Abstract
Magnetic skyrmions (or vortices) are spatially inhomogeneous spin textures localized in nanoscale cylindrical regions. Their small size and unique stability make skyrmions attractive for the study of spin topology and technologies wherein information is carried by the electron spin in addition to, or instead of, the electron charge. Despite advances in the synthesis of materials in which axisymmetric magnetic skyrmions can be stabilized and characterized, there has been relatively slow progress in elucidating the basic properties. This Perspective aims to bridge this gap by delivering a brief, accessible guide to the physical principles governing magnetic skyrmions.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Brownian reservoir computing realized using geometrically confined skyrmion dynamics
Nature Communications Open Access 15 November 2022
-
Qubits based on merons in magnetic nanodisks
Communications Materials Open Access 10 November 2022
-
Skyrmion motion and partitioning of domain wall velocity driven by repulsive interactions
Communications Physics Open Access 01 October 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Bogdanov, A. N. & Yablonskii, D. A. Thermodynamically stable ‘vortices’ in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68, 101–103 (1989).
Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994).
Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).
Leonov, A. O. et al. The properties of isolated chiral skyrmions in thin magnetic films. N. J. Phys. 18, 065003 (2016).
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
Pappas, C. et al. Chiral paramagnetic skyrmion-like phase in MnSi. Phys. Rev. Lett. 102, 197202 (2009).
Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–903 (2010).
Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).
Derrick, G. H. Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5, 1252–1254 (1964).
Dzyaloshinskii, I. E. Theory of helicoidal structures in antiferromagnets. Sov. Phys. JETP 19, 960–971 (1964).
Bogdanov, A. & Hubert, A. The properties of isolated magnetic vortices. Phys. Stat. Sol. 186, 527 (1994).
Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).
Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).
Langner, M. C. et al. Coupled skyrmion sublattices in Cu2OSeO3. Phys. Rev. Lett. 112, 167202 (2014).
Kézsmárki, I. et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 14, 1116–1122 (2015).
Zhang, S. L. et al. Multidomain skyrmion lattice state in Cu2OSeO3. Nano Lett. 16, 3285–3291 (2016).
Fujishiro, Y. et al. Topological transitions among skyrmion- and hedgehog-lattice states in cubic chiral magnets. Nat. Commun. 10, 1059 (2019).
Zefang, D. et al. Observation of magnetic skyrmion bubbles in a van der Waals ferromagnet Fe3GeTe2. Nano Lett. 20, 868–873 (2020).
Nayak, A. K. et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548, 561–566 (2017).
Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).
Remoissenet, M. Waves Called Solitons. Concepts and Experiments, 328 (Springer, 2003).
Manton, N. & Sutcliffe, P. Topological Solitons (Cambridge Univ. Press, 2004).
Bogdanov, A. N. & Panagopoulos, C. The emergence of magnetic skyrmions. Phys. Today 73, 44–49 (2020).
Zabusky, N. J. & Kruskal, M. D. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965).
Skyrme, T. H. A non-linear field theory. Proc. R. Soc. A 260, 127–138 (1961).
Brown, G. E. & Rho, M. (eds) The Multifaceted Skyrmion (World Scientific, 2010).
Hubert, A. & Schäfer, R. Magnetic Domains (Springer, 1998).
Okubo, T., Chung, S. & Kawamura, H. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys. Rev. Lett. 108, 017206 (2012).
White R. M. Quantum Theory of Magnetism, 362 (Springer, 2007).
Bak, P. & Jensen, M. H. Theory of helical magnetic structures and phase transitions in MnSi and FeGe. J. Phys. C 13, L881–L885 (1980).
Bogdanov, A. & Hubert, A. The stability of vortex-like structures in uniaxial ferromagnets. J. Magn. Magn. Mater. 195, 182–192 (1999).
Leonov, A. O. & Bogdanov, A. N. Crossover of skyrmion and helical modulations in noncentrosymmetric ferromagnets. N. J. Phys. 20, 043017 (2018).
Kovács, A. et al. Mapping the magnetization fine structure of a lattice of Bloch-type skyrmions in an FeGe thin film. Appl. Phys. Lett. 111, 192410 (2017).
Romming, N., Kubetzka, A., Hanneken, C., Bergmann, K. V. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).
Wilson, M. N., Butenko, A. B., Bogdanov, A. N. & Monchesky, T. L. Chiral skyrmions in cubic helimagnet films: the role of uniaxial anisotropy. Phys. Rev. B 89, 094411 (2014).
Siemens, A., Zhang, Y., Hagemeister, J., Vedmedenko, E. Y. & Wiesendanger, R. Minimal radius of magnetic skyrmions: statics and dynamics. N. J. Phys. 18, 045021 (2016).
Leonov, A. O. et al. Chiral surface twists and skyrmion stability in nanolayers of cubic helimagnets. Phys. Rev. Lett. 117, 087202 (2016).
Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).
Duong, N. K. et al. Stabilizing zero-field skyrmions in Ir/Fe/Co/Pt thin film multilayers by magnetic history control. Appl. Phys. Lett. 114, 072401 (2019).
McGrouther, D. et al. Internal structure of hexagonal skyrmion lattices in cubic helimagnets. N. J. Phys. 18, 095004 (2016).
Yu, X. Z. et al. Variation of skyrmion forms and their stability in MnSi thin plates. Phys. Rev. B 91, 054411 (2015).
Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).
Woo, S. et al. Observation of room temperature magnetic skyrmions and their current-driven dynamics in ultrathin Co films. Nat. Mater. 15, 501–506 (2016).
Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 1, 16044 (2016).
Izyumov, Yu. A. Modulated, or long-periodic, magnetic structures of crystals. Sov. Phys. Usp. 27, 845–867 (1984).
Landau, L. D. & Lifshitz, E. M. Statistical Physics 3rd edition, Part 1 (Pergamon, 1980).
De Gennes P. G. Fluctuations, Instabilities, and Phase Transitions (ed. Riste, T.) (Plenum, 1975).
Wright, D. C. & Mermin, N. D. Crystalline liquids: the blue phases. Rev. Mod. Phys. 61, 385–432 (1989).
Faddeev, L. D. Some comments on the many-dimensional solitons. Lett. Math. Phys. 1, 289–293 (1976).
Leonov, A. O., Dragunov, I. E., U. K. Rößler, U. K. & Bogdanov, A. N. Theory of skyrmion states in liquid crystals. Phys. Rev. E 90, 042502 (2014).
Ackerman, P. J. et al. Two-dimensional skyrmions and other solitonic structures in confinement-frustrated chiral nematics. Phys. Rev. E 90, 012505 (2014).
Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).
Leonov, A. O. & Mostovoy, M. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun. 6, 8275 (2015).
Romming, N. et al. Competition of Dzyaloshinskii–Moriya and higher-order exchange interactions in Rh/Fe atomic bilayers on Ir (111). Phys. Rev. Lett. 120, 207201 (2018).
Hubert, A. Theorie der Domänenwände in geordneten Medien (Springer, 1974).
Melnichuk, P. I., Bogdanov, A. N., Rößler, U. K. & Müller, K.-H. Hubert model for modulated states in systems with competing exchange interactions. J. Magn. Magn. Mater. 248, 142–150 (2002).
Acknowledgements
The authors acknowledge A. Fert and R. Wiesendanger for discussions. A.N.B. thanks M. Ochi and K. Inoue for hospitality and collaboration during his stay at Hiroshima University. This work was supported in Germany by the Deutscher Forschungsgemeinschaft through SPP2137 ‘Skyrmionics’, and in Singapore by the Ministry of Education (MOE), under its MOE AcRF Tier 3 Award MOE2018-T3-1-002, and the National Research Foundation (NRF) Singapore under NRF Investigatorship (no. NRF-NRFI2015-04).
Author information
Authors and Affiliations
Contributions
Both authors have read, discussed and contributed to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Pizzo, N. Shallow water wave generation: www.youtube.com/watch?v=w-oDnvbV8mY
Rights and permissions
About this article
Cite this article
Bogdanov, A.N., Panagopoulos, C. Physical foundations and basic properties of magnetic skyrmions. Nat Rev Phys 2, 492–498 (2020). https://doi.org/10.1038/s42254-020-0203-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-020-0203-7
This article is cited by
-
Topological defects with a half twist
Nature Physics (2023)
-
Brownian reservoir computing realized using geometrically confined skyrmion dynamics
Nature Communications (2022)
-
Skyrmion motion and partitioning of domain wall velocity driven by repulsive interactions
Communications Physics (2022)
-
Qubits based on merons in magnetic nanodisks
Communications Materials (2022)
-
Skyrmion-(non)crystal structure stabilized by dipolar interaction
Rare Metals (2022)