholar 

  78. 78.

    Travaglini, G. et al. Intermediate-valent SmB6 and the hybridization model: An optical study. Phys. Rev. B 29, 893 (1984).

    ADS  Google Scholar 

  79. 79.

    Gorshunov, B. et al. Low-energy electrodynamics of SmB6. Phys. Rev. B 59, 1808 (1999).

    ADS  Google Scholar 

  80. 80.

    Nozawa, S. et al. Ultrahigh-resolution and angle-resolved photoemission study of SmB6. J. Phys. Chem. Solids 63, 1223–1226 (2002).

    ADS  Google Scholar 

  81. 81.

    Miyazaki, H. et al. Momentum-dependent hybridization gap and dispersive in-gap state of the Kondo semiconductor SmB6. Phys. Rev. B 86, 075105 (2012).

    ADS  Google Scholar 

  82. 82.

    Flachbart, K. et al. Energy gap of intermediate-valent SmB6 studied by point-contact spectroscopy. Phys. Rev. B 64, 085104 (2001).

    ADS  Google Scholar 

  83. 83.

    Chen, F. et al. Magnetoresistance evidence of a surface state and a field-dependent insulating state in the Kondo insulator SmB6. Phys. Rev. B 91, 205133 (2015).

    ADS  Google Scholar 

  84. 84.

    Yue, Z. et al. Crossover of magnetoresistance from fourfold to twofold symmetry in SmB6 single crystal, a topological Kondo insulator. J. Phys. Soc. Jpn. 84, 044717 (2015).

    ADS  Google Scholar 

  85. 85.

    Wolgast, S. et al. Magnetotransport measurements of the surface states of samarium hexaboride using Corbino structures. Phys. Rev. B 92, 115110 (2015).

    ADS  Google Scholar 

  86. 86.

    Wakeham, N. et al. Surface state reconstruction in ion-damaged SmB6. Phys. Rev. B 91, 085107 (2015).

    ADS  Google Scholar 

  87. 87.

    Lu, H.-Z. et al. Weak localization of bulk channels in topological insulator thin films. Phys. Rev. B 84, 125138 (2011).

    ADS  Google Scholar 

  88. 88.

    Dzero, M. et al. Nonuniversal weak antilocalization effect in cubic topological Kondo insulators. Phys. Rev. B 92, 165415 (2015).

    ADS  Google Scholar 

  89. 89.

    Thomas, S. et al. Weak antilocalization and linear magnetoresistance in the surface state of SmB6. Phys. Rev. B 94, 205114 (2016).

    ADS  Google Scholar 

  90. 90.

    Nakajima, Y. et al. One-dimensional edge state transport in a topological Kondo insulator. Nat. Phys. 12, 213–217 (2016).

    Google Scholar 

  91. 91.

    Kim, J. et al. Electrical detection of the surface spin polarization of the candidate topological Kondo insulator SmB6. Phys. Rev. B 99, 245148 (2019).

    ADS  Google Scholar 

  92. 92.

    Geurs, J. et al. Anomalously large spin-current voltages on the surface of SmB6. Phys. Rev. B 100, 035435 (2019).

    ADS  Google Scholar 

  93. 93.

    Liu, T. et al. Nontrivial nature and penetration depth of topological surface states in SmB6 thin films. Phys. Rev. Lett. 120, 207206 (2018).

    ADS  Google Scholar 

  94. 94.

    Lee, S. et al. Perfect Andreev reflection due to the Klein paradox in a topological superconducting state. Nature 570, 344–348 (2019).

    ADS  Google Scholar 

  95. 95.

    Yong, J. et al. Robust topological surface state in Kondo insulator SmB6 thin films. Appl. Phys. Lett. 105, 222403 (2014).

    ADS  Google Scholar 

  96. 96.

    Yong, J. et al. Magnetotransport in nanocrystalline SmB6 thin films. AIP Adv. 5, 077144 (2015).

    ADS  Google Scholar 

  97. 97.

    Shishido, H. et al. Semi-epitaxial SmB6 thin films prepared by the molecular beam epitaxy. Phys. Procedia 75, 405–412 (2015).

    ADS  Google Scholar 

  98. 98.

    Shaviv Petrushevsky, M. et al. Signature of surface state coupling in thin films of the topological Kondo insulator SmB6 from anisotropic magnetoresistance. Phys. Rev. B 95, 085112 (2017).

    ADS  Google Scholar 

  99. 99.

    Batkova, M. et al. Electrical properties of SmB6 thin films prepared by pulsed laser deposition from a stoichiometric SmB6 target. J. Alloy. Compd. 744, 821–827 (2018).

    Google Scholar 

  100. 100.

    Wolgast, S. et al. Conduction through subsurface cracks in bulk topological insulators. Preprint at arXiv https://arxiv.org/abs/1506.08233 (2015).

  101. 101.

    Eo, Y. S. et al. Comprehensive surface magnetotransport study of SmB6. Phys. Rev. B 101, 155109 (2020).

    ADS  Google Scholar 

  102. 102.

    Syers, P. et al. Tuning bulk and surface conduction in the proposed topological Kondo insulator SmB6. Phys. Rev. Lett. 114, 096601 (2015).

    ADS  Google Scholar 

  103. 103.

    Wolgast, S. et al. Reduction of the low-temperature bulk gap in samarium hexaboride under high magnetic fields. Phys. Rev. B 95, 245112 (2017).

    ADS  Google Scholar 

  104. 104.

    Zhou, Y. et al. Quantum phase transition and destruction of Kondo effect in pressurized SmB6. Sci. Bull. 62, 1439–1444 (2017).

    Google Scholar 

  105. 105.

    Cooley, J. C. et al. High field gap closure in the Kondo insulator SmB6. J. Supercond. 12, 171–173 (1999).

    ADS  Google Scholar 

  106. 106.

    Kang, B. Y. et al. Magnetic and nonmagnetic doping dependence of the conducting surface states in SmB6. Phys. Rev. B 94, 165102 (2016).

    ADS  Google Scholar 

  107. 107.

    Kim, D. J. et al. Topological surface state in the Kondo insulator samarium hexaboride. Nat. Mater. 13, 466–470 (2014).

    ADS  Google Scholar 

  108. 108.

    Eo, Y. S. et al. Inverted resistance measurements as a method for characterizing the bulk and surface conductivities of three-dimensional topological insulators. Phys. Rev. Appl. 9, 044006 (2018).

    ADS  Google Scholar 

  109. 109.

    Eo, Y. S. et al. Transport gap in SmB6; protected against disorder. Proc. Natl Acad. Sci. USA 116, 12638–12641 (2019). This study reveals the robust bulk insulating gap in SmB 6.

    ADS  Google Scholar 

  110. 110.

    Rakoski, A. et al. Understanding low-temperature bulk transport in samarium hexaboride without relying on in-gap bulk states. Phys. Rev. B 95, 195133 (2017).

    ADS  Google Scholar 

  111. 111.

    Bardeen, J. et al. Theory of superconductivity. Phys. Rev. 108, 1175 (1957).

    ADS  MathSciNet  MATH  Google Scholar 

  112. 112.

    Skinner, B. Properties of the donor impurity band in mixed valence insulators. Phys. Rev. Mater. 3, 104601 (2019).

    Google Scholar 

  113. 113.

    Woolf, M. A. et al. Effect of magnetic impurities on the density of states of superconductors. Phys. Rev. 137, A557 (1965).

    ADS  Google Scholar 

  114. 114.

    Cardona, M. et al. (eds) Photoemission in Solids I: General Principles (Springer, 1978).

  115. 115.

    Bardyszewski, W. et al. A new approach to the theory of photoemission from solids. Phys. Scr. 32, 439 (1985).

    ADS  Google Scholar 

  116. 116.

    Himpsel, F. J. Angle-resolved measurements of the photoemission of electrons in the study of solids. Adv. Phys. 32, 1–51 (1983).

    ADS  Google Scholar 

  117. 117.

    Denlinger, J. D. et al. in Proc. Int. Conf. Strongly Correlated Electron Systems (SCES2013) Vol. 3 JPS Conference Proceedings 017038 (The Physical Society of Japan, 2014).

  118. 118.

    Smith, N. V. et al. Photoemission linewidths and quasiparticle lifetimes. Phys. Rev. B 47, 15476 (1993).

    ADS  Google Scholar 

  119. 119.

    Jiang, J. et al. Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission. Nat. Commun. 4, 3010 (2013).

    ADS  Google Scholar 

  120. 120.

    Neupane, M. et al. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6. Nat. Commun. 4, 2991 (2013).

    ADS  Google Scholar 

  121. 121.

    Zhu, Z. H. et al. Polarity-driven surface metallicity in SmB6. Phys. Rev. Lett. 111, 216402 (2013).

    ADS  Google Scholar 

  122. 122.

    Frantzeskakis, E. et al. Kondo hybridization and the origin of metallic states at the (001) surface of SmB6. Phys. Rev. X 3, 041024 (2013).

    Google Scholar 

  123. 123.

    Suga, S. et al. Spin-polarized angle-resolved photoelectron spectroscopy of the so-predicted Kondo topological insulator SmB6. J. Phys. Soc. Jpn. 83, 014705 (2014).

    ADS  Google Scholar 

  124. 124.

    Xu, N. et al. Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator. Nat. Commun. 5, 4566 (2014). This paper is the first direct observation of spin-textured surface states in SmB 6.

    ADS  Google Scholar 

  125. 125.

    Min, C.-H. et al. Importance of charge fluctuations for the topological phase in SmB6. Phys. Rev. Lett. 112, 226402 (2014).

    ADS  Google Scholar 

  126. 126.

    Xu, N. et al. Exotic Kondo crossover in a wide temperature region in the topological Kondo insulator SmB6 revealed by high-resolution ARPES. Phys. Rev. B 90, 085148 (2014).

    ADS  Google Scholar 

  127. 127.

    Ishida, Y. et al. Emergent photovoltage on SmB6 surface upon bulk-gap evolution revealed by pump-and-probe photoemission spectroscopy. Sci. Rep. 5, 8160 (2015).

    Google Scholar 

  128. 128.

    Min, C.-H. et al. Two-component analysis of the 4f multiplet of samarium hexaboride. J. Electron Spectrosc. Relat. Phenom. 199, 46–50 (2015).

    Google Scholar 

  129. 129.

    Ellguth, M. et al. Momentum microscopy of single crystals with detailed surface characterisation. Philos. Mag. 96, 3284–3306 (2016).

    ADS  Google Scholar 

  130. 130.

    Arab, A. et al. Effects of spin excitons on the surface states of SmB6: a photoemission study. Phys. Rev. B 94, 235125 (2016).

    ADS  MathSciNet  Google Scholar 

  131. 131.

    Ramankutty, S. V. et al. Comparative study of rare earth hexaborides using high resolution angle-resolved photoemission. J. Electron Spectrosc. Relat. Phenom. 208, 43–50 (2016).

    Google Scholar 

  132. 132.

    Utsumi, Y. et al. Bulk and surface electronic properties of SmB6: A hard x-ray photoelectron spectroscopy study. Phys. Rev. B 96, 155130 (2017).

    ADS  Google Scholar 

  133. 133.

    Min, C.-H. et al. Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB6. Sci. Rep. 7, 11980 (2017).

    ADS  Google Scholar 

  134. 134.

    Hlawenka, P. et al. Samarium hexaboride is a trivial surface conductor. Nat. Commun. 9, 517 (2018).

    ADS  Google Scholar 

  135. 135.

    Ohtsubo, Y. et al. Surface electronic structure of SmB6 (111). Physica B Condens. Matter 536, 75–77 (2018).

    ADS  Google Scholar 

  136. 136.

    Ohtsubo, Y. et al. Non-trivial surface states of samarium hexaboride at the (111) surface. Nat. Commun. 10, 2298 (2019). The first direct observation of spin-textured surface states for a SmB 6 surface other than the natural (100) cleavage plane.

    ADS  Google Scholar 

  137. 137.

    Xu, N. et al. Spin- and angle-resolved photoemission on the topological Kondo insulator candidate: SmB6. J. Phys. Condens. Matter 28, 363001 (2016).

    Google Scholar 

  138. 138.

    Allen, J. W. Foreward for special issue of philosophical magazine on: topological correlated insulators and SmB6. Philos. Mag. 96, 3227–3238 (2016).

    ADS  Google Scholar 

  139. 139.

    Allen, J. W. Corrigendum for Foreword for special issue of philosophical magazine on: topological correlated insulators and SmB6. Philos. Mag. 97, 612 (2017).

    Google Scholar 

  140. 140.

    Ishizawa, Y. et al. de Haas-van Alphen effect and Fermi surface of LaB6. J. Phys. Soc. Jpn 42, 112–118 (1977).

    ADS  Google Scholar 

  141. 141.

    Martin, R. M. et al. in Valence Fluctuations in Solids Vol. 85 (eds Falicov, L. M. et al.) (North Holland, 1981).

  142. 142.

    Alexandrov, V. et al. Kondo breakdown in topological Kondo insulators. Phys. Rev. Lett. 114, 177202 (2015).

    ADS  Google Scholar 

  143. 143.

    Dil, J. H. Spin and angle resolved photoemission on non-magnetic low-dimensional systems. J. Phys. Condens. Matter 21, 403001 (2009).

    Google Scholar 

  144. 144.

    Heinzmann, U. et al. Spin–orbit-induced photoelectron spin polarization in angle-resolved photoemission from both atomic and condensed matter targets. J. Phys. Condens. Matter 24, 173001 (2012).

    ADS  Google Scholar 

  145. 145.

    Xu, N. et al. Surface vs bulk electronic structures of a moderately correlated topological insulator YbB6 revealed by ARPES. Preprint at arXiv https://arxiv.org/abs/1405.0165 (2014).

  146. 146.

    Kang, C.-J. et al. Electronic structure of YbB6: is it a topological insulator or not? Phys. Rev. Lett. 116, 116401 (2016).

    ADS  Google Scholar 

  147. 147.

    Xiang, Z. et al. Bulk rotational symmetry breaking in Kondo insulator SmB6. Phys. Rev. X 7, 031054 (2017).

    Google Scholar 

  148. 148.

    Phelan, W. A. et al. Correlation between bulk thermodynamic measurements and the low-temperature-resistance plateau in SmB6. Phys. Rev. X 4, 031012 (2014).

    Google Scholar 

  149. 149.

    Xu, Y. et al. Bulk Fermi surface of charge-neutral excitations in SmB6 or not: a heat-transport study. Phys. Rev. Lett. 116, 246403 (2016).

    ADS  Google Scholar 

  150. 150.

    Boulanger, M. E. et al. Field-dependent heat transport in the Kondo insulator SmB6: Phonons scattered by magnetic impurities. Phys. Rev. B 97, 245141 (2018).

    ADS  Google Scholar 

  151. 151.

    Schlottmann, P. NMR relaxation in the topological Kondo insulator SmB6. Phys. Rev. B 90, 165127 (2014).

    ADS  Google Scholar 

  152. 152.

    Valentine, M. E. et al. Breakdown of the Kondo insulating state in SmB6 by introducing Sm vacancies. Phys. Rev. B 94, 075102 (2016).

    ADS  Google Scholar 

  153. 153.

    Xiang, Z. et al. Quantum oscillations of electrical resistivity in an insulator. Science 362, 65–69 (2018).

    ADS  Google Scholar 

  154. 154.

    Sato, Y. et al. Unconventional thermal metallic state of charge-neutral fermions in an insulator. Nat. Phys. 15, 954–959 (2019).

    Google Scholar 

  155. 155.

    Stevens, K. W. H. The low lying states of intermediate-valence SmS. J. Phys. C Solid State Phys. 13, L539 (1980).

    ADS  Google Scholar 

  156. 156.

    Martin, R. M. Fermi-surfae sum rule and its consequences for periodic Kondo and mixed-valence systems. Phys. Rev. Lett. 48, 362 (1982).

    ADS  Google Scholar 

  157. 157.

    Geldenhuys, J. et al. The Luttinger theorem and intermediate valence. J. Phys. C Solid State Phys. 15, 221 (1982).

    ADS  Google Scholar 

  158. 158.

    Kaplan, T. A. et al. Theory of the phase diagram in the p-T plane of SmS. J. Phys. C Solid State Phys. 12, L23 (1979).

    Google Scholar 

  159. 159.

    Kikoin, K. A. et al. Magnetic excitations in intermediate-valence semiconductors with a singlet ground state. J. Phys. Condens. Matter 7, 307 (1995).

    ADS  Google Scholar 

  160. 160.

    Curnoe, S. et al. 4Electron self-trapping in intermediate-valent SmB6. Phys. Rev. B 61, 15714 (2000).

    ADS  Google Scholar 

  161. 161.

    Abele, M. et al. Topological nonmagnetic impurity states in topological Kondo insulators. Phys. Rev. B 101, 094101 (2020).

    ADS  Google Scholar 

  162. 162.

    Park, W. K. et al. Topological surface states interacting with bulk excitations in the Kondo insulator SmB6 revealed via planar tunneling spectroscopy. Proc. Natl Acad. Sci. USA 113, 6599–6604 (2016).

    ADS  Google Scholar 

  163. 163.

    Thomas, S. M. et al. Quantum oscillations in flux-grown SmB6 with embedded aluminum. Phys. Rev. Lett. 122, 166401 (2019).

    ADS  Google Scholar 

  164. 164.

    Aeppli, G. et al. Comments. Condens. Matter Phys. 16, 155 (1992).

    Google Scholar 

  165. 165.

    Hagiwara, K. et al. Surface Kondo effect and non-trivial metallic state of the Kondo insulator YbB12. Nat. Commun. 7, 12690 (2016).

    ADS  Google Scholar 

  166. 166.

    Chang, P.-Y. et al. Parity-violating hybridization in heavy Weyl semimetals. Phys. Rev. B 97, 155134 (2018).

    ADS  Google Scholar 

  167. 167.

    Fang, Y. et al. Evidence for a conducting surface ground state in high-quality single crystalline FeSi. Proc. Natl Acad. Sci. USA 115, 8558–8562 (2018).

    ADS  Google Scholar 

  168. 168.

    Xu, K.-J. et al. Metallic surface states in a correlated d-electron topological Kondo insulator candidate FeSb2. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2002361117 (2020).

    Article  Google Scholar 

  169. 169.

    Petrovic, C. et al. Kondo insulator description of spin state transition in FeSb2. Phys. Rev. B 72, 045103 (2005).

    ADS  Google Scholar 

Download references

Acknowledgements

L.L. thanks the NSF (award no. DMR-1707620 for high-field electrical transport) and the DOE (award no. DE-SC0020184 for high-field magnetometry), and K.S. thanks the NSF (award no. NSF-EFMA-1741618 for theory) for supporting this work. All authors thank P.F.S. Rosa and Z. Fisk for illuminating discussions and P. Coleman for sharing his valuable suggestions on the demagnetization effect in isotropic paramagnets. All authors, especially J.W.A., thank J.D. Denlinger for generously sharing his extensive knowledge of SmB6 ARPES studies.

Author information

Affiliations

Authors

Contributions

All authors have read, discussed and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Lu Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Piers Coleman, Karol Flachbart and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

1 × 2 reconstruction

The freedom from complete bulk coordination can allow surface atoms to spontaneously ‘reconstruct’ to take atomic positions altered from the perfect surface termination of the bulk. In a ‘1 × 2’ or ‘2 × 1’ reconstruction, the alteration doubles the length of one of the two translation vectors of the surface unit cell, which halves the surface Brillouin zone in one direction. For the cubic crystal SmB6, this halving has the effect of rendering the \(\bar{\Gamma }\) and the \(\bar{{\rm{X}}}\) points of the un-reconstructed surface Brillouin zone to be equivalent.

Weak antilocalization

A quantum correction to conductance arising from quantum-interference effects in materials with strong spin–orbit interaction.

Edelstein effect

Accumulation of transverse spin due to the flow of an electric current in a thin film or a two-dimensional material with a strong spin–orbit interaction.

Corbino structures

A transport geometry with concentric circular contacts used to measure the electrical conductivity of a material.

Shubnikov–de Haas oscillations

Oscillations observed in transport measurements performed on conductors as a function of magnetic field. The oscillations arise from the formation of Landau levels separated from each other by the cyclotron energy.

Γ-pocket

Fermi-surface pockets refer to the location of conducting surface electrons or holes in reciprocal space. For the (001) surface, a cubic material with a lattice constant a, the Γ-pocket refers to the surface electrons located around the Γ point, (0,0), and the X-pockets refers to the electrons located around X points, (0,π/a) and (π/a,0).

Off-stoichiometry

Stoichiometry refers to the ratio of different atoms forming a crystal. For a stoichiometric material, the ratio is described by a fraction of natural numbers (i.e. 1:6 in the case of SmB6). Off-stoichiometry is a measure of disorder, where the ratio of constituent atoms deviates from the expected fraction of natural numbers.

Lifshitz–Kosevich model

Also known as the Lifshitz–Kosevich formula, a theoretical formula describing the magnetic-field dependence of oscillatory physical properties as a result of the Landau-level quantizations in metals. A consequence of Landau’s Fermi-liquid theory, the Lifshitz–Kosevich model explains particularly well the temperature dependence of the oscillatory magnitude of quantum oscillations.

Auxiliary-boson treatment

Also known as the auxiliary-boson method. Implies the use of any of several theoretical techniques for the study of strongly correlated quantum systems, where quantum dynamics and the effects of strong interactions among quantum particles are characterized through introducing additional (auxiliary) degrees of freedom.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Sun, K., Kurdak, C. et al. Emergent mystery in the Kondo insulator samarium hexaboride. Nat Rev Phys 2, 463–479 (2020). https://doi.org/10.1038/s42254-020-0210-8

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing