Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multiscale physics of cilia and flagella

Abstract

Cilia and flagella are fundamental units of motion in cellular biology. These beating, hair-like organelles share a common basic structure but maintain widely varying functions in systems ranging from the isolated flagella of swimming algae to the dense ciliary carpets that pump fluid in the brains of mammals. Experiments and models have begun to elucidate the inner workings of single cilia as complex nonlinear oscillators, and the variety of hydrodynamical phenomena that result from beating dynamics. These results have shed light on complex locomotion strategies observed in single-celled microorganisms and collective phenomena observed in microbial suspensions. In animal systems, dense ciliary arrays exhibit a variety of emergent phenomena, including active filtration, noise robustness and metachronal waves. Surprising phenomena have been observed in neuronally controlled ciliary arrays, demonstrating the need for new physical models of cilia that include central control, defect dynamics and topology. We review the emergent physics of cilia across scales, starting from the microscale dynamics of single cilia, and then proceeding to microorganisms and animal systems.

Key points

  • The complex beating dynamics of cilia can be modelled as noisy, nonlinear oscillations driven by coupled chemical, mechanical and hydrodynamical forces.

  • Small numbers of coupled cilia can transiently synchronize and desynchronize in a manner analogous to that seen in classical studies of coupled oscillators.

  • The synchronization dynamics of cilia may play a role in facilitating locomotion and navigation by single-celled microorganisms.

  • Many animals have ‘carpets’ of densely packed cilia, which are used to pump mucous and other circulating fluids in the brain and lungs. The beating dynamics of these ciliary carpets exhibit physical phenomena that include travelling waves and topological defects.

  • Neuronally controlled cilia in certain animal systems exhibit a rich, and understudied, set of dynamical phenomena, making their study a promising research direction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ciliary motion across scales.
Fig. 2: Anatomy and structure of the axoneme.
Fig. 3: Ciliary geometries in animal systems.
Fig. 4: Ciliary hydrodynamics in animal systems.
Fig. 5: Ciliary parameters across animal systems.

Similar content being viewed by others

References

  1. Brennen, C. & Winet, H. Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339–398 (1977).

    ADS  MATH  Google Scholar 

  2. Satir, P., Mitchell, D. R. & Jékely, G. How did the cilium evolve? Curr. Top. Dev. Biol. 85, 63–82 (2008).

    Google Scholar 

  3. Marshall, W. F. & Nonaka, S. Cilia: tuning in to the cell’s antenna. Curr. Biol. 16, R604–R614 (2006).

    Google Scholar 

  4. Shah, A. S., Ben-Shahar, Y., Moninger, T. O., Kline, J. N. & Welsh, M. J. Motile cilia of human airway epithelia are chemosensory. Science 325, 1131–1134 (2009).

    ADS  Google Scholar 

  5. Goetz, J. G. et al. Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep. 6, 799–808 (2014).

    Google Scholar 

  6. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    ADS  Google Scholar 

  7. Sleigh, M. A. The Biology of Cilia and Flagella (Pergamon, 1962).

  8. Wan, K. Y. Coordination of eukaryotic cilia and flagella. Essays Biochem. 62, 829–838 (2018).

    Google Scholar 

  9. Margulis, L., Chapman, M., Guerrero, R. & Hall, J. The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon. Proc. Natl Acad. Sci. USA 103, 13080–13085 (2006).

    ADS  Google Scholar 

  10. Mitchison, T. & Mitchison, H. Cell biology: How cilia beat. Nature 463, 308–309 (2010).

    ADS  Google Scholar 

  11. Satir, P. & Christensen, S. T. Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 69, 377–400 (2007).

    Google Scholar 

  12. Gray, J. The mechanism of ciliary movement.—VI. Photographic and stroboscopic analysis of ciliary movement. Proc. R. Soc. Lond. B 107, 313–332 (1930).

    ADS  Google Scholar 

  13. Machin, K. E. The control and synchronization of flagellar movement. Proc. R. Soc. Lond. B 158, 88–104 (1963).

    ADS  Google Scholar 

  14. Blake, J. R. & Sleigh, M. A. Mechanics of ciliary locomotion. Biol. Rev. 49, 85–125 (1974).

    Google Scholar 

  15. Blake, J. R. & Chwang, A. T. Fundamental singularities of viscous flow. J. Eng. Math. 8, 23–29 (1974).

    MATH  Google Scholar 

  16. Gray, J. & Hancock, G. J. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32, 802–814 (1955).

    Google Scholar 

  17. Hand, W. G. & Haupt, W. Flagellar activity of the colony members of Volvox aureus Ehrbg. during light stimulation. J. Protozool. 18, 361–364 (1971).

    Google Scholar 

  18. Sleigh, M. A. The form of beat in cilia of Stentor and Opalina. J. Exp. Biol. 37, 1–10 (1960).

    Google Scholar 

  19. Schwartz, E. A., Leonard, M. L., Bizios, R. & Bowser, S. S. Analysis and modeling of the primary cilium bending response to fluid shear. Am. J. Physiol. Ren. Physiol. 272, F132–F138 (1997).

    Google Scholar 

  20. Wiggins, C. H. & Goldstein, R. E. Flexive and propulsive dynamics of elastica at low Reynolds number. Phys. Rev. Lett. 80, 3879 (1998).

    ADS  Google Scholar 

  21. Camalet, S. & Jülicher, F. Generic aspects of axonemal beating. N. J. Phys. 2, 24 (2000).

    Google Scholar 

  22. Xu, G. et al. Flexural rigidity and shear stiffness of flagella estimated from induced bends and counterbends. Biophys. J. 110, 2759–2768 (2016).

    ADS  Google Scholar 

  23. Bandyopadhyay, P. R. & Hansen, J. C. Breakup and then makeup: a predictive model of how cilia self-regulate hardness for posture control. Sci. Rep. 3, 1956 (2013).

    ADS  Google Scholar 

  24. Chen, D. T., Heymann, M., Fraden, S., Nicastro, D. & Dogic, Z. ATP consumption of eukaryotic flagella measured at a single-cell level. Biophys. J. 109, 2562–2573 (2015).

    ADS  Google Scholar 

  25. Lindemann, C. B. Structural-functional relationships of the dynein, spokes, and central-pair projections predicted from an analysis of the forces acting within a flagellum. Biophys. J. 84, 4115–4126 (2003).

    ADS  Google Scholar 

  26. Jülicher, F., Ajdari, A. & Prost, J. Modeling molecular motors. Rev. Mod. Phys. 69, 1269 (1997).

    ADS  Google Scholar 

  27. Lindemann, C. B. A “geometric clutch” hypothesis to explain oscillations of the axoneme of cilia and flagella. J. Theor. Biol. 168, 175–189 (1994).

    Google Scholar 

  28. Brokaw, C. J. Molecular mechanism for oscillation in flagella and muscle. Proc. Natl Acad. Sci. USA 72, 3102–3106 (1975).

    ADS  Google Scholar 

  29. Elgeti, J., Winkler, R. G. & Gompper, G. Physics of microswimmers: single particle motion and collective behavior: a review. Rep. Prog. Phys. 78, 056601 (2015).

    ADS  MathSciNet  Google Scholar 

  30. Vernon, G. G. & Woolley, D. M. Basal sliding and the mechanics of oscillation in a mammalian sperm flagellum. Biophys. J. 87, 3934–3944 (2004).

    Google Scholar 

  31. Riedel-Kruse, I. H., Hilfinger, A., Howard, J. & Jülicher, F. How molecular motors shape the flagellar beat. HFSP J. 1, 192–208 (2007).

    Google Scholar 

  32. Lin, J. & Nicastro, D. Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science 360, eaar1968 (2018).

    Google Scholar 

  33. Brokaw, C. J. & Luck, D. J. L. Bending patterns of Chlamydomonas flagella: III. A radial spoke head deficient mutant and a central pair deficient mutant. Cell Motil. 5, 195–208 (1985).

    Google Scholar 

  34. Sartori, P., Geyer, V. F., Scholich, A., Jülicher, F. & Howard, J. Dynamic curvature regulation accounts for the symmetric and asymmetric beats of chlamydomonas flagella. eLife 5, e13258 (2016).

    Google Scholar 

  35. Hilfinger, A., Chattopadhyay, A. K. & Jülicher, F. Nonlinear dynamics of cilia and flagella. Phys. Rev. E 79, 051918 (2009).

    ADS  Google Scholar 

  36. Ishimoto, K. & Gaffney, E. A. An elastohydrodynamical simulation study of filament and spermatozoan swimming driven by internal couples. IMA J. Appl. Math. 83, 655–679 (2018).

    MathSciNet  MATH  Google Scholar 

  37. Laskar, A. et al. Hydrodynamic instabilities provide a generic route to spontaneous biomimetic oscillations in chemomechanically active filaments. Sci. Rep. 3, 1964 (2013).

    Google Scholar 

  38. Lacey, S. E., He, S., Scheres, S. H. W. & Carter, A. P. Cryo-EM of dynein microtubule-binding domains shows how an axonemal dynein distorts the microtubule. eLife 8, e47145 (2019).

    Google Scholar 

  39. Ferreira, R. R., Vilfan, A., Jülicher, F., Supatto, W. & Vermot, J. Physical limits of flow sensing in the left-right organizer. eLife 6, e25078 (2017).

    Google Scholar 

  40. Chaaban, S. & Brouhard, G. J. A microtubule bestiary: structural diversity in tubulin polymers. Mol. Biol. Cell 28, 2924–2931 (2017).

    Google Scholar 

  41. Friedrich, B. Hydrodynamic synchronization of flagellar oscillators. Eur. Phys. J. Spec. Top. 225, 2353–2368 (2016).

    Google Scholar 

  42. Klindt, G. S., Ruloff, C., Wagner, C. & Friedrich, B. M. Load response of the flagellar beat. Phys. Rev. Lett. 117, 258101 (2016).

    ADS  Google Scholar 

  43. Okuno, M. & Hiramoto, Y. Mechanical stimulation of starfish sperm flagella. J. Exp. Biol. 65, 401–413 (1976).

    Google Scholar 

  44. Hill, D. B. et al. Force generation and dynamics of individual cilia under external loading. Biophys. J. 98, 57–66 (2010).

    ADS  Google Scholar 

  45. Machemer, H. Ciliary activity and the origin of metachrony in paramecium: effects of increased viscosity. J. Exp. Biol. 57, 239–259 (1972).

    Google Scholar 

  46. Gheber, L., Korngreen, A. & Priel, Z. Effect of viscosity on metachrony in mucus propelling cilia. Cell Motil. Cytoskelet. 39, 9–20 (1998).

    Google Scholar 

  47. Shingyoji, C., Higuchi, H., Yoshimura, M., Katayama, E. & Yanagida, T. Dynein arms are oscillating force generators. Nature 393, 711–714 (1998).

    ADS  Google Scholar 

  48. Jülicher, F. & Prost, J. Spontaneous oscillations of collective molecular motors. Phys. Rev. Lett. 78, 4510 (1997).

    ADS  Google Scholar 

  49. Eshel, D., Grossman, Y. & Priel, Z. Spectral characterization of ciliary beating: variations of frequency with time. Am. J. Physiol. Cell Physiol. 249, C160–C165 (1985).

    Google Scholar 

  50. Ma, R., Klindt, G. S., Riedel-Kruse, I. H., Jülicher, F. & Friedrich, B. M. Active phase and amplitude fluctuations of flagellar beating. Phys. Rev. Lett. 113, 048101 (2014).

    ADS  Google Scholar 

  51. Wan, K. Y. & Goldstein, R. E. Rhythmicity, recurrence, and recovery of flagellar beating. Phys. Rev. Lett. 113, 238103 (2014).

    ADS  Google Scholar 

  52. Han, J. & Peskin, C. S. Spontaneous oscillation and fluid–structure interaction of cilia. Proc. Natl Acad. Sci. USA 115, 4417–4422 (2018).

    Google Scholar 

  53. Gadêlha, H., Gaffney, E., Smith, D. & Kirkman-Brown, J. Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration? J. R. Soc. Interface 7, 1689–1697 (2010).

    Google Scholar 

  54. Bayly, P. V. & Dutcher, S. K. Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella. J. R. Soc. Interface 13, 20160523 (2016).

    Google Scholar 

  55. Hu, T. & Bayly, P. V. Finite element models of flagella with sliding radial spokes and interdoublet links exhibit propagating waves under steady dynein loading. Cytoskeleton 75, 185–200 (2018).

    Google Scholar 

  56. Ling, F., Guo, H. & Kanso, E. Instability-driven oscillations of elastic microfilaments. J. R. Soc. Interface 15, 20180594 (2018).

    Google Scholar 

  57. Bottier, M., Thomas, K. A., Dutcher, S. K. & Bayly, P. V. How does cilium length affect beating? Biophys. J. 116, 1292–1304 (2019).

  58. Gray, J. Ciliary Movement. Cambridge Comparative Physiology (Cambridge Univ. Press, 1928).

  59. Rothschild. Measurement of sperm activity before artificial insemination. Nature 163, 358–359 (1949).

    ADS  Google Scholar 

  60. Riedel, I. H., Kruse, K. & Howard, J. A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300–303 (2005).

    ADS  Google Scholar 

  61. Quaranta, G., Aubin-Tam, M.-E. & Tam, D. Hydrodynamics versus intracellular coupling in the synchronization of eukaryotic flagella. Phys. Rev. Lett. 115, 238101 (2015).

    ADS  Google Scholar 

  62. Wan, K. Y. & Goldstein, R. E. Coordinated beating of algal flagella is mediated by basal coupling. Proc. Natl Acad. Sci. USA 113, E2784–E2793 (2016).

    ADS  Google Scholar 

  63. Brumley, D. R., Wan, K. Y., Polin, M. & Goldstein, R. E. Flagellar synchronization through direct hydrodynamic interactions. eLife 3, e02750 (2014).

    Google Scholar 

  64. Gueron, S., Levit-Gurevich, K., Liron, N. & Blum, J. J. Cilia internal mechanism and metachronal coordination as the result of hydrodynamical coupling. Proc. Natl Acad. Sci. USA 94, 6001–6006 (1997).

    ADS  MATH  Google Scholar 

  65. Niedermayer, T., Eckhardt, B. & Lenz, P. Synchronization, phase locking, and metachronal wave formation in ciliary chains. Chaos 18, 037128 (2008).

    ADS  MathSciNet  MATH  Google Scholar 

  66. Vilfan, A. & Jülicher, F. Hydrodynamic flow patterns and synchronization of beating cilia. Phys. Rev. Lett. 96, 058102 (2006).

    ADS  Google Scholar 

  67. Pikovsky, A., Rosenblum, M., Kurths, J. & Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences Vol. 12 (Cambridge Univ. Press, 2003).

  68. Guo, H., Fauci, L., Shelley, M. & Kanso, E. Bistability in the synchronization of actuated microfilaments. J. Fluid Mech. 836, 304–323 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  69. Kim, Y. W. & Netz, R. R. Pumping fluids with periodically beating grafted elastic filaments. Phys. Rev. Lett. 96, 158101 (2006).

    ADS  Google Scholar 

  70. Coy, R. & Gadêlha, H. The counterbend dynamics of cross-linked filament bundles and flagella. J. R. Soc. Interface 14, 20170065 (2017).

    Google Scholar 

  71. Lindemann, C. B., Macauley, L. J. & Lesich, K. A. The counterbend phenomenon in dynein-disabled rat sperm flagella and what it reveals about the interdoublet elasticity. Biophys. J. 89, 1165–1174 (2005).

    Google Scholar 

  72. Goldstein, R. E. Green algae as model organisms for biological fluid dynamics. Annu. Rev. Fluid Mech. 47, 343–375 (2015).

    ADS  MathSciNet  Google Scholar 

  73. Goldstein, R. E., Polin, M. & Tuval, I. Noise and synchronization in pairs of beating eukaryotic flagella. Phys. Rev. Lett. 103, 168103 (2009).

    ADS  Google Scholar 

  74. Wan, K. Y., Leptos, K. C. & Goldstein, R. E. Lag, lock, sync, slip: the many ‘phases’ of coupled flagella. J. R. Soc. Interface 11, 20131160 (2014).

    Google Scholar 

  75. Geyer, V. F., Jülicher, F., Howard, J. & Friedrich, B. M. Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga. Proc. Natl Acad. Sci. USA 110, 18058–18063 (2013).

    ADS  Google Scholar 

  76. Elfring, G. J. & Lauga, E. Hydrodynamic phase locking of swimming microorganisms. Phys. Rev. Lett. 103, 088101 (2009).

    ADS  Google Scholar 

  77. Friedrich, B. M. & Jülicher, F. Flagellar synchronization independent of hydrodynamic interactions. Phys. Rev. Lett. 109, 138102 (2012).

    ADS  Google Scholar 

  78. Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009).

    ADS  MathSciNet  Google Scholar 

  79. Goldstein, R. E. Batchelor Prize Lecture Fluid dynamics at the scale of the cell. J. Fluid Mech. 807, 1–39 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  80. Tam, D. & Hosoi, A. Optimal feeding and swimming gaits of biflagellated organisms. Proc. Natl Acad. Sci. USA 108, 1001–1006 (2011).

    ADS  Google Scholar 

  81. Wan, K. Y. et al. Reorganisation of complex ciliary flows around regenerating Stentor coeruleus. Preprint at bioRxiv https://doi.org/10.1101/681908 (2019).

  82. Polin, M., Tuval, I., Drescher, K., Gollub, J. P. & Goldstein, R. E. Chlamydomonas swims with two gears in a eukaryotic version of run-and-tumble locomotion. Science 325, 487–490 (2009).

    ADS  Google Scholar 

  83. Rüffer, U. & Nultsch, W. Comparison of the beating of cis- and trans-flagella of Chlamydomonas cells held on micropipettes. Cell Motil. Cytoskelet. 7, 87–93 (1987).

    Google Scholar 

  84. Wan, K. Y. & Goldstein, R. E. Time irreversibility and criticality in the motility of a flagellate microorganism. Phys. Rev. Lett. 121, 058103 (2018).

    ADS  Google Scholar 

  85. Kung, C. & Saimi, Y. The physiological basis of taxes in Paramecium. Annu. Rev. Physiol. 44, 519–534 (1982).

    Google Scholar 

  86. Mathijssen, A. J. T. M., Culver, J., Bhamla, M. S. & Prakash, M. Collective intercellular communication through ultra-fast hydrodynamic trigger waves. Nature 571, 560–564 (2019).

    Google Scholar 

  87. Bayless, B. A., Giddings, T. H. Jr, Winey, M. & Pearson, C. G. Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Mol. Biol. Cell 23, 4820–4832 (2012).

    Google Scholar 

  88. Coyle, S. M., Flaum, E., Li, H., Krishnamurthy, D. & Prakash, M. Coupled active systems encode an emergent hunting behavior in the unicellular predator Lacrymaria olor. Curr. Biol. 29, 3838–3850.e3 (2019).

    Google Scholar 

  89. Ainsworth, C. Cilia: tails of the unexpected. Nature 448, 638–641 (2007).

    ADS  Google Scholar 

  90. Grosberg, R. K. & Strathmann, R. R. The evolution of multicellularity: a minor major transition? Annu. Rev. Ecol. Evol. Syst. 38, 621–654 (2007).

    Google Scholar 

  91. Nielsen, C. Six major steps in animal evolution: are we derived sponge larvae? Evol. Dev. 10, 241–257 (2008).

    Google Scholar 

  92. Uchida, N. & Golestanian, R. Synchronization and collective dynamics in a carpet of microfluidic rotors. Phys. Rev. Lett. 104, 178103 (2010).

    ADS  Google Scholar 

  93. King, N. The unicellular ancestry of animal development. Dev. Cell 7, 313–325 (2004).

    Google Scholar 

  94. Nielsen, L. T. et al. Hydrodynamics of microbial filter feeding. Proc. Natl Acad. Sci. USA 114, 9373–9378 (2017).

    ADS  Google Scholar 

  95. Pettitt, M. E., Orme, B. A. A., Blake, J. R. & Leadbeater, B. S. C. The hydrodynamics of filter feeding in choanoflagellates. Eur. J. Protistol. 38, 313–332 (2002).

    Google Scholar 

  96. Higdon, J. J. L. The generation of feeding currents by flagellar motions. J. Fluid Mech. 94, 305–330 (1979).

    ADS  MathSciNet  MATH  Google Scholar 

  97. Roper, M., Dayel, M. J., Pepper, R. E. & Koehl, M. Cooperatively generated stresslet flows supply fresh fluid to multicellular choanoflagellate colonies. Phys. Rev. Lett. 110, 228104 (2013).

    ADS  Google Scholar 

  98. Orme, B. A. A., Otto, S. R. & Blake, J. R. Chaos and mixing in micro-biological fluid dynamics: blinking stokeslets. Math. Methods Appl. Sci. 24, 1337–1349 (2001).

    ADS  MathSciNet  MATH  Google Scholar 

  99. Kirkegaard, J. B., Marron, A. O. & Goldstein, R. E. Motility of colonial choanoflagellates and the statistics of aggregate random walkers. Phys. Rev. Lett. 116, 038102 (2016).

    ADS  Google Scholar 

  100. Kirkegaard, J. B., Bouillant, A., Marron, A. O., Leptos, K. C. & Goldstein, R. E. Aerotaxis in the closest relatives of animals. eLife 5, e18109 (2016).

    Google Scholar 

  101. Bidder, G. P. The relation of the form of a sponge to its currents. Q. J. Microsc. Sci. 67, 293–323 (1923).

    Google Scholar 

  102. Reiswig, H. M. Water transport, respiration and energetics of three tropical marine sponges. J. Exp. Mar. Biol. Ecol. 14, 231–249 (1974).

    Google Scholar 

  103. Mah, J. L., Christensen-Dalsgaard, K. K. & Leys, S. P. Choanoflagellate and choanocyte collar-flagellar systems and the assumption of homology. Evol. Dev. 16, 25–37 (2014).

    Google Scholar 

  104. Sogabe, S. et al. Pluripotency and the origin of animal multicellularity. Nature 570, 519–522 (2019).

    ADS  Google Scholar 

  105. LaBarbera, M. Principles of design of fluid transport systems in zoology. Science 249, 992–1000 (1990).

    ADS  Google Scholar 

  106. Asadzadeh, S. S., Larsen, P. S., Riisgård, H. U. & Walther, J. H. Hydrodynamics of the leucon sponge pump. J. R. Soc. Interface 16, 20180630 (2019).

    Google Scholar 

  107. Shapiro, O. H. et al. Vortical ciliary flows actively enhance mass transport in reef corals. Proc. Natl Acad. Sci. USA 111, 13391–13396 (2014).

    ADS  Google Scholar 

  108. Armon, S., Bull, M. S., Aranda-Diaz, A. & Prakash, M. Ultrafast epithelial contractions provide insights into contraction speed limits and tissue integrity. Proc. Natl Acad. Sci. USA 115, E10333–E10341 (2018).

    Google Scholar 

  109. Prakash, V., Bull, M. S. & Prakash, M. Motility induced fracture reveals a ductile to brittle crossover in the epithelial tissues of a simple animal. Preprint at bioRxiv https://doi.org/10.1101/676866 (2019).

  110. Smith, C. L., Reese, T. S., Govezensky, T. & Barrio, R. A. Coherent directed movement toward food modeled in Trichoplax, a ciliated animal lacking a nervous system. Proc. Natl Acad. Sci. USA 116, 8901–8908 (2019).

    Google Scholar 

  111. Smith, C. L., Pivovarova, N. & Reese, T. S. Coordinated feeding behavior in Trichoplax, an animal without synapses. PLOS ONE 10, e0136098 (2015).

    Google Scholar 

  112. Varoqueaux, F. et al. High cell diversity and complex peptidergic signaling underlie placozoan behavior. Curr. Biol. 28, 3495–3501 (2018).

    Google Scholar 

  113. Emlet, R. B. Functional constraints on the evolution of larval forms of marine invertebrates: experimental and comparative evidence. Am. Zool. 31, 707–725 (1991).

    Google Scholar 

  114. Bick, C., Goodfellow, M., Laing, C. R. & Martens, E. A. Understanding the dynamics of biological and neural oscillator networks through mean-field reductions: a review. Preprint at arXiv https://arxiv.org/abs/1902.05307 (2019).

  115. Panaggio, M. J. & Abrams, D. M. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  116. Jékely, G. Origin and early evolution of neural circuits for the control of ciliary locomotion. Proc. R. Soc. B 278, 914–922 (2010).

    Google Scholar 

  117. Bezares-Calderon, L. A. et al. Neural circuitry of a polycystin-mediated hydrodynamic startle response for predator avoidance. eLife 7, e36262 (2018).

    Google Scholar 

  118. Verasztó, C. et al. Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the Platynereis larva. eLife 6, e26000 (2017).

    Google Scholar 

  119. Lenz, P. & Ryskin, A. Collective effects in ciliar arrays. Phys. Biol. 3, 285 (2006).

    ADS  Google Scholar 

  120. Leoni, M. & Liverpool, T. B. Hydrodynamic synchronization of nonlinear oscillators at low Reynolds number. Phys. Rev. E 85, 040901 (2012).

    ADS  Google Scholar 

  121. Guirao, B. & Joanny, J.-F. Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia. Biophys. J. 92, 1900–1917 (2007).

    ADS  Google Scholar 

  122. Knight-Jones, E. W. Relations between metachronism and the direction of ciliary beat in metazoa. J. Cell Sci. 3, 503–521 (1954).

    Google Scholar 

  123. Sleigh, M. A., Blake, J. R. & Liron, N. The propulsion of mucus by cilia. Am. Rev. Respir. Dis. 137, 726–741 (1988).

    Google Scholar 

  124. Elgeti, J. & Gompper, G. Emergence of metachronal waves in cilia arrays. Proc. Natl Acad. Sci. USA 110, 4470–4475 (2013).

    ADS  Google Scholar 

  125. Babataheri, A., Roper, M., Fermigier, M. & Du Roure, O. Tethered fleximags as artificial cilia. J. Fluid Mech. 678, 5–13 (2011).

    ADS  MATH  Google Scholar 

  126. Shields, A. R. et al. Biomimetic cilia arrays generate simultaneous pumping and mixing regimes. Proc. Natl Acad. Sci. USA 107, 15670–15675 (2010).

    ADS  Google Scholar 

  127. Hanasoge, S., Hesketh, P. J. & Alexeev, A. Microfluidic pumping using artificial magnetic cilia. Microsyst. Nanoeng. 4, 11 (2018).

    ADS  Google Scholar 

  128. Gheber, L. & Priel, Z. Ciliary activity under normal conditions and under viscous load. Biorheology 27, 547–557 (1990).

    Google Scholar 

  129. Guo, H. & Kanso, E. Evaluating efficiency and robustness in cilia design. Phys. Rev. E 93, 033119 (2016).

    ADS  Google Scholar 

  130. Smith, D. J., Gaffney, E. A. & Blake, J. R. Modelling mucociliary clearance. Respir. Physiol. Neurobiol. 163, 178–188 (2008).

    Google Scholar 

  131. Osterman, N. & Vilfan, A. Finding the ciliary beating pattern with optimal efficiency. Proc. Natl Acad. Sci. USA 108, 15727–15732 (2011).

    ADS  Google Scholar 

  132. Guo, H., Nawroth, J., Ding, Y. & Kanso, E. Cilia beating patterns are not hydrodynamically optimal. Phys. Fluids 26, 091901 (2014).

    ADS  Google Scholar 

  133. Spagnolie, S. E. & Lauga, E. The optimal elastic flagellum. Phys. Fluids 22, 031901 (2010).

    ADS  MATH  Google Scholar 

  134. Gueron, S. & Levit-Gurevich, K. Energetic considerations of ciliary beating and the advantage of metachronal coordination. Proc. Natl Acad. Sci. USA 96, 12240–12245 (1999).

    ADS  MATH  Google Scholar 

  135. Chateau, S., Favier, J., D’ortona, U. & Poncet, S. Transport efficiency of metachronal waves in 3D cilium arrays immersed in a two-phase flow. J. Fluid Mech. 824, 931–961 (2017).

    ADS  MathSciNet  Google Scholar 

  136. Datt, C., Natale, G., Hatzikiriakos, S. G. & Elfring, G. J. An active particle in a complex fluid. J. Fluid Mech. 823, 675–688 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  137. Brokaw, C. J. & Simonick, T. F. Mechanochemical coupling in flagella. V. Effects of viscosity on movement and ATP-dephosphorylation of Triton-demembranated sea-urchin spermatozoa. J. Cell Sci. 23, 227–241 (1977).

    Google Scholar 

  138. Mettot, C. & Lauga, E. Energetics of synchronized states in three-dimensional beating flagella. Phys. Rev. E 84, 061905 (2011).

    ADS  Google Scholar 

  139. Ding, Y., Nawroth, J. C., McFall-Ngai, M. J. & Kanso, E. Mixing and transport by ciliary carpets: a numerical study. J. Fluid Mech. 743, 124–140 (2014).

    ADS  Google Scholar 

  140. Blake, J. A model for the micro-structure in ciliated organisms. J. Fluid Mech. 55, 1–23 (1972).

    ADS  MATH  Google Scholar 

  141. Smith, D. J., Gaffney, E. A. & Blake, J. R. Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid. Bull. Math. Biol. 69, 1477–1510 (2007).

    MathSciNet  MATH  Google Scholar 

  142. Quek, R., Lim, K. M. & Chiam, K. H. Three-Dimensional Simulations of Ciliary Flow 197–218 (Springer, 2014).

  143. Supatto, W., Fraser, S. E. & Vermot, J. An all-optical approach for probing microscopic flows in living embryos. Biophys. J. 95, L29–L31 (2008).

    Google Scholar 

  144. Ramirez-San Juan, G. R. et al. Multi-scale spatial heterogeneity enhances particle clearance in airway ciliary arrays. Preprint at bioRxiv https://doi.org/10.1101/665125 (2019).

  145. Schneiter, M., Ricka, J. & Frenz, M. Self-organization of self-clearing beating patterns in an array of locally interacting ciliated cells formulated as an adaptive boolean network. Theory Biosci. https://doi.org/10.1007/s12064-019-00299-x (2019).

    Google Scholar 

  146. Faubel, R., Westendorf, C., Bodenschatz, E. & Eichele, G. Cilia-based flow network in the brain ventricles. Science 353, 176–178 (2016).

    ADS  Google Scholar 

  147. Veening, J. G. & Barendregt, H. P. The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res. 7, 1 (2010).

    Google Scholar 

  148. Pellicciotta, N. et al. Synchronization of mammalian motile cilia in the brain with hydrodynamic forces. Preprint at bioRxiv https://doi.org/10.1101/668459 (2019).

  149. Devenport, D. The cell biology of planar cell polarity. J. Cell Biol. 207, 171–179 (2014).

    Google Scholar 

  150. Vladar, E. K., Lee, Y. L., Stearns, T. & Axelrod, J. D. in Methods in Cell Biology Vol. 127 Ch. 3 (eds Basto, R. & Marshall, W. F.) 37–54 (Elsevier, 2015).

  151. Hilfinger, A. & Jülicher, F. The chirality of ciliary beats. Phys. Biol. 5, 016003 (2008).

    ADS  Google Scholar 

  152. Kim, M. J. & Breuer, K. S. Microfluidic pump powered by self-organizing bacteria. Small 4, 111–118 (2008).

    Google Scholar 

  153. Mathijssen, A. J., Guzmán-Lastra, F., Kaiser, A. & Löwen, H. Nutrient transport driven by microbial active carpets. Phys. Rev. Lett. 121, 248101 (2018).

    ADS  Google Scholar 

  154. Golestanian, R., Yeomans, J. M. & Uchida, N. Hydrodynamic synchronization at low Reynolds number. Soft Matter 7, 3074–3082 (2011).

    ADS  Google Scholar 

  155. Uchida, N., Golestanian, R. & Bennett, R. R. Synchronization and collective dynamics of flagella and cilia as hydrodynamically coupled oscillators. J. Phys. Soc. Jpn. 86, 101007 (2017).

    ADS  Google Scholar 

  156. Brumley, D. R. et al. Long-range interactions, wobbles, and phase defects in chains of model cilia. Phys. Rev. Fluids 1, 081201 (2016).

    ADS  Google Scholar 

  157. Solon, A. & Tailleur, J. Revisiting the flocking transition using active spins. Phys. Rev. Lett. 111, 078101 (2013).

    ADS  Google Scholar 

  158. Gilpin, W., Prakash, V. N. & Prakash, M. Vortex arrays and ciliary tangles underlie the feeding–swimming trade-off in starfish larvae. Nat. Phys. 13, 380–386 (2017).

    Google Scholar 

  159. Bourland, W. A., Wendell, L., Hampikian, G. & Vdancỳ, P. Morphology and phylogeny of Bryophryoides ocellatus ng, n. sp.(Ciliophora, Colpodea) from in situ soil percolates of Idaho, USA. Eur. J. Protistol. 50, 47–67 (2014).

    Google Scholar 

  160. Feriani, L. et al. Assessing the collective dynamics of motile cilia in cultures of human airway cells by multiscale DDM. Biophys. J. 113, 109–119 (2017).

    ADS  Google Scholar 

  161. Brumley, D. R., Polin, M., Pedley, T. J. & Goldstein, R. E. Metachronal waves in the flagellar beating of Volvox and their hydrodynamic origin. J. R. Soc. Interface 12, 20141358 (2015).

    Google Scholar 

  162. Nielsen, C. Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta Zool. 68, 205–262 (1987).

    Google Scholar 

  163. Strathmann, R. R. The evolution and loss of feeding larval stages of marine invertebrates. Evolution 32, 894–906 (1978).

    Google Scholar 

  164. Agassiz, A. North American Starfishes Vol. 5 (Welch, Bigelow, and Company, Univ. Press, 1877).

  165. Riisgård, H. U. & Larsen, P. S. Minireview: Ciliary filter feeding and bio-fluid mechanics—present understanding and unsolved problems. Limnol. Oceanogr. 46, 882–891 (2001).

    ADS  Google Scholar 

  166. Jorgensen, C. B. Fluid mechanical aspects of suspension feeding. Mar. Ecol. Prog. Ser. 11, 89–103 (1983).

    ADS  Google Scholar 

  167. Rubenstein, D. I. & Koehl, M. A. R. The mechanisms of filter feeding: some theoretical considerations. Am. Naturalist 111, 981–994 (1977).

    Google Scholar 

  168. Mathijssen, A. J., Jeanneret, R. & Polin, M. Universal entrainment mechanism controls contact times with motile cells. Phys. Rev. Fluids 3, 033103 (2018).

    ADS  Google Scholar 

  169. Ding, Y. & Kanso, E. Selective particle capture by asynchronously beating cilia. Phys. Fluids 27, 121902 (2015).

    ADS  Google Scholar 

  170. Gilpin, W., Prakash, V. N. & Prakash, M. Dynamic vortex arrays created by starfish larvae. Phys. Rev. Fluids 2, 090501 (2017).

    ADS  Google Scholar 

  171. Gilpin, W., Prakash, V. N. & Prakash, M. Rapid behavioral transitions produce chaotic mixing by a planktonic microswimmer. Preprint at arXiv https://arxiv.org/abs/1804.08773 (2018).

  172. Gilpin, W., Prakash, V. N. & Prakash, M. Flowtrace: simple visualization of coherent structures in biological fluid flows. J. Exp. Biol. 220, 3411–3418 (2017).

    Google Scholar 

  173. von Dassow, G., Emlet, R. & Grünbaum, D. Boundary effects on currents around ciliated larvae. Nat. Phys. 13, 520–521 (2017).

    Google Scholar 

  174. Gilpin, W., Prakash, V. N. & Prakash, M. Reply to ‘Boundary effects on currents around ciliated larvae’. Nat. Phys. 13, 521–522 (2017).

    Google Scholar 

  175. Krishnamurthy, D. et al. Scale-free vertical tracking microscopy: Towards bridging scales in biological oceanography. Preprint at bioRxiv https://doi.org/10.1101/610246 (2019).

  176. Bruot, N. & Cicuta, P. Realizing the physics of motile cilia synchronization with driven colloids. Annu. Rev. Condens. Matter Phys. 7, 323–348 (2016).

    ADS  Google Scholar 

  177. Amemiya, S. et al. Development of ciliary bands in larvae of the living isocrinid sea lily Metacrinus rotundus. Acta Zool. 96, 36–43 (2015).

    Google Scholar 

  178. Nasouri, B. & Elfring, G. J. Hydrodynamic interactions of cilia on a spherical body. Phys. Rev. E 93, 033111 (2016).

    ADS  MathSciNet  Google Scholar 

  179. Ghorbani, A. & Najafi, A. Symplectic and antiplectic waves in an array of beating cilia attached to a closed body. Phys. Rev. E 95, 052412 (2017).

    ADS  Google Scholar 

  180. Panaggio, M. J. & Abrams, D. M. Chimera states on a flat torus. Phys. Rev. Lett. 110, 094102 (2013).

    ADS  Google Scholar 

  181. Kuramoto, Y. & Battogtokh, D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380–385 (2002).

    Google Scholar 

  182. Abrams, D. M. & Strogatz, S. H. Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004).

    ADS  Google Scholar 

  183. Wollin, C. & Stark, H. Metachronal waves in a chain of rowers with hydrodynamic interactions. Eur. Phys. J. E 34, 42 (2011).

    Google Scholar 

  184. Nawroth, J. C. et al. Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome. Proc. Natl Acad. Sci. USA 114, 9510–9516 (2017).

    Google Scholar 

  185. Childress, S. & Dudley, R. Transition from ciliary to flapping mode in a swimming mollusc: flapping flight as a bifurcation in Reω. J. Fluid Mech. 498, 257–288 (2004).

    ADS  MathSciNet  MATH  Google Scholar 

  186. Reiten, I. et al. Motile-cilia-mediated flow improves sensitivity and temporal resolution of olfactory computations. Curr. Biol. 27, 166–174 (2017).

    Google Scholar 

  187. Pfeifer, R., Lungarella, M. & Iida, F. Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007).

    ADS  Google Scholar 

  188. Mohren, T. L., Daniel, T. L., Brunton, S. L. & Brunton, B. W. Neural-inspired sensors enable sparse, efficient classification of spatiotemporal data. Proc. Natl Acad. Sci. USA 115, 10564–10569 (2018).

    Google Scholar 

  189. Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R. & Maass, W. Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105, 355–370 (2011).

    MathSciNet  MATH  Google Scholar 

  190. Mayne, R. & den Toonder, J. Atlas of Cilia Bioengineering and Biocomputing (River Publishers, 2018).

  191. Guérin, T., Prost, J. & Joanny, J.-F. Dynamical behavior of molecular motor assemblies in the rigid and crossbridge models. Eur. Phys. J. E 34, 60 (2011).

    Google Scholar 

  192. Guérin, T., Prost, J. & Joanny, J.-F. Bidirectional motion of motor assemblies and the weak-noise escape problem. Phys. Rev. E 84, 041901 (2011).

    ADS  Google Scholar 

  193. Van Kampen, N. G. Stochastic Processes in Physics and Chemistry Vol. 1 (Elsevier, 1992).

  194. Uchida, N. & Golestanian, R. Generic conditions for hydrodynamic synchronization. Phys. Rev. Lett. 106, 058104 (2011).

    ADS  Google Scholar 

  195. Mirzakhanloo, M. & Alam, M.-R. Flow characteristics of chlamydomonas result in purely hydrodynamic scattering. Phys. Rev. E 98, 012603 (2018).

    ADS  Google Scholar 

  196. Wei, D., Dehnavi, P. G., Aubin-Tam, M.-E. & Tam, D. Is the zero Reynolds number approximation valid for ciliary flows? Phys. Rev. Lett. 122, 124502 (2019).

    ADS  Google Scholar 

  197. Hong, H. & Strogatz, S. H. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators. Phys. Rev. Lett. 106, 054102 (2011).

    ADS  Google Scholar 

  198. Zakharova, A., Kapeller, M. & Schöll, E. Chimera death: symmetry breaking in dynamical networks. Phys. Rev. Lett. 112, 154101 (2014).

    ADS  Google Scholar 

  199. Gilpin, W. Self-organized avalanches in globally-coupled phase oscillators. Preprint at arXiv https://arxiv.org/abs/1906.05514 (2019).

  200. Kawamura, Y. Chimera Ising walls in forced nonlocally coupled oscillators. Phys. Rev. E 75, 056204 (2007).

    ADS  Google Scholar 

  201. Ottino-Löffler, B. & Strogatz, S. H. Volcano transition in a solvable model of frustrated oscillators. Phys. Rev. Lett. 120, 264102 (2018).

    ADS  Google Scholar 

  202. Abrams, D. M., Mirollo, R., Strogatz, S. H. & Wiley, D. A. Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101, 084103 (2008).

    ADS  Google Scholar 

  203. Totz, J. F., Rode, J., Tinsley, M. R., Showalter, K. & Engel, H. Spiral wave chimera states in large populations of coupled chemical oscillators. Nat. Phys. 14, 282–285 (2018).

    Google Scholar 

  204. Brumley, D. R., Polin, M., Pedley, T. J. & Goldstein, R. E. Hydrodynamic synchronization and metachronal waves on the surface of the colonial alga Volvox carteri. Phys. Rev. Lett. 109, 268102 (2012).

    ADS  Google Scholar 

  205. Kotar, J. et al. Optimal hydrodynamic synchronization of colloidal rotors. Phys. Rev. Lett. 111, 228103 (2013).

    ADS  Google Scholar 

  206. Dreyfus, R. et al. Microscopic artificial swimmers. Nature 437, 862–865 (2005).

    ADS  Google Scholar 

  207. Darnton, N., Turner, L., Breuer, K. & Berg, H. C. Moving fluid with bacterial carpets. Biophys. J. 86, 1863–1870 (2004).

    ADS  Google Scholar 

  208. Wadhwa, N., Phillips, R. & Berg, H. C. Torque-dependent remodeling of the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 116, 11764–11769 (2019).

    Google Scholar 

  209. Sanchez, T., Welch, D., Nicastro, D. & Dogic, Z. Cilia-like beating of active microtubule bundles. Science 333, 456–459 (2011).

    ADS  Google Scholar 

  210. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    ADS  Google Scholar 

  211. DiPetrillo, C. G. & Smith, E. F. Pcdp1 is a central apparatus protein that binds Ca2+-calmodulin and regulates ciliary motility. J. Cell Biol. 189, 601–612 (2010).

    Google Scholar 

  212. Lin, J., Heuser, T., Song, K., Fu, X. & Nicastro, D. One of the nine doublet microtubules of eukaryotic flagella exhibits unique and partially conserved structures. PLOS ONE 7, e46494 (2012).

    ADS  Google Scholar 

  213. Shoemark, A. & Hogg, C. Electron tomography of respiratory cilia. Thorax 68, 190–191 (2013).

    Google Scholar 

  214. Odate, T., Takeda, S., Narita, K. & Kawahara, T. 9 + 0 and 9 + 2 cilia are randomly dispersed in the mouse node. Microscopy 65, 119–126 (2016).

    Google Scholar 

  215. Wilkerson, C. G., King, S. M., Koutoulis, A., Pazour, G. J. & Witman, G. B. The 78,000 M(r) intermediate chain of Chlamydomonas outer arm dynein is a WD-repeat protein required for arm assembly. J. Cell Biol. 129, 169–178 (1995).

    Google Scholar 

  216. Austin-Tse, C. et al. Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am. J. Hum. Genet. 93, 672–686 (2013).

    Google Scholar 

  217. Stokes, M. Larval locomotion of the lancelet. J. Exp. Biol. 200, 1661–1680 (1997).

    Google Scholar 

  218. Bone, Q., Carre, C. & Chang, P. Tunicate feeding filters. J. Mar. Biol. Assoc. U. K. 83, 907–919 (2003).

    Google Scholar 

  219. Sutherland, K. R., Madin, L. P. & Stocker, R. Filtration of submicrometer particles by pelagic tunicates. Proc. Natl Acad. Sci. USA 107, 15129–15134 (2010).

    ADS  Google Scholar 

  220. Petersen, J. K., Mayer, S. & Knudsen, M. Beat frequency of cilia in the branchial basket of the ascidian Ciona intestinalis in relation to temperature and algal cell concentration. Mar. Biol. 133, 185–192 (1999).

    Google Scholar 

  221. Riisgård, H. U., Nielsen, C. & Larsen, P. S. Downstream collecting in ciliary suspension feeders: the catch-up principle. Mar. Ecol. Prog. Ser. 207, 33–51 (2000).

    ADS  Google Scholar 

  222. Okabe, N., Xu, B. & Burdine, R. D. Fluid dynamics in zebrafish Kupffer’s vesicle. Dev. Dyn. 237, 3602–3612 (2008).

    Google Scholar 

Download references

Acknowledgements

The authors thank G. Ramirez-San Juan, A. Mathijssen and the other members of the Prakash Lab for their helpful comments on the manuscript. W.G. was supported by the NSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard University, NSF grant no. DMS-1764269, the Harvard FAS Quantitative Biology Initiative, the U. S. Department of Defense National Defense Science and Engineering Graduate (NDSEG) Fellowship Program and the National Geographic Society ‘Young Explorers’ program. M.S.B. thanks the NSF Graduate Research Fellowship Program and the Stanford Bio-X fellowship. M.P. thanks the NSF Careers Program, NSF ‘Center for Cellular Construction’ program (DBI-1548297), NIH Directors New Innovator Award, HHMI-Gates Faculty Fellows program, the W. M. Keck Foundation, the Gordon and Betty Moore Foundation and the Chan Zuckerberg Biohub Investigators program for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to William Gilpin or Manu Prakash.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Microtubule

A tube-shaped protein assembly found in the cytoplasm of many cells. Microtubules allow cells to maintain their shape and internal arrangements, and they can aggregate to form specialized structures, including cilia.

Hopf bifurcations

A Hopf bifurcation is a phenomenon occurring in many nonlinear dynamical systems, in which a periodic orbit spontaneously appears or disappears as a control parameter is varied.

Volvox

Commonly known as ‘globe algae’, these single-celled green algae form spherical colonies containing up to 50,000 cells.

Counterbend

A phenomenon in deforming elastic beams — and a deviation from classical Euler–Bernoulli beam theory — in which an applied curvature in one location induces a compensatory curvature elsewhere along the beam.

Run-and-tumble

A navigation strategy employed by bacteria and other microorganisms, in which an organism follows nutrient gradients by intermittently switching between directional swimming and random reorientation.

Reynolds numbers

Dimensionless quantity expressing the ratio of inertial to viscous forces in a fluid dynamics problem. Navigation and locomotion strategies are qualitatively different in the low-Reynolds-number (overdamped) regime and high-Reynolds-number (turbulent) regime.

Ependymal

Referring to a thin membrane of cells lining the ventricles of the brain and the central canal of the spinal cord. These cells play a central role in supporting neuronal function.

Coarsening

A phenomenon in the dynamics of spatially varying scalar fields, in which small-wavelength features are gradually consolidated into larger-wavelength patterns.

Solitons

Travelling, bounded wave packets occurring in nonlinear media that propagate at fixed velocity.

Lagrangian chaos

Chaotic motion of tracer particles in a fluid, which readily occurs in high-Reynolds-number flows (such as turbulence). Under certain conditions, it can also occur in the low-Reynolds-number flows produced by ciliated microorganisms.

Morphospace

An abstract coordinate system describing all possible forms or shapes of an organism, parameterized by a small number of independent variables.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilpin, W., Bull, M.S. & Prakash, M. The multiscale physics of cilia and flagella. Nat Rev Phys 2, 74–88 (2020). https://doi.org/10.1038/s42254-019-0129-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0129-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing