Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Chiral magnetic effect reveals the topology of gauge fields in heavy-ion collisions

Abstract

The topological structure of vacuum is the cornerstone of non-Abelian gauge theories describing strong and electroweak interactions within the standard model of particle physics. However, transitions between different topological sectors of the vacuum (believed to be at the origin of the baryon asymmetry of the Universe) have never been observed directly. An experimental observation of such transitions in quantum chromodynamics (QCD) has become possible in heavy-ion collisions, where the chiral magnetic effect converts the chiral asymmetry (generated by topological transitions in hot QCD matter) into an electric current, under the presence of the magnetic field produced by the colliding ions. The Relativistic Heavy Ion Collider programme on heavy-ion collisions such as the zirconium–zirconium and ruthenium–ruthenium isobars thus has the potential to uncover the topological structure of vacuum in a laboratory experiment. This discovery would have far-reaching implications for the understanding of QCD, the origin of the baryon asymmetry in the present-day Universe, and other areas, including condensed matter physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An illustration of the mechanism that underlies the chiral magnetic effect in quantum chromodynamics matter.
Fig. 2: Transition from hadron gas to quark–gluon plasma.
Fig. 3: Extremely strong magnetic field in a heavy-ion collision.
Fig. 4: Experimental measurements of the chiral magnetic effect.
Fig. 5: Chiral magnetic effect in isobar collisions.

Similar content being viewed by others

References

  1. Sakharov, A. D. Violation of CP invariance, C asymmetry, and baryon asymmetry of the Universe. Sov. Phys. Usp. 34, 392–393 (1991).

    ADS  Google Scholar 

  2. Belavin, A. A., Polyakov, A. M., Schwartz, A. S. & Tyupkin, Y. S. Pseudoparticle solutions of the Yang–Mills equations. Phys. Lett. B 59, 85–87 (1975).

    ADS  MathSciNet  Google Scholar 

  3. ‘t Hooft, G. Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D 14, 3432–3450 (1976).

    ADS  Google Scholar 

  4. Jackiw, R. & Rebbi, C. Vacuum periodicity in a Yang–Mills quantum theory. Phys. Rev. Lett. 37, 172–175 (1976).

    ADS  Google Scholar 

  5. Callan, C. G. Jr., Dashen, R. F. & Gross, D. J. The structure of the gauge theory vacuum. Phys. Lett. B 63, 334–340 (1976).

    ADS  Google Scholar 

  6. Chern, S. S. & Simons, J. Characteristic forms and geometric invariants. Ann. Math. 99, 48–69 (1974).

    MathSciNet  Google Scholar 

  7. Klinkhamer, F. R. & Manton, N. S. A saddle point solution in the Weinberg–Salam theory. Phys. Rev. D. 30, 2212 (1984).

    ADS  Google Scholar 

  8. Rubakov, V. A. & Shaposhnikov, M. E. Electroweak baryon number nonconservation in the early Universe and in high-energy collisions. Usp. Fiz. Nauk. 166, 493–537 (1996).

    Google Scholar 

  9. Ringwald, A. High-energy breakdown of perturbation theory in the electroweak instanton sector. Nucl. Phys. B 330, 1–18 (1990).

    ADS  Google Scholar 

  10. Tye, S. H. H. & Wong, S. S. C. Baryon number violating scatterings in laboratories. Phys. Rev. D 96, 093004 (2017).

    ADS  Google Scholar 

  11. Adler, S. L. Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969).

    ADS  Google Scholar 

  12. Bell, J. S. & Jackiw, R. A PCAC puzzle: π0 → γγ in the σ model. Nuovo Cim. A 60, 47–61 (1969).

    ADS  Google Scholar 

  13. Kharzeev, D. Parity violation in hot QCD: why it can happen, and how to look for it. Phys. Lett. B 633, 260–264 (2006).

    ADS  Google Scholar 

  14. Kharzeev, D. & Zhitnitsky, A. Charge separation induced by P-odd bubbles in QCD matter. Nucl. Phys. A 797, 67–79 (2007).

    ADS  Google Scholar 

  15. Kharzeev, D. E., McLerran, L. D. & Warringa, H. J. The effects of topological charge change in heavy ion collisions: ‘Event by event P and CP violation’. Nucl. Phys. A 803, 227–253 (2008).

    ADS  Google Scholar 

  16. Fukushima, K., Kharzeev, D. E. & Warringa, H. J. The chiral magnetic effect. Phys. Rev. D 78, 074033 (2008).

    ADS  Google Scholar 

  17. Kharzeev, D. E., Liao, J., Voloshin, S. A. & Wang, G. Chiral magnetic and vortical effects in high-energy nuclear collisions — a status report. Prog. Part. Nucl. Phys. 88, 1–28 (2016).

    ADS  Google Scholar 

  18. Gross, D. J. & Wilczek, F. Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973).

    ADS  Google Scholar 

  19. Politzer, H. D. Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973).

    ADS  Google Scholar 

  20. Ellis, J. R. Aspects of conformal symmetry and chirality. Nucl. Phys. B 22, 478–492 (1970).

    ADS  Google Scholar 

  21. Collins, J. C., Duncan, A. & Joglekar, S. D. Trace and dilatation anomalies in gauge theories. Phys. Rev. D 16, 438–449 (1977).

    ADS  Google Scholar 

  22. Schäfer, T. & Shuryak, E. V. Instantons in QCD. Rev. Mod. Phys. 70, 323–426 (1998).

    ADS  MathSciNet  Google Scholar 

  23. Vilenkin, A. Cancellation of equilibrium parity violating currents. Phys. Rev. D 22, 3067–3079 (1980).

    ADS  Google Scholar 

  24. Moffatt, H. K. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117–129 (1969).

    ADS  Google Scholar 

  25. Berger, M. A. & Field, G. B. The topological properties of magnetic helicity. J. Fluid Mech. 147, 61 (1984).

    MathSciNet  Google Scholar 

  26. Hirono, Y., Kharzeev, D. E. & Yin, Y. Quantized chiral magnetic current from reconnections of magnetic flux. Phys. Rev. Lett. 117, 172301 (2016).

    ADS  Google Scholar 

  27. Volovik, G. E. The Universe in a Helium Droplet (Oxford Univ. Press, 2009).

  28. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  Google Scholar 

  29. Burkov, A. A. Weyl metals. Annu. Rev. Condens. Matter Phys. 9, 359–378 (2018).

    ADS  Google Scholar 

  30. Li, Q. et al. Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016).

    Google Scholar 

  31. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    ADS  MathSciNet  Google Scholar 

  32. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. 5, 031023 (2015).

    Google Scholar 

  33. Kaushik, S. & Kharzeev, D. E. Quantum oscillations in the chiral magnetic conductivity. Phys. Rev. B 95, 235136 (2017).

    ADS  Google Scholar 

  34. Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. 4, 031035 (2014).

    Google Scholar 

  35. Zhang, C. et al. Room-temperature chiral charge pumping in Dirac semimetals. Nat. Commun. 8, 13741 (2017).

    ADS  Google Scholar 

  36. Kaushik, S., Kharzeev, D. E. & Philip, E. J. Chiral magnetic photocurrent in Dirac and Weyl materials. Phys. Rev. B 99, 075150 (2019).

    ADS  Google Scholar 

  37. Borsanyi, S. et al. Full result for the QCD equation of state with 2+1 flavors. Phys. Lett. B 730, 99–104 (2014).

    ADS  Google Scholar 

  38. Bazavov, A. et al. [HotQCD]. Equation of state in (2+1)-flavor QCD. Phys. Rev. D 90, 094503 (2014).

    ADS  Google Scholar 

  39. Bzdak, A. et al. Mapping the phases of quantum chromodynamics with beam energy scan. Phys. Rep. 853, 1–87 (2020).

    ADS  Google Scholar 

  40. Bloczynski, J., Huang, X. G., Zhang, X. & Liao, J. Azimuthally fluctuating magnetic field and its impacts on observables in heavy-ion collisions. Phys. Lett. B 718, 1529–1535 (2013).

    ADS  Google Scholar 

  41. McLerran, L. & Skokov, V. Comments about the electromagnetic field in heavy-ion collisions. Nucl. Phys. A 929, 184–190 (2014).

    ADS  Google Scholar 

  42. Inghirami, G. et al. Numerical magneto-hydrodynamics for relativistic nuclear collisions. Eur. Phys. J. C 76, 659 (2016).

    ADS  Google Scholar 

  43. Adamczyk, L. et al. [STAR collaboration]. Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid. Nature 548, 62–65 (2017).

    ADS  Google Scholar 

  44. Erdmenger, J., Haack, M., Kaminski, M. & Yarom, A. Fluid dynamics of R-charged black holes. J. High Energy Phys. 01, 055 (2009).

    ADS  MathSciNet  Google Scholar 

  45. Banerjee, N. et al. Hydrodynamics from charged black branes. J. High Energy Phys. 01, 094 (2011).

    ADS  Google Scholar 

  46. Son, D. T. & Surowka, P. Hydrodynamics with triangle anomalies. Phys. Rev. Lett. 103, 191601 (2009).

    ADS  MathSciNet  Google Scholar 

  47. Kharzeev, D. E. & Son, D. T. Testing the chiral magnetic and chiral vortical effects in heavy ion collisions. Phys. Rev. Lett. 106, 062301 (2011).

    ADS  Google Scholar 

  48. Landsteiner, K., Megias, E. & Pena-Benitez, F. Gravitational anomaly and transport. Phys. Rev. Lett. 107, 021601 (2011).

    ADS  Google Scholar 

  49. Gooth, J. et al. Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017).

    ADS  Google Scholar 

  50. Takahashi, R. et al. Spin hydrodynamic generation. Nat. Phys. 12, 52–56 (2016).

    Google Scholar 

  51. Voloshin, S. A. Parity violation in hot QCD: how to detect it. Phys. Rev. C 70, 057901 (2004).

    ADS  Google Scholar 

  52. Bzdak, A., Koch, V. & Liao, J. Charge-dependent correlations in relativistic heavy ion collisions and the chiral magnetic effect. Lect. Notes Phys. 871, 503–536 (2013).

    ADS  Google Scholar 

  53. Xu, H. J. et al. Varying the chiral magnetic effect relative to flow in a single nucleus–nucleus collision. Chin. Phys. C 42, 084103 (2018).

    ADS  Google Scholar 

  54. Zhao, J., Li, H. & Wang, F. Isolating the chiral magnetic effect from backgrounds by pair invariant mass. Eur. Phys. J. C 79, 168 (2019).

    ADS  Google Scholar 

  55. Voloshin, S. A. Estimate of the signal from the chiral magnetic effect in heavy-ion collisions from measurements relative to the participant and spectator flow planes. Phys. Rev. C 98, 054911 (2018).

    ADS  Google Scholar 

  56. Choudhury, S., Wang, G., He, W., Hu, Y. & Huang, H. Z. Background evaluations for the chiral magnetic effect with normalized correlators using a multiphase transport model. Eur. Phys. J. C 80, 383 (2020).

    ADS  Google Scholar 

  57. Wen, F., Bryon, J., Wen, L. & Wang, G. Event-shape-engineering study of charge separation in heavy-ion collisions. Chin. Phys. C 42, 014001 (2018).

    ADS  Google Scholar 

  58. Adamczyk, L. et al. [STAR]. Measurement of charge multiplicity asymmetry correlations in high-energy nucleus–nucleus collisions at √sNN = 200 GeV. Phys. Rev. C 89, 044908 (2014).

    ADS  Google Scholar 

  59. Acharya, S. et al. [ALICE Collaboration]. Constraining the magnitude of the chiral magnetic effect with event shape engineering in Pb–Pb collisions at √sNN = 2.76 TeV. Phys. Lett. B 777, 151 (2018).

    ADS  Google Scholar 

  60. Sirunyan, A. M. et al. [CMS Collaboration]. Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the CERN Large Hadron Collider. Phys. Rev. C 97, 044912 (2018).

    ADS  Google Scholar 

  61. Magdy, N., Shi, S., Liao, J., Ajitanand, N. & Lacey, R. A. New correlator to detect and characterize the chiral magnetic effect. Phys. Rev. C 97, 061901 (2018).

    ADS  Google Scholar 

  62. Tang, A. Probe chiral magnetic effect with signed balance function. Chin. Phys. C 44, 054101 (2020).

    ADS  Google Scholar 

  63. Abelev, B. et al. [STAR]. Azimuthal charged-particle correlations and possible local strong parity violation. Phys. Rev. Lett. 103, 251601 (2009).

    ADS  Google Scholar 

  64. Abelev, B. et al. [STAR]. Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions. Phys. Rev. C 81, 054908 (2010).

    ADS  Google Scholar 

  65. Adamczyk, L. et al. [STAR]. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC. Phys. Rev. Lett. 113, 052302 (2014).

    ADS  Google Scholar 

  66. Tribedy, P. [STAR]. Disentangling flow and signals of chiral magnetic effect in U+U, Au+Au and p+Au collisions. Nucl. Phys. A 967, 740–743 (2017).

    ADS  Google Scholar 

  67. Adam, J. et al. [STAR]. Charge-dependent pair correlations relative to a third particle in p+Au and d+Au collisions at RHIC. Phys. Lett. B 798, 134975 (2019).

    Google Scholar 

  68. Adam, J. et al. [STAR]. Charge separation measurements in p(d)+Au and Au+Au collisions; implications for the chiral magnetic effect. Preprint at https://arXiv.org/2006.04251 (2020).

  69. Adam, J. et al. [STAR]. Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au+Au collisions at √sNN = 200 GeV. Preprint at https://arXiv.org/2006.05035 (2020).

  70. Abelev, B. et al. [ALICE]. Charge separation relative to the reaction plane in Pb–Pb collisions at √sNN = 2.76 TeV. Phys. Rev. Lett. 110, 012301 (2013).

    ADS  Google Scholar 

  71. Khachatryan, V. et al. [CMS Collaboration]. Observation of charge-dependent azimuthal correlations in p–Pb collisions and its implication for the search for the chiral magnetic effect. Phys. Rev. Lett. 118, 122301 (2017).

    ADS  Google Scholar 

  72. Zhao, J. & Wang, F. Experimental searches for the chiral magnetic effect in heavy-ion collisions. Prog. Part. Nucl. Phys. 107, 200–236 (2019).

    ADS  Google Scholar 

  73. Zhao, J. [STAR]. Measurements of the chiral magnetic effect with background isolation in 200 GeV Au+Au collisions at STAR. Nucl. Phys. A 982, 535–538 (2019).

    ADS  Google Scholar 

  74. Li, W. & Wang, G. Chiral magnetic effects in nuclear collisions. Annu. Rev. Nucl. Part. Sci. 70, 293–321 (2020).

    ADS  Google Scholar 

  75. Kharzeev, D. E. & Yee, H. U. Chiral magnetic wave. Phys. Rev. D 83, 085007 (2011).

    ADS  Google Scholar 

  76. Burnier, Y., Kharzeev, D. E., Liao, J. & Yee, H. U. Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark–gluon plasma in heavy ion collisions. Phys. Rev. Lett. 107, 052303 (2011).

    ADS  Google Scholar 

  77. Gorbar, E. V., Miransky, V. A. & Shovkovy, I. A. Normal ground state of dense relativistic matter in a magnetic field. Phys. Rev. D 83, 085003 (2011).

    ADS  Google Scholar 

  78. Adamczyk, L. et al. [STAR]. Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions. Phys. Rev. Lett. 114, 252302 (2015).

    ADS  Google Scholar 

  79. Adam, J. et al. [ALICE]. Charge-dependent flow and the search for the chiral magnetic wave in Pb–Pb collisions at √sNN = 2.76 TeV. Phys. Rev. C 93, 044903 (2016).

    ADS  Google Scholar 

  80. Voloshin, S. A. Testing the chiral magnetic effect with central U+U collisions. Phys. Rev. Lett. 105, 172301 (2010).

    ADS  Google Scholar 

  81. Koch, V. et al. Status of the chiral magnetic effect and collisions of isobars. Chin. Phys. C 41, 072001 (2017).

    ADS  Google Scholar 

  82. Kharzeev, D. E. & Liao, J. Isobar collisions at RHIC to test local parity violation in strong interactions. Nucl. Phys. N 29, 26–31 (2019).

    Google Scholar 

  83. Kharzeev, D. E., Stephanov, M. A. & Yee, H. U. Anatomy of chiral magnetic effect in and out of equilibrium. Phys. Rev. D 95, 051901 (2017).

    ADS  Google Scholar 

  84. Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Consistent chiral kinetic theory in Weyl materials: chiral magnetic plasmons. Phys. Rev. Lett. 118, 127601 (2017).

    ADS  Google Scholar 

  85. Chen, J. Y. & Son, D. T. Berry Fermi liquid theory. Ann. Phys. 377, 345 (2017).

    ADS  MathSciNet  Google Scholar 

  86. Mueller, N. & Venugopalan, R. The chiral anomaly, Berry’s phase and chiral kinetic theory, from world-lines in quantum field theory. Phys. Rev. D 97, 051901 (2018).

    ADS  Google Scholar 

  87. Hidaka, Y., Pu, S. & Yang, D. L. Nonlinear responses of chiral fluids from kinetic theory. Phys. Rev. D 97, 016004 (2018).

    ADS  MathSciNet  Google Scholar 

  88. Huang, A., Shi, S., Jiang, Y., Liao, J. & Zhuang, P. Complete and consistent chiral transport from Wigner function formalism. Phys. Rev. D 98, 036010 (2018).

    ADS  MathSciNet  Google Scholar 

  89. Müller, N., Schlichting, S. & Sharma, S. Chiral magnetic effect and anomalous transport from real-time lattice simulations. Phys. Rev. Lett. 117, 142301 (2016).

    ADS  Google Scholar 

  90. Horvath, M., Hou, D., Liao, J. & Ren, H. C. Chiral magnetic response to arbitrary axial imbalance. Phys. Rev. D 101, 076026 (2020).

    ADS  MathSciNet  Google Scholar 

  91. Shi, S., Jiang, Y., Lilleskov, E. & Liao, J. Anomalous chiral transport in heavy ion collisions from anomalous-viscous fluid dynamics. Ann. Phys. 394, 50 (2018).

    ADS  MathSciNet  Google Scholar 

  92. Jiang, Y., Shi, S., Yin, Y. & Liao, J. Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics. Chin. Phys. C 42, 011001 (2018).

    ADS  Google Scholar 

  93. Shi, S., Zhang H., Hou, D. & Liao, J. Signatures of chiral magnetic effect in the collisions of isobars. Phys. Rev. Lett. In Press (2020).

  94. Xu, H. J. et al. Importance of isobar density distributions on the chiral magnetic effect search. Phys. Rev. Lett. 121, 022301 (2018).

    ADS  Google Scholar 

  95. Hammelmann, J., Soto-Ontoso, A., Alvioli, M., Elfner, H. & Strikman, M. Influence of the neutron-skin effect on nuclear isobar collisions at RHIC. Phys. Rev. C 101, 061901 (2020).

    ADS  Google Scholar 

  96. Zhao, X. L., Ma, G. L. & Ma, Y. G. Impact of magnetic-field fluctuations on measurements of the chiral magnetic effect in collisions of isobaric nuclei. Phys. Rev. C 99, 034903 (2019).

    ADS  Google Scholar 

  97. Magdy, N., Shi, S., Liao, J., Liu, P. & Lacey, R. A. Examination of the observability of a chiral magnetically driven charge-separation difference in collisions of the \({}_{44}{}^{96}{\rm{Ru}}+{}_{44}{}^{96}{\rm{Ru}}\) and \({}_{40}{}^{96}{\rm{Zr}}+{}_{40}{}^{96}{\rm{Zr}}\) isobars at energies available at the BNL relativistic heavy ion collider. Phys. Rev. C 98, 061902 (2018).

    ADS  Google Scholar 

  98. Deng, W. T., Huang, X. G., Ma, G. L. & Wang, G. Predictions for isobaric collisions at √sNN = 200 GeV from a multiphase transport model. Phys. Rev. C 97, 044901 (2018).

    ADS  Google Scholar 

  99. Sun, Y. & Ko, C. M. Chiral kinetic approach to the chiral magnetic effect in isobaric collisions. Phys. Rev. C 98, 014911 (2018).

    ADS  Google Scholar 

  100. Adam J. et al. [STAR]. Methods for a blind analysis of isobar data collected by the STAR collaboration. Preprint at https://arXiv.org/1911.00596 (2019).

  101. Adam, J. et al. [STAR Collaboration]. Low-pT e+e pair production in Au+Au collisions at √sNN = 200 GeV and U+U collisions at √sNN = 193 GeV at STAR. Phys. Rev. Lett. 121, 132301 (2018).

    ADS  Google Scholar 

  102. Acharya, S. et al. [ALICE Collaboration]. Probing the effects of strong electromagnetic fields with charge-dependent directed flow in Pb–Pb collisions at the LHC. Phys. Rev. Lett. 125, 022301 (2020).

    ADS  Google Scholar 

  103. Gürsoy, U., Kharzeev, D., Marcus, E., Rajagopal, K. & Shen, C. Charge-dependent flow induced by magnetic and electric fields in heavy ion collisions. Phys. Rev. C 98, 055201 (2018).

    ADS  Google Scholar 

  104. Müller, B. & Schäfer, A. Chiral magnetic effect and an experimental bound on the late time magnetic field strength. Phys. Rev. D 98, 071902 (2018).

    ADS  Google Scholar 

  105. Guo, Y., Shi, S., Feng, S. & Liao, J. Magnetic field induced polarization difference between hyperons and anti-hyperons. Phys. Lett. B 798, 134929 (2019).

    Google Scholar 

  106. Guo, X., Liao, J. & Wang, E. Spin hydrodynamic generation in the charged subatomic swirl. Sci. Rep. 10, 2196 (2020).

    ADS  Google Scholar 

  107. Müller, B. Looking for parity violation in heavy-ion collisions. Physics 2, 104 (2009).

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by the US Department of Energy, Office of Nuclear Physics, within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration. The authors also acknowledge support by the US Department of Energy, Office of Nuclear Physics contracts no. DE-FG-88ER40388 and no. DE-SC0012704 (DK), and by NSF grant no. PHY-1913729 (JL). We thank B. Liao, S. Mukherjee, S. Shi, P. Tribedy, G. Wang and H. Zhang for help.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Dmitri E. Kharzeev or Jinfeng Liao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharzeev, D.E., Liao, J. Chiral magnetic effect reveals the topology of gauge fields in heavy-ion collisions. Nat Rev Phys 3, 55–63 (2021). https://doi.org/10.1038/s42254-020-00254-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-020-00254-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing