Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Physical foundations and basic properties of magnetic skyrmions


Magnetic skyrmions (or vortices) are spatially inhomogeneous spin textures localized in nanoscale cylindrical regions. Their small size and unique stability make skyrmions attractive for the study of spin topology and technologies wherein information is carried by the electron spin in addition to, or instead of, the electron charge. Despite advances in the synthesis of materials in which axisymmetric magnetic skyrmions can be stabilized and characterized, there has been relatively slow progress in elucidating the basic properties. This Perspective aims to bridge this gap by delivering a brief, accessible guide to the physical principles governing magnetic skyrmions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Magnetic skyrmions.
Fig. 2: Isolated skyrmions in the saturated state.
Fig. 3: Evolution of skyrmion lattices in an applied magnetic field.


  1. Bogdanov, A. N. & Yablonskii, D. A. Thermodynamically stable ‘vortices’ in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68, 101–103 (1989).

    Google Scholar 

  2. Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994).

    ADS  Google Scholar 

  3. Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    ADS  Google Scholar 

  4. Leonov, A. O. et al. The properties of isolated chiral skyrmions in thin magnetic films. N. J. Phys. 18, 065003 (2016).

    Google Scholar 

  5. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    ADS  Google Scholar 

  6. Pappas, C. et al. Chiral paramagnetic skyrmion-like phase in MnSi. Phys. Rev. Lett. 102, 197202 (2009).

    ADS  Google Scholar 

  7. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–903 (2010).

    ADS  Google Scholar 

  8. Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).

    ADS  Google Scholar 

  9. Derrick, G. H. Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5, 1252–1254 (1964).

    ADS  MathSciNet  Google Scholar 

  10. Dzyaloshinskii, I. E. Theory of helicoidal structures in antiferromagnets. Sov. Phys. JETP 19, 960–971 (1964).

    Google Scholar 

  11. Bogdanov, A. & Hubert, A. The properties of isolated magnetic vortices. Phys. Stat. Sol. 186, 527 (1994).

    ADS  Google Scholar 

  12. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Google Scholar 

  13. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    ADS  Google Scholar 

  14. Langner, M. C. et al. Coupled skyrmion sublattices in Cu2OSeO3. Phys. Rev. Lett. 112, 167202 (2014).

    ADS  Google Scholar 

  15. Kézsmárki, I. et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 14, 1116–1122 (2015).

    ADS  Google Scholar 

  16. Zhang, S. L. et al. Multidomain skyrmion lattice state in Cu2OSeO3. Nano Lett. 16, 3285–3291 (2016).

    ADS  Google Scholar 

  17. Fujishiro, Y. et al. Topological transitions among skyrmion- and hedgehog-lattice states in cubic chiral magnets. Nat. Commun. 10, 1059 (2019).

    ADS  Google Scholar 

  18. Zefang, D. et al. Observation of magnetic skyrmion bubbles in a van der Waals ferromagnet Fe3GeTe2. Nano Lett. 20, 868–873 (2020).

    ADS  Google Scholar 

  19. Nayak, A. K. et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548, 561–566 (2017).

    ADS  Google Scholar 

  20. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

    ADS  Google Scholar 

  21. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    ADS  Google Scholar 

  22. Remoissenet, M. Waves Called Solitons. Concepts and Experiments, 328 (Springer, 2003).

  23. Manton, N. & Sutcliffe, P. Topological Solitons (Cambridge Univ. Press, 2004).

  24. Bogdanov, A. N. & Panagopoulos, C. The emergence of magnetic skyrmions. Phys. Today 73, 44–49 (2020).

    Google Scholar 

  25. Zabusky, N. J. & Kruskal, M. D. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965).

    ADS  MATH  Google Scholar 

  26. Skyrme, T. H. A non-linear field theory. Proc. R. Soc. A 260, 127–138 (1961).

    ADS  MathSciNet  MATH  Google Scholar 

  27. Brown, G. E. & Rho, M. (eds) The Multifaceted Skyrmion (World Scientific, 2010).

  28. Hubert, A. & Schäfer, R. Magnetic Domains (Springer, 1998).

  29. Okubo, T., Chung, S. & Kawamura, H. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys. Rev. Lett. 108, 017206 (2012).

    ADS  Google Scholar 

  30. White R. M. Quantum Theory of Magnetism, 362 (Springer, 2007).

  31. Bak, P. & Jensen, M. H. Theory of helical magnetic structures and phase transitions in MnSi and FeGe. J. Phys. C 13, L881–L885 (1980).

    ADS  Google Scholar 

  32. Bogdanov, A. & Hubert, A. The stability of vortex-like structures in uniaxial ferromagnets. J. Magn. Magn. Mater. 195, 182–192 (1999).

    ADS  Google Scholar 

  33. Leonov, A. O. & Bogdanov, A. N. Crossover of skyrmion and helical modulations in noncentrosymmetric ferromagnets. N. J. Phys. 20, 043017 (2018).

    Google Scholar 

  34. Kovács, A. et al. Mapping the magnetization fine structure of a lattice of Bloch-type skyrmions in an FeGe thin film. Appl. Phys. Lett. 111, 192410 (2017).

    ADS  Google Scholar 

  35. Romming, N., Kubetzka, A., Hanneken, C., Bergmann, K. V. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

    ADS  Google Scholar 

  36. Wilson, M. N., Butenko, A. B., Bogdanov, A. N. & Monchesky, T. L. Chiral skyrmions in cubic helimagnet films: the role of uniaxial anisotropy. Phys. Rev. B 89, 094411 (2014).

    ADS  Google Scholar 

  37. Siemens, A., Zhang, Y., Hagemeister, J., Vedmedenko, E. Y. & Wiesendanger, R. Minimal radius of magnetic skyrmions: statics and dynamics. N. J. Phys. 18, 045021 (2016).

    Google Scholar 

  38. Leonov, A. O. et al. Chiral surface twists and skyrmion stability in nanolayers of cubic helimagnets. Phys. Rev. Lett. 117, 087202 (2016).

    ADS  Google Scholar 

  39. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    ADS  Google Scholar 

  40. Duong, N. K. et al. Stabilizing zero-field skyrmions in Ir/Fe/Co/Pt thin film multilayers by magnetic history control. Appl. Phys. Lett. 114, 072401 (2019).

    ADS  Google Scholar 

  41. McGrouther, D. et al. Internal structure of hexagonal skyrmion lattices in cubic helimagnets. N. J. Phys. 18, 095004 (2016).

    Google Scholar 

  42. Yu, X. Z. et al. Variation of skyrmion forms and their stability in MnSi thin plates. Phys. Rev. B 91, 054411 (2015).

    ADS  Google Scholar 

  43. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    Google Scholar 

  44. Woo, S. et al. Observation of room temperature magnetic skyrmions and their current-driven dynamics in ultrathin Co films. Nat. Mater. 15, 501–506 (2016).

    ADS  Google Scholar 

  45. Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 1, 16044 (2016).

    ADS  Google Scholar 

  46. Izyumov, Yu. A. Modulated, or long-periodic, magnetic structures of crystals. Sov. Phys. Usp. 27, 845–867 (1984).

    ADS  Google Scholar 

  47. Landau, L. D. & Lifshitz, E. M. Statistical Physics 3rd edition, Part 1 (Pergamon, 1980).

  48. De Gennes P. G. Fluctuations, Instabilities, and Phase Transitions (ed. Riste, T.) (Plenum, 1975).

  49. Wright, D. C. & Mermin, N. D. Crystalline liquids: the blue phases. Rev. Mod. Phys. 61, 385–432 (1989).

    ADS  Google Scholar 

  50. Faddeev, L. D. Some comments on the many-dimensional solitons. Lett. Math. Phys. 1, 289–293 (1976).

    ADS  MathSciNet  Google Scholar 

  51. Leonov, A. O., Dragunov, I. E., U. K. Rößler, U. K. & Bogdanov, A. N. Theory of skyrmion states in liquid crystals. Phys. Rev. E 90, 042502 (2014).

    ADS  Google Scholar 

  52. Ackerman, P. J. et al. Two-dimensional skyrmions and other solitonic structures in confinement-frustrated chiral nematics. Phys. Rev. E 90, 012505 (2014).

    ADS  Google Scholar 

  53. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    ADS  Google Scholar 

  54. Leonov, A. O. & Mostovoy, M. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun. 6, 8275 (2015).

    ADS  Google Scholar 

  55. Romming, N. et al. Competition of Dzyaloshinskii–Moriya and higher-order exchange interactions in Rh/Fe atomic bilayers on Ir (111). Phys. Rev. Lett. 120, 207201 (2018).

    ADS  Google Scholar 

  56. Hubert, A. Theorie der Domänenwände in geordneten Medien (Springer, 1974).

  57. Melnichuk, P. I., Bogdanov, A. N., Rößler, U. K. & Müller, K.-H. Hubert model for modulated states in systems with competing exchange interactions. J. Magn. Magn. Mater. 248, 142–150 (2002).

    ADS  Google Scholar 

Download references


The authors acknowledge A. Fert and R. Wiesendanger for discussions. A.N.B. thanks M. Ochi and K. Inoue for hospitality and collaboration during his stay at Hiroshima University. This work was supported in Germany by the Deutscher Forschungsgemeinschaft through SPP2137 ‘Skyrmionics’, and in Singapore by the Ministry of Education (MOE), under its MOE AcRF Tier 3 Award MOE2018-T3-1-002, and the National Research Foundation (NRF) Singapore under NRF Investigatorship (no. NRF-NRFI2015-04).

Author information

Authors and Affiliations



Both authors have read, discussed and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Christos Panagopoulos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Pizzo, N. Shallow water wave generation:

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, A.N., Panagopoulos, C. Physical foundations and basic properties of magnetic skyrmions. Nat Rev Phys 2, 492–498 (2020).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing