Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

A different perspective on the history of the proof of Hall conductance quantization

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Michalakis, S. Why is the Hall conductance quantized? Nat. Rev. Phys. 2, 392–393 (2020).

    Article  Google Scholar 

  2. Hastings, M. B. & Michalakis, S. Quantization of hall conductance for interacting electrons on a torus. Commun. Math. Phys. 334, 433–471 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  3. Avron, J. E. & Seiler, R. Quantization of the Hall conductance for general, multiparticle Schrodinger hamiltonians. Phys. Rev. Lett. 54, 259 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  4. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982).

    Article  ADS  Google Scholar 

  5. Hastings, M. B. Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004).

    Article  ADS  Google Scholar 

  6. Misguich, G. and Lhuillier, C. Some remarks on the Lieb-Schultz-Mattis theorem and its extension to higher dimensions. Preprint at: https://arxiv.org/abs/cond-mat/0002170 (2000).

  7. Oshikawa, M. Commensurability, excitation gap, and topology in quantum many-particle systems on a periodic lattice. Phys. Rev. Lett. 84, 1535 (2000).

    Article  ADS  Google Scholar 

  8. Osborne, T. J. Simulating adiabatic evolution of gapped spin systems. Phys. Rev. A 75, 032321 (2007).

    Article  ADS  Google Scholar 

  9. Ingham, A. E. A note on Fourier transforms. J. Lond. Math. Soc. 1, 29–32 (1934).

    Article  MathSciNet  Google Scholar 

  10. Bravyi, S. & Hastings, M. B. A short proof of stability of topological order under local perturbations. Commun. Math. Phys. 307, 609 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  11. Michalakis, S. & Zwolak, J. P. Stability of frustration-free Hamiltonians. Commun. Math. Phys. 322, 277–302 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  12. Michalakis, S. Stability of the area law for the entropy of entanglement. Preprint at: https://arxiv.org/abs/1206.6900 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Hastings.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hastings, M.B. A different perspective on the history of the proof of Hall conductance quantization. Nat Rev Phys 2, 723 (2020). https://doi.org/10.1038/s42254-020-00255-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-020-00255-5

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics