Using metadynamics to explore complex free-energy landscapes

Abstract

Metadynamics is an atomistic simulation technique that allows, within the same framework, acceleration of rare events and estimation of the free energy of complex molecular systems. It is based on iteratively ‘filling’ the potential energy of the system by a sum of Gaussians centred along the trajectory followed by a suitably chosen set of collective variables (CVs), thereby forcing the system to migrate from one minimum to the next. The power of metadynamics is demonstrated by the large number of extensions and variants that have been developed. The first scope of this Technical Review is to present a critical comparison of these variants, discussing their advantages and disadvantages. The effectiveness of metadynamics, and that of the numerous alternative methods, is strongly influenced by the choice of the CVs. If an important variable is neglected, the resulting estimate of the free energy is unreliable, and predicted transition mechanisms may be qualitatively wrong. The second scope of this Technical Review is to discuss how the CVs should be selected, how to verify whether the chosen CVs are sufficient or redundant, and how to iteratively improve the CVs using machine learning approaches.

Key points

  • Metadynamics makes it possible to accelerate conformational transitions between metastable states, broadening the scope of molecular dynamics simulations.

  • Like other enhanced sampling methods, metadynamics requires the introduction of low-dimensional descriptors (collective variables) whose choice affects the rate at which transitions are enhanced. The ideal collective variable should take different values not only in all the relevant metastable states but also in the transition states between them.

  • The appropriate collective variables can be found by trial and error or designed automatically using methods inspired by machine learning.

  • Two variants of metadynamics are commonly used, namely ordinary and well-tempered metadynamics. The former has the advantage of inducing transitions between the metastable states even if the collective variable is not ideal. The latter has the advantage of providing an exact estimator of the free energy.

  • Metadynamics can be used in combination with most molecular dynamics software packages by taking advantage of dedicated software libraries that implement the method and a large number of collective variables.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The working principles of adaptive umbrella sampling and metadynamics.
Fig. 2: Three potential energy landscapes, the corresponding free energies and metadynamics trajectories.
Fig. 3: Three approaches for automatically finding the best CV.
Fig. 4: Typical architecture of a library to perform metadynamics simulations.
Fig. 5: Choosing the correct metadynamics variant.

References

  1. 1.

    Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).

  2. 2.

    Laio, A. & Parrinello, M. Escaping free energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

  3. 3.

    Laio, A. & Gervasio, F. L. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71, 126601 (2008).

  4. 4.

    Barducci, A., Bonomi, M. & Parrinello, M. Metadynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 826–843 (2011).

  5. 5.

    Sutto, L., Marsili, S. & Gervasio, F. L. New advances in metadynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 771–779 (2012).

  6. 6.

    Baftizadeh, F., Cossio, P., Pietrucci, F. & A, L. Protein folding and ligand–enzyme binding from bias-exchange metadynamics simulations. Curr. Phys. Chem. 2, 79–91 (2012).

  7. 7.

    Bussi, G. & Branduardi, D. Free-energy calculations with metadynamics: theory and practice. Rev. Comput. Chem. 28, 1–49 (2015).

  8. 8.

    Valsson, O., Tiwary, P. & Parrinello, M. Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Annu. Rev. Phys. Chem. 67, 159–184 (2016).

  9. 9.

    Theodoropoulos, C., Qian, Y.-H. & Kevrekidis, I. G. Coarse stability and bifurcation analysis using time-steppers: a reaction-diffusion example. Proc. Natl Acad. Sci. USA 97, 9840–9843 (2000).

  10. 10.

    Grubmüller, H. Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys. Rev. E 52, 2893–2906 (1995).

  11. 11.

    Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986).

  12. 12.

    Cvijović, D. & Klinowski, J. Taboo search — an approach to the multiple minima problem. Science 267, 664–666 (1995).

  13. 13.

    Huber, T., Torda, A. E. & Van Gunsteren, W. F. Local elevation: a method for improving the searching properties of molecular dynamics simulation. J. Comput. Aided Mol. Des. 8, 695–708 (1994).

  14. 14.

    Wang, F. & Landau, D. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050 (2001).

  15. 15.

    Mezei, M. Adaptive umbrella sampling: self-consistent determination of the non-Boltzmann bias. J. Comput. Phys. 68, 237–248 (1987).

  16. 16.

    Rosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956).

  17. 17.

    Bussi, G., Laio, A. & Parrinello, M. Equilibrium free energies from nonequilibrium metadynamics. Phys. Rev. Lett. 96, 090601 (2006).

  18. 18.

    Barducci, A., Bussi, G. & Parrinello, M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603 (2008).

  19. 19.

    Spall, J. C. Introduction to Stochastic Search and Optimization (Wiley, 2003).

  20. 20.

    Dama, J. F., Parrinello, M. & Voth, G. A. Well-tempered metadynamics converges asymptotically. Phys. Rev. Lett. 112, 240602 (2014).

  21. 21.

    Piana, S. & Laio, A. A bias-exchange approach to protein folding. J. Phys. Chem. B 111, 4553–4559 (2007).

  22. 22.

    Gil-Ley, A. & Bussi, G. Enhanced conformational sampling using replica exchange with collective-variable tempering. J. Chem. Theory Comput. 11, 1077–1085 (2014).

  23. 23.

    Pfaendtner, J. & Bonomi, M. Efficient sampling of high-dimensional free-energy landscapes with parallel bias metadynamics. J. Chem. Theory Comput. 11, 5062–5067 (2015).

  24. 24.

    Branduardi, D., Gervasio, F. L. & Parrinello, M. From A to B in free energy space. J. Chem. Phys. 126, 054103 (2007).

  25. 25.

    Leines, G. D. & Ensing, B. Path finding on high-dimensional free energy landscapes. Phys. Rev. Lett. 109, 020601 (2012).

  26. 26.

    Awasthi, S., Kapil, V. & Nair, N. Sampling free energy surfaces as slices by combining umbrella sampling and metadynamics. J. Comp. Chem. 37, 1413–1424 (2016).

  27. 27.

    Marinelli, F. Following easy slope paths on a free energy landscape: the case study of the Trp-cage folding mechanism. Biophys. J. 105, 1236–1247 (2013).

  28. 28.

    Hošek, P., Toulcová, D., Bortolato, A. & Spiwok, V. Altruistic metadynamics: multisystem biased simulation. J. Phys. Chem. B 120, 2209–2215 (2016).

  29. 29.

    Fu, H. et al. Zooming across the free-energy landscape: shaving barriers, and flooding valleys. J. Phys. Chem. Lett. 9, 4738–4745 (2018).

  30. 30.

    Darve, E. & Pohorille, A. Calculating free energies using average force. J. Chem. Phys. 115, 9169–9183 (2001).

  31. 31.

    Limongelli, V., Bonomi, M. & Parrinello, M. Funnel metadynamics as accurate binding free-energy method. Proc. Natl Acad. Sci. USA 110, 6358–6363 (2013).

  32. 32.

    Bonomi, M., Barducci, A. & Parrinello, M. Reconstructing the equilibrium Boltzmann distribution from well-tempered metadynamics. J. Comput. Chem. 30, 1615–1621 (2009).

  33. 33.

    Branduardi, D., Bussi, G. & Parrinello, M. Metadynamics with adaptive Gaussians. J. Chem. Theory Comput. 8, 2247–2254 (2012).

  34. 34.

    Tiwary, P. & Parrinello, M. A time-independent free energy estimator for metadynamics. J. Phys. Chem. B 119, 736–742 (2014).

  35. 35.

    Donati, L. & Keller, B. G. Girsanov reweighting for metadynamics simulations. J. Chem. Phys. 149, 072335 (2018).

  36. 36.

    Iannuzzi, M., Laio, A. & Parrinello, M. Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. Phys. Rev. Lett. 90, 238302 (2003).

  37. 37.

    Crespo, Y., Marinelli, F., Pietrucci, F. & Laio, A. Metadynamics convergence law in a multidimensional system. Phys. Rev. E 81, 055701 (2010).

  38. 38.

    Spiwok, V. & Králová, B. Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap. J. Chem. Phys. 135, 224504 (2011).

  39. 39.

    Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

  40. 40.

    Cox, T. F. & Cox, M. A. Multidimensional Scaling (Chapman and Hall/CRC, 2000).

  41. 41.

    Rohrdanz, M. A., Zheng, W., Maggioni, M. & Clementi, C. Determination of reaction coordinates via locally scaled diffusion map. J. Chem. Phys. 134, 124116 (2011).

  42. 42.

    Tribello, G. A., Ceriotti, M. & Parrinello, M. Using sketch-map coordinates to analyze and bias molecular dynamics simulations. Proc. Natl Acad. Sci. USA 109, 5196–5201 (2012).

  43. 43.

    Sultan, M. M. & Pande, V. S. Automated design of collective variables using supervised machine learning. J. Chem. Phys. 149, 094106 (2018).

  44. 44.

    Mendels, D., Piccini, G., Brotzakis, Z. F., Yang, Y. I. & Parrinello, M. Folding a small protein using harmonic linear discriminant analysis. J. Chem. Phys. 149, 194113 (2018).

  45. 45.

    Piccini, G. & Parrinello, M. Accurate quantum chemical free energies at affordable cost. J. Phys. Chem. Lett. 10, 3727–3731 (2019).

  46. 46.

    Rizzi, V., Mendels, D., Sicilia, E. & Parrinello, M. Blind search for complex chemical pathways using harmonic linear discriminant analysis. J. Chem. Theory Comput. 15, 4507–4515 (2019).

  47. 47.

    Vanden-Eijnden, E. Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 61, 391–420 (2010).

  48. 48.

    Peters, B., Beckham, G. T. & Trout, B. L. Extensions to the likelihood maximization approach for finding reaction coordinates. J. Chem. Phys. 127, 034109 (2007).

  49. 49.

    Tiwary, P. & Berne, B. Spectral gap optimization of order parameters for sampling complex molecular systems. Proc. Natl Acad. Sci. USA 113, 2839–2844 (2016).

  50. 50.

    M Sultan, M. & Pande, V. S. tICA-metadynamics: accelerating metadynamics by using kinetically selected collective variables. J. Chem. Theory Comput. 13, 2440–2447 (2017).

  51. 51.

    McCarty, J. & Parrinello, M. A variational conformational dynamics approach to the selection of collective variables in metadynamics. J. Chem. Phys. 147, 204109 (2017).

  52. 52.

    Piccini, G., Polino, D. & Parrinello, M. Identifying slow molecular motions in complex chemical reactions. J. Phys. Chem. Lett. 8, 4197–4200 (2017).

  53. 53.

    Chen, W. & Ferguson, A. L. Molecular enhanced sampling with autoencoders: on-the-fly collective variable discovery and accelerated free energy landscape exploration. J. Comput. Chem. 39, 2079–2102 (2018).

  54. 54.

    Wehmeyer, C. & Noé, F. Time-lagged autoencoders: deep learning of slow collective variables for molecular kinetics. J. Chem. Phys. 148, 241703 (2018).

  55. 55.

    Wang, Y., Ribeiro, J. M. L. & Tiwary, P. Past–future information bottleneck for sampling molecular reaction coordinate simultaneously with thermodynamics and kinetics. Nat. Commun. 10, 3573 (2019).

  56. 56.

    Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED2: new feathers for an old bird. Comput. Phys. Comm. 185, 604–613 (2014).

  57. 57.

    Fiorin, G., Klein, M. L. & Hénin, J. Using collective variables to drive molecular dynamics simulations. Mol. Phys. 111, 3345–3362 (2013).

  58. 58.

    Sidky, H. et al. SSAGES: software suite for advanced general ensemble simulations. J. Chem. Phys. 148, 044104 (2018).

  59. 59.

    Grubmüller, H., Heymann, B. & Tavan, P. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271, 997–999 (1996).

  60. 60.

    The PLUMED consortium. Promoting transparency and reproducibility in enhanced molecular simulations. Nat. Methods 16, 670–673 (2019).

  61. 61.

    Dama, J., Rotskoff, G., Parrinello, M. & Voth, G. Transition-tempered metadynamics: robust, convergent metadynamics via on-the-fly transition barrier estimation. J. Chem. Theory Comput. 10, 3626–3633 (2014).

  62. 62.

    Jourdain, B., Lelièvre, T. & Zitt, P.-A. Convergence of metadynamics: discussion of the adiabatic hypothesis. Preprint at arXix https://arxiv.org/abs/1904.08667 (2019).

  63. 63.

    Cuendet, M. & Tuckerman, M. Free energy reconstruction from metadynamics or adiabatic free energy dynamics simulations. J. Chem. Theory Comput. 10, 2975–2986 (2014).

  64. 64.

    Mones, L., Bernstein, N. & Csányi, G. Exploration, sampling, and reconstruction of free energy surfaces with Gaussian process regression. J. Chem. Theory Comput. 12, 5100–5110 (2016).

  65. 65.

    Bussi, G., Gervasio, F. L., Laio, A. & Parrinello, M. Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. J. Am. Chem. Soc. 128, 13435–13441 (2006).

  66. 66.

    Camilloni, C., Provasi, D., Tiana, G. & Broglia, R. A. Exploring the protein G helix free-energy surface by solute tempering metadynamics. Proteins 71, 1647–1654 (2008).

  67. 67.

    McGovern, M. & De Pablo, J. A boundary correction algorithm for metadynamics in multiple dimensions. J. Chem. Phys. 140, 229901 (2013).

  68. 68.

    Harvey, M. J., Giupponi, G. & Fabritiis, G. D. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput. 5, 1632–1639 (2009).

  69. 69.

    Case, D. A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

  70. 70.

    Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

  71. 71.

    Todorov, I. T., Smith, W., Trachenko, K. & Dove, M. T. Dl_poly_3: new dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem. 16, 1911–1918 (2006).

  72. 72.

    Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. in Proc. 2006 ACM/IEEE Conf. Supercomput. 43–43 (IEEE, 2006).

  73. 73.

    Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).

  74. 74.

    Kapil, V. et al. i-PI 2.0: a universal force engine for advanced molecular simulations. Comput. Phys. Commun. 236, 214–223 (2019).

  75. 75.

    Anderson, J. A., Lorenz, C. D. & Travesset, A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227, 5342–5359 (2008).

  76. 76.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

  77. 77.

    Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

  78. 78.

    Louden, P. et al. OPENMD-2.5: molecular dynamics in the open. OpenMD http://openmd.org/ (2017).

  79. 79.

    Eastman, P. et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).

  80. 80.

    Procacci, P. Hybrid MPI/OpenMP implementation of the ORAC molecular dynamics program for generalized ensemble and fast switching alchemical simulations. J. Chem. Inf. Model. 56, 1117–1121 (2016).

  81. 81.

    Tuckerman, M. E., Yarne, D., Samuelson, S. O., Hughes, A. L. & Martyna, G. J. Exploiting multiple levels of parallelism in molecular dynamics based calculations via modern techniques and software paradigms on distributed memory computers. Comput. Phys. Commun. 128, 333–376 (2000).

  82. 82.

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

  83. 83.

    Gygi, F. Architecture of Qbox: a scalable first-principles molecular dynamics code. IBM J. Res. Dev. 52, 137–144 (2008).

Download references

Author information

Both authors contributed to all aspects of manuscript preparation, revision and editing.

Correspondence to Alessandro Laio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bussi, G., Laio, A. Using metadynamics to explore complex free-energy landscapes. Nat Rev Phys (2020). https://doi.org/10.1038/s42254-020-0153-0

Download citation