Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Reviews
  • Published:

High-resolution neutron spectroscopy using backscattering and neutron spin-echo spectrometers in soft and hard condensed matter

Abstract

The instruments best suited to performing high-energy-resolution neutron spectroscopy are spin-echo spectrometers and backscattering spectrometers. The development of these experimental techniques dates back almost half a century, and most major neutron scattering facilities operate mature spectrometers of one or both classes. Recent advances in instrumentation and neutron sources are enhancing their performance and expanding their capabilities, with the objective of enabling researchers to tackle new and more complex problems. In this Technical Review, we assess the current state of the art in high-energy-resolution neutron spectrometers, showcasing their role in the study of nanoscale dynamics in soft and biological materials, as well as disordered magnets.

Key points

  • Neutron scattering is a uniquely powerful experimental method to study the structure and dynamics in materials.

  • Neutron spin-echo and backscattering spectrometers probe the dynamics in materials on the picosecond and nanosecond timescales and provide spatial information on the motions over ångström to nanometre length scales.

  • High-resolution scattering studies have contributed to a wide range of scientific fields, from nanosized data storage and carbon sequestration to the efficiency of modern batteries and drug delivery systems.

  • The state of the art of these instruments is constantly evolving, in particular in improving the resolution and accelerating the rate at which data can be acquired.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timescales and length scales probed by different experimental techniques.
Fig. 2: Measuring chain dynamics in polymer nanocomposites.
Fig. 3: Slow spin dynamics in disordered magnets.

Similar content being viewed by others

References

  1. Furrer, A., Mesot, J. & Strässle T. Neutron Scattering in Condensed Matter Physics (World Scientific, 2009).

  2. Lovesey, S. W. Theory of Neutron Scattering from Condensed Matter (Clarendon Press, 1984).

  3. Sears, V. F. Neutron scattering lengths and cross sections. Neutron News 3, 26–37 (1992).

    Google Scholar 

  4. Bée, M. Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biology and Materials Science (A. Hilger, 1988).

  5. Van Hove, L. Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95, 249–262 (1954).

    ADS  MathSciNet  MATH  Google Scholar 

  6. Ehlers, G. Study of slow dynamic processes in magnetic systems by neutron spin-echo spectroscopy. J. Phys. Condens. Matter 18, R231 (2006).

    ADS  Google Scholar 

  7. Richter, D., Monkenbusch, M., Arbe A. & Colmenero, J. Neutron Spin Echo in Polymer Systems (Springer, 2005).

  8. Tyagi, M. & Chathoth, S. M. in X-ray and Neutron Techniques for Nanomaterials Characterization Ch. 14 (ed. Kumar, C.) 761–813 (Springer, 2016).

  9. Frick, B. Neutron Backscattering Spectroscopy (Springer, 2006).

  10. Hoffmann, I. Neutrons for the study of dynamics in soft matter systems. Colloid Polym. Sci. 292, 2053–2069 (2014).

    Google Scholar 

  11. Ohl, M. et al. The spin-echo spectrometer at the Spallation Neutron Source (SNS). Nucl. Instrum. Methods Phys. Res. A 696, 85–99 (2012).

    ADS  Google Scholar 

  12. Seto, H. et al. Inelastic and quasi-elastic neutron scattering spectrometers in J-PARC. Biochim. Biophys. Acta Gen. Sub. 1861, 3651–3660 (2017).

    Google Scholar 

  13. Schmidt, C. J., Groitl, F., Klein, M., Schmidt, U. & Häussler, W. CASCADE with NRSE: fast intensity modulation techniques used in quasielastic neutron scattering. J. Phys. Conf. Ser. 251, 012067 (2010).

    Google Scholar 

  14. Pasini, S. & Monkenbusch, M. Optimized superconducting coils for a high-resolution neutron spin-echo spectrometer at the European Spallation Source, ESS. Meas. Sci. Technol. 26, 035501 (2015).

    ADS  Google Scholar 

  15. Farago, B. et al. The IN15 upgrade. Neutron News 26, 15–17 (2015).

    Google Scholar 

  16. Ivanova, O., Pasini, S., Monkenbusch, M. & Holderer, O. Instrument developments and recent scientific highlights at the J-NSE. J. Phys. Conf. Ser. 862, 012009 (2017).

    Google Scholar 

  17. Hong, L., Smolin, N. & Smith, J. C. De Gennes narrowing describes the relative motion of protein domains. Phys. Rev. Lett. 112, 158102 (2014).

    ADS  Google Scholar 

  18. Pappas, C., Kischnik, R. & Mezei, F. Wide angle NSE: the spectrometer SPAN at BENSC. Physica B 297, 14–17 (2001).

    ADS  Google Scholar 

  19. Fouquet, P., Ehlers, G., Farago, B., Pappas, C. & Mezei, F. The wide-angle neutron spin echo spectrometer project WASP. J. Neutron Res. 15, 39–47 (2007).

    Google Scholar 

  20. Frick, B., Mamontov, E., van Ejick, L. & Seydel, T. Recent backscattering instrument developments at the ILL and SNS. Z. Phys. Chem. 224, 33–60 (2010).

    Google Scholar 

  21. Francesca, N. et al. IN13 backscattering spectrometer at ILL: looking for motions in biological macromolecules and organisms. Neutron News 19, 14–18 (2008).

    Google Scholar 

  22. Mamontov, E. & Herwig, K. W. A time-of-flight backscattering spectrometer at the Spallation Neutron Source, BASIS. Rev. Sci. Instrum. 82, 085109 (2011).

    ADS  Google Scholar 

  23. Demmel, F. et al. ToF-backscattering spectroscopy at the ISIS facility: status and perspectives. J. Phys. Conf. Ser. 1021, 012027 (2018).

    Google Scholar 

  24. Telling, M. T. F. & Andersen, K. H. Spectroscopic characteristics of the OSIRIS near-backscattering crystal spectrometer on the ISIS pulsed neutron source. Phys. Chem. Chem. Phys. 7, 1255–1261 (2004).

    Google Scholar 

  25. Appel, M., Frick, B. & Magerl, A. A flexible high speed pulse chopper system for an inverted neutron time-of-flight option on backscattering spectrometers. Sci. Rep. 8, 13580 (2018).

    ADS  Google Scholar 

  26. Lautner, L. et al. Dynamic processes in biological membrane mimics revealed by quasielastic neutron scattering. Chem. Phys. Lipids 206, 28–42 (2017).

    Google Scholar 

  27. Monkenbusch, M., Richter, D. & Biehl, R. Observation of protein domain motions by neutron spectroscopy. ChemPhysChem 11, 1188–1194 (2010).

    Google Scholar 

  28. de Gennes, P. G. Quasi-elastic scattering of neutrons by dilute polymer solutions: I. Free-draining limit. Phys. Phys. Fiz. 3, 37–45 (1967).

    MathSciNet  Google Scholar 

  29. Higgins, J. S. & Benoît, H. Polymers and Neutron Scattering (Oxford Univ. Press, 1994).

  30. Mongcopa, K. I. S. et al. Relationship between segmental dynamics measured by quasi-elastic neutron scattering and conductivity in polymer electrolytes. ACS Macro Lett. 7, 504–508 (2018).

    Google Scholar 

  31. Ateyyah, M. et al. Temperature-dependent structure and dynamics of highly-branched poly(N-isopropylacrylamide) in aqueous solution. Soft Matter 14, 1482–1491 (2018).

    ADS  Google Scholar 

  32. Sakai, V. G. & Arbe, A. Quasielastic neutron scattering in soft matter. Curr. Opin. Colloid Interface Sci. 14, 381–390 (2009).

    Google Scholar 

  33. Schneider, G. J., Nusser, K., Willner, L., Falus, P. & Richter, D. Dynamics of entangled chains in polymer nanocomposites. Macromolecules 44, 5857–5860 (2011).

    ADS  Google Scholar 

  34. Glomann, T. et al. Microscopic dynamics of polyethylene glycol chains interacting with silica nanoparticles. Phys. Rev. Lett. 110, 178001 (2013).

    ADS  Google Scholar 

  35. Senses, E., Faraone, A. & Akcora, P. Microscopic chain motion in polymer nanocomposites with dynamically asymmetric interphases. Sci. Rep. 6, 29326 (2016).

    ADS  Google Scholar 

  36. Senses, E., Tyagi, M., Pasco, M. & Faraone, A. Dynamics of architecturally engineered all-polymer nanocomposites. ACS Nano 12, 10807–10816 (2018).

    Google Scholar 

  37. Arbe, A. et al. Single chain dynamic structure factor of linear polymers in an all-polymer nano-composite. Macromolecules 49, 2354–2364 (2016).

    ADS  Google Scholar 

  38. Monkenbusch, M. et al. Molecular view on supramolecular chain and association dynamics. Phys. Rev. Lett. 117, 147802 (2016).

    ADS  Google Scholar 

  39. Krutyeva, M. et al. Effect of nanoconfinement on polymer dynamics: surface layers and interphases. Phys. Rev. Lett. 110, 108303 (2013).

    ADS  Google Scholar 

  40. Krutyeva, M. et al. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: a quasielastic neutron scattering study. J. Chem. Phys. 146, 203306 (2017).

    ADS  Google Scholar 

  41. Li, Y., Kroger, M. & Liu, W. K. Nanoparticle effect on the dynamics of polymer chains and their entanglement network. Phys. Rev. Lett. 109, 118001 (2012).

    ADS  Google Scholar 

  42. Senses, E. et al. Small particle driven chain disentanglements in polymer nanocomposites. Phys. Rev. Lett. 118, 147801 (2017).

    ADS  Google Scholar 

  43. Doster, W., Cusack, S. & Petry, W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337, 754–756 (1989).

    ADS  Google Scholar 

  44. Benedetto, A. Low-temperature decoupling of water and protein dynamics measured by neutron scattering. J. Phys. Chem. Lett. 8, 4883–4886 (2017).

    Google Scholar 

  45. Tehei, M. et al. Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep. 5, 66–70 (2004).

    Google Scholar 

  46. Librizzi, F., Carrotta, R., Peters, J. & Cupane, A. The effects of pressure on the energy landscape of proteins. Sci. Rep. 8, 2037 (2018).

    ADS  Google Scholar 

  47. Zaccai, G. et al. Neutrons describe ectoine effects on water H-bonding and hydration around a soluble protein and a cell membrane. Sci. Rep. 6, 31434 (2016).

    ADS  Google Scholar 

  48. Liu, Z. et al. Entropic contribution to enhanced thermal stability in the thermostable P450 CYP119. Proc. Natl Acad. Sci. USA 115, E10049–E10058 (2018).

    Google Scholar 

  49. Marques, M. P. M. et al. Intracellular water — an overlooked drug target? Cisplatin impact in cancer cells probed by neutrons. Phys. Chem. Chem. Phys. 19, 2702–2713 (2017).

    Google Scholar 

  50. Natali, F. et al. Water dynamics in neural tissue. J. Phys. Soc. Jpn 82, SA017 (2013).

    Google Scholar 

  51. Stingaciu, L. R., Ivanova, O., Ohl, M., Biehl, R. & Richter, D. Fast antibody fragment motion: flexible linkers act as entropic spring. Sci. Rep. 6, 22148 (2016).

    ADS  Google Scholar 

  52. Stadler, A. M. et al. Internal nanosecond dynamics in the intrinsically disordered myelin basic protein. J. Am. Chem. Soc. 136, 6987–6994 (2014).

    Google Scholar 

  53. Ameseder, F. et al. Relevance of internal friction and structural constraints for the dynamics of denatured bovine serum albumin. J. Phys. Chem. Lett. 9, 2469–2473 (2018).

    Google Scholar 

  54. Callaway, D. J. E. & Bu, Z. M. Visualizing the nanoscale: protein internal dynamics and neutron spin echo spectroscopy. Curr. Opin. Struct. Biol. 42, 1–5 (2017).

    Google Scholar 

  55. Biehl, R., Monkenbusch, M. & Richter, D. Exploring internal protein dynamics by neutron spin echo spectroscopy. Soft Matter 7, 1299–1307 (2011).

    ADS  Google Scholar 

  56. Hong, L. et al. Structure and dynamics of a compact state of a multidomain protein, the mercuric ion reductase. Biophys. J. 107, 393–400 (2014).

    ADS  Google Scholar 

  57. Hong, L. et al. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering. Sci. Adv. 2, e1600886 (2016).

    ADS  Google Scholar 

  58. Fujiwara, S. et al. Ligation-dependent picosecond dynamics in human hemoglobin as revealed by quasielastic neutron scattering. J. Phys. Chem. B 121, 8069–8077 (2017).

    Google Scholar 

  59. Berne, B. J. & Pecora, R. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover Publications, 2000).

  60. Porcar, L. et al. Formation of the dynamic clusters in concentrated lysozyme protein solutions. J. Phys. Chem. Lett. 1, 126–129 (2010).

    Google Scholar 

  61. Bucciarelli, S. et al. Dramatic influence of patchy attractions on short-time protein diffusion under crowded conditions. Sci. Adv. 2, e1601432 (2016).

    ADS  Google Scholar 

  62. Godfrin, P. D. et al. Dynamic properties of different liquid states in systems with competing interactions studied with lysozyme solutions. Soft Matter 14, 8570–8579 (2018).

    ADS  Google Scholar 

  63. Riest, J., Nagele, G., Liu, Y., Wagner, N. J. & Godfrin, P. D. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: experiment and theory. J. Chem. Phys. 148, 065101 (2018).

    ADS  Google Scholar 

  64. Dharmaraj, V. L., Godfrin, P. D., Liu, Y. & Hudson, S. D. Rheology of clustering protein solutions. Biomicrofluidics 10, 043509 (2016).

    Google Scholar 

  65. Godfrin, P. D. et al. Effect of hierarchical cluster formation on the viscosity of concentrated monoclonal antibody formulations studied by neutron scattering. J. Phys. Chem. B 120, 278–291 (2016).

    Google Scholar 

  66. Nanda, H. et al. Relaxation dynamics of saturated and unsaturated oriented lipid bilayers. Soft Matter 14, 6119–6127 (2018).

    ADS  Google Scholar 

  67. Sharma, V. K., Mamontov, E., Anunciado, D. B., O’Neill, H. & Urban, V. S. Effect of antimicrobial peptide on the dynamics of phosphocholine membrane: role of cholesterol and physical state of bilayer. Soft Matter 11, 6755–6767 (2015).

    ADS  Google Scholar 

  68. Buck, Z. N. et al. Effect of melittin on water diffusion and membrane structure in DMPC lipid bilayers. Europhys. Lett. 123, 18002 (2018).

    ADS  Google Scholar 

  69. Toppozini, L. et al. Partitioning of ethanol into lipid membranes and its effect on fluidity and permeability as seen by X-ray and neutron scattering. Soft Matter 8, 11839–11849 (2012).

    ADS  Google Scholar 

  70. Peters, J. et al. Thermodynamics of lipid multi-lamellar vesicles in presence of sterols at high hydrostatic pressure. Sci. Rep. 7, 15339 (2017).

    ADS  Google Scholar 

  71. Nickels, J. D. et al. Lipid rafts: buffers of cell membrane physical properties. J. Phys. Chem. B 123, 2050–2056 (2019).

    Google Scholar 

  72. Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703 (1973).

    Google Scholar 

  73. Zilman, A. G. & Granek, R. Undulations and dynamic structure factor of membranes. Phys. Rev. Lett. 77, 4788–4791 (1996).

    ADS  Google Scholar 

  74. Watson, M. C. & Brown, F. L. H. Interpreting membrane scattering experiments at the mesoscale: the contribution of dissipation within the bilayer. Biophys. J. 98, L9–L11 (2010).

    Google Scholar 

  75. Woodka, A. C., Butler, P. D., Porcar, L., Farago, B. & Nagao, M. Lipid bilayers and membrane dynamics: insight into thickness fluctuations. Phys. Rev. Lett. 109, 058102 (2012).

    ADS  Google Scholar 

  76. Bingham, R. J., Smye, S. W. & Olmsted, P. D. Dynamics of an asymmetric bilayer lipid membrane in a viscous solvent. Europhys. Lett. 111, 18004 (2015).

    ADS  Google Scholar 

  77. Nagao, M., Kelley, E. G., Ashkar, R., Bradbury, R. & Butler, P. D. Probing elastic and viscous properties of phospholipid bilayers using neutron spin echo spectroscopy. J. Phys. Chem. Lett. 8, 4679–4684 (2017).

    Google Scholar 

  78. Pan, J. et al. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations. Soft Matter 11, 130–138 (2015).

    ADS  Google Scholar 

  79. Ashkar, R. et al. Tuning membrane thickness fluctuations in model lipid bilayers. Biophys. J. 109, 106–112 (2015).

    ADS  Google Scholar 

  80. Nickels, J. D. et al. Mechanical properties of nanoscopic lipid domains. J. Am. Chem. Soc. 137, 15772–15780 (2015).

    Google Scholar 

  81. Nickels, J. D. et al. Bacillus subtilis lipid extract, a branched-chain fatty acid membrane model. J. Phys. Chem. Lett. 8, 4214–4217 (2017).

    Google Scholar 

  82. Bruning, B. A. et al. Bilayer undulation dynamics in unilamellar phospholipid vesicles: effect of temperature, cholesterol and trehalose. Biochim. Biophys. Acta Biomembr. 1838, 2412–2419 (2014).

    Google Scholar 

  83. Yi, Z., Nagao, M. & Bossev, D. P. Effect of charged lidocaine on static and dynamic properties of model bio-membranes. Biophys. Chem. 160, 20–27 (2012).

    Google Scholar 

  84. Heller, W. T. & Zolnierczuk, P. A. The helix-to-sheet transition of an HIV-1 fusion peptide derivative changes the mechanical properties of lipid bilayer membranes. Biochim. Biophys. Acta Biomembr. 1861, 565–572 (2019).

    Google Scholar 

  85. Lee, J.-H. et al. Thermal fluctuation and elasticity of lipid vesicles interacting with pore-forming peptides. Phys. Rev. Lett. 105, 038101 (2010).

    ADS  Google Scholar 

  86. Sreij, R. et al. DMPC vesicle structure and dynamics in the presence of low amounts of the saponin aescin. Phys. Chem. Chem. Phys. 20, 9070–9083 (2018).

    Google Scholar 

  87. Chakraborty, S., Abbasi, A., Bothun, G. D., Nagao, M. & Kitchens, C. L. Phospholipid bilayer softening due to hydrophobic gold nanoparticle inclusions. Langmuir 34, 13416–13425 (2018).

    Google Scholar 

  88. Hoffmann, I. et al. Softening of phospholipid membranes by the adhesion of silica nanoparticles — as seen by neutron spin-echo (NSE). Nanoscale 6, 6945–6952 (2014).

    ADS  Google Scholar 

  89. Longeville, S. & Stingaciu, L. R. Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells. Sci. Rep. 7, 10448 (2017).

    ADS  Google Scholar 

  90. Braun, M. K. et al. Crowding-controlled cluster size in concentrated aqueous protein solutions: structure, self- and collective diffusion. J. Phys. Chem. Lett. 8, 2590–2596 (2017).

    Google Scholar 

  91. Anunciado, D. B. et al. In vivo protein dynamics on the nanometer length scale and nanosecond time scale. J. Phys. Chem. Lett. 8, 1899–1904 (2017).

    Google Scholar 

  92. Mamontov, E. Microscopic diffusion processes measured in living planarians. Sci. Rep. 8, 4190 (2018).

    ADS  Google Scholar 

  93. Marques, M. P. M. et al. Chemotherapeutic targets in osteosarcoma — insights from synchrotron-MicroFTIR and quasi-elastic neutron scattering. J. Phys. Chem. B 123, 6968–6979 (2019).

    Google Scholar 

  94. Stingaciu, L. R. et al. Revealing the dynamics of thylakoid membranes in living cyanobacterial cells. Sci. Rep. 6, 19627 (2016).

    ADS  Google Scholar 

  95. Stock, C. et al. Solitary magnons in the S = 5/2 antiferromagnet CaFe2O4. Phys. Rev. Lett. 117, 017201 (2016).

    ADS  Google Scholar 

  96. Zvyagin, A. A. New physics in frustrated magnets: spin ices, monopoles, etc. (Review Article). Low. Temp. Phys. 39, 901–922 (2013).

    ADS  Google Scholar 

  97. Mydosh, J. A. Spin glasses: redux: an updated experimental/materials survey. Rep. Prog. Phys. 78, 052501 (2015).

    ADS  Google Scholar 

  98. Blackburn, E. et al. Fermi surface topology and the superconducting gap function in UPd2Al3: a neutron spin-echo study. Phys. Rev. Lett. 97, 057002 (2006).

    ADS  Google Scholar 

  99. Starykh, O. A. Unusual ordered phases of highly frustrated magnets: a review. Rep. Prog. Phys. 78, 052502 (2015).

    ADS  Google Scholar 

  100. Ehlers, G. et al. Frustrated spin correlations in diluted spin ice Ho2–xLaxTi2O7. J. Phys. Condens. Matter 20, 235206 (2008).

    ADS  Google Scholar 

  101. Nambu, Y. et al. Spin fluctuations from hertz to terahertz on a triangular lattice. Phys. Rev. Lett. 115, 127202 (2015).

    ADS  Google Scholar 

  102. Ye, F. et al. Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. Phys. Rev. B 73, 220404 (2006).

    ADS  Google Scholar 

  103. Norman, M. R. Herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016).

    ADS  MathSciNet  Google Scholar 

  104. Gardner, J. S., Gingras, M. J. P. & Greedan, J. E. Magnetic pyrochlore oxides. Rev. Mod. Phys. 82, 52–107 (2010).

    ADS  Google Scholar 

  105. Paddison, J. A. M. et al. Hidden order in spin-liquid Gd3Ga5O12. Science 350, 179–181 (2015).

    ADS  Google Scholar 

  106. Lee, S.-H. et al. Emergent excitations in a geometrically frustrated magnet. Nature 418, 856–858 (2002).

    ADS  Google Scholar 

  107. Gardner, J. S. et al. Glassy statics and dynamics in the chemically ordered pyrochlore antiferromagnet Y2Mo2O7. Phys. Rev. Lett. 83, 211–214 (1999).

    ADS  Google Scholar 

  108. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    ADS  Google Scholar 

  109. Paddison, J. et al. Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4. Nat. Phys. 13, 117–122 (2017).

    Google Scholar 

  110. Yasui, Y. et al. Ferromagnetic transition of pyrochlore compound Yb2Ti2O7. J. Phys. Soc. Jpn 72, 3014–3015 (2003).

    ADS  Google Scholar 

  111. Hodges, J. A. et al. First order transition in the spin dynamics of geometrically frustrated Yb2Ti2O7. Phys. Rev. Lett. 88, 077204 (2002).

    ADS  Google Scholar 

  112. Gardner, J. S., Ehlers, G., Rosov, N., Erwin, R. W. & Petrovic, C. Spin-spin correlations in Yb2Ti2O7: a polarized neutron scattering study. Phys. Rev. B 70, 180404(R) (2004).

    ADS  Google Scholar 

  113. Peçanha-Antonio, V. et al. Magnetic excitations in the ground state of Yb2Ti2O7. Phys. Rev. B 96, 214415 (2017).

    ADS  Google Scholar 

  114. Ross, K. A. et al. Lightly stuffed pyrochlore structure of single-crystalline Yb2Ti2O7 grown by the optical floating zone technique. Phys. Rev. B 86, 174424 (2012).

    ADS  Google Scholar 

  115. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    ADS  Google Scholar 

  116. Ehlers, G. et al. Dynamical crossover in ‘hot’ spin ice. J. Phys. Condens. Matter 15, L9 (2003).

    Google Scholar 

  117. Snyder, J. et al. Low-temperature spin freezing in the Dy2Ti2O7 spin ice. Phys. Rev. B 69, 064414 (2004).

    ADS  Google Scholar 

  118. Clancy, J. et al. Revisiting static and dynamic spin-ice correlations in Ho2Ti2O7 with neutron scattering. Phys. Rev. B 79, 014408 (2009).

    ADS  Google Scholar 

  119. Paulsen, C. et al. Far-from-equilibrium monopole dynamics in spin ice. Nat. Phys. 10, 135–139 (2014).

    Google Scholar 

  120. Pomaranski, D. et al. Absence of Pauling’s residual entropy in thermally equilibrated Dy2Ti2O7. Nat. Phys. 9, 353–356 (2013).

    Google Scholar 

  121. Jaubert, L. D. C. & Holdsworth, P. C. W. Magnetic monopole dynamics in spin ice. J. Phys. Condens. Matter 23, 164222 (2011).

    ADS  Google Scholar 

  122. Petit, S. et al. Observation of magnetic fragmentation in spin ice. Nat. Phys. 12, 746–750 (2016).

    Google Scholar 

  123. Brooks-Bartlett, M. E., Banks, S. T., Jaubert, L. D. C., Harman-Clarke, A. & Holdsworth, P. C. W. Magnetic-moment fragmentation and monopole crystallization. Phys. Rev. X 4, 011007 (2014).

    Google Scholar 

  124. Snee, T. J., Meads, R. E. & Parker, W. G. A study of supertransferred hyperfine magnetic fields and relaxation of Dy3+ ions by Mössbauer spectroscopy of 57Fe and 119Snm in the pyrochlores Dy2Sn2O7 and Dy2FeSbO7. J. Phys. C 10, 1761–1773 (1977).

    ADS  Google Scholar 

  125. Bramwell, S. T. et al. Measurement of the charge and current of magnetic monopoles in spin ice. Nature 461, 956–959 (2009).

    ADS  Google Scholar 

  126. Dunsiger, S. R. et al. Spin ice: magnetic excitations without monopole signatures using muon spin rotation. Phys. Rev. Lett. 107, 207207 (2011).

    ADS  Google Scholar 

  127. Blundell, S. J. Monopoles, magnetricity, and the stray field from spin ice. Phys. Rev. Lett. 108, 147601 (2012).

    ADS  Google Scholar 

  128. Edwards S. F. & Grinev, D. G. in Jamming and Rheology: Constraint Dynamics on Microscopic and Macroscopic Scales (eds Liu, A.J. & Nagel, S. R.) 80–93 (CRC Press, 2001).

  129. Trappe, V., Prasad, V., Cipeletti, L., Segre, P. N. & Weltz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001).

    ADS  Google Scholar 

  130. Samarakoon, A. et al. Aging, memory, and nonhierarchical energy landscape of spin jam. Proc. Natl Acad. Sci. USA 113, 11806–11810 (2016).

    ADS  Google Scholar 

  131. Samarakoon, A. M. et al. Scaling of memories and crossover in glassy magnets. Sci. Rep. 7, 12053 (2017).

    ADS  Google Scholar 

  132. Pickup, R. M., Cywinski, R., Pappas, C., Farago, B. & Fouquet, P. Generalized spin-glass relaxation. Phys. Rev. Lett. 102, 097202 (2009).

    ADS  Google Scholar 

  133. Forgan, E. M. et al. Measurement of vortex motion in a type-II superconductor: a novel use of the neutron spin-echo technique. Phys. Rev. Lett. 85, 3488–3491 (2000).

    ADS  Google Scholar 

  134. Pappas, C. et al. Skyrmion lattice correlations. Phys. Rev. Lett. 119, 047203 (2017).

    ADS  Google Scholar 

  135. Ehlers, G., Casalta, H., Lechner, R. E. & Maletta, H. Dynamics of frustrated magnetic moments in antiferromagnetically ordered TbNiAl probed by neutron time-of-flight and spin-echo spectroscopy. Phys. Rev. B 63, 224407 (2001).

    ADS  Google Scholar 

  136. Hempelmann, R. Quasielastic Neutron Scattering and Solid State Diffusion (Oxford Univ. Press, 2000).

  137. Karlsson, M. Perspectives of neutron scattering on proton conducting oxides. Dalton Trans. 42, 317–329 (2013).

    Google Scholar 

  138. Karlsson, M. et al. Using neutron spin-echo to investigate proton dynamics in proton-conducting perovskites. Chem. Mater. 22, 740–742 (2010).

    Google Scholar 

  139. Nemoto, F. et al. Neutron scattering studies on short- and long-range layer structures and related dynamics in imidazolium-based ionic liquids. J. Chem. Phys. 149, 054502 (2018).

    ADS  Google Scholar 

  140. Berrod, Q. et al. Ionic liquids: evidence of the viscosity scale-dependence. Sci. Rep. 7, 2241 (2017).

    ADS  Google Scholar 

  141. Lefevr, J., Cervini, L., Griffin, J. M. & Blanchard, D. Lithium conductivity and ions dynamics in LiBH4/SiO2 solid electrolytes studied by solid-state NMR and quasi-elastic neutron scattering and applied in lithium sulfur batteries. J. Phys. Chem. C 122, 15264–15275 (2018).

    Google Scholar 

  142. Silvi, L. et al. A quasielastic and inelastic neutron scattering study of the alkaline and alkaline-earth borohydrides LiBH4 and Mg(BH4)2 and the mixture LiBH4 + Mg(BH4). Phys. Chem. Chem. Phys. 21, 718–728 (2019).

    Google Scholar 

  143. Do, C. et al. Methyl quantum tunneling in ionic liquid [DMIm][TFSI] facilitated by bis(trifluoromethane)sulfonimide lithium salt. Sci. Rep. 8, 10354 (2018).

    ADS  Google Scholar 

  144. Canto, L. F., Gomes, P. R. S., Donangelo, R., Lubian, J. & Hussein, M. S. Recent developments in fusion and direct reactions with weakly bound nuclei. Phys. Rep. 596, 1–86 (2015).

    ADS  MathSciNet  Google Scholar 

  145. Thompson, J. D. et al. Quasiparticle breakdown and spin Hamiltonian of the frustrated quantum pyrochlore Yb2Ti2O7 in a magnetic field. Phys. Rev. Lett. 119, 057203 (2017).

    ADS  Google Scholar 

  146. Ehlers, G., Mamontov, E., Zamponi, M., Kam, K. C. & Gardner, J. S. Direct observation of a nuclear spin excitation in Ho2Ti2O7. Phys. Rev. Lett. 102, 016405 (2009).

    ADS  Google Scholar 

  147. Chatterji, T. & Frick, B. Nuclear spin excitations in NdCu2. Physica B 350, E111–E114 (2004).

    ADS  Google Scholar 

  148. Heidemann, A. Hyperfine interaction in amorphous ferromagnetic cobalt-phosphorous-alloys measured by inelastic neutron scattering. Z. Phys. B 20, 385–389 (1975).

    ADS  Google Scholar 

  149. Kuhlmann, K., Appel, M., Frick, B. & Magerl, A. Breakthrough in neutron backscattering spectroscopy: energy resolution improved by one order of magnitude using the GaAs 200 reflection. Rev. Sci. Instr. 90, 015119 (2019).

  150. Tsapatsaris, N., Willendrup, P. K., Lechner, R. E. & Bordallo, H. N. From BASIS to MIRACLES: benchmarking and perspectives for high-resolution neutron spectroscopy at the ESS. EPJ Web Conf. 83, 03015 (2015).

    Google Scholar 

  151. Mezei, F., Pappas, C. & Gutberlet T. (eds) Neutron Spin Echo Spectroscopy (Springer, 2003).

  152. Mezei, F. (ed.) Neutron Spin Echo (Springer, 1979).

  153. Niedzwiedz, K. et al. Chain dynamics and viscoelastic properties of poly(ethylene oxide). Macromolecules 41, 4866–4872 (2008).

    ADS  Google Scholar 

  154. de Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–579 (1971).

    ADS  Google Scholar 

  155. Farago, B. IN11C, medium-resolution multidetector extension of the IN11 NSE spectrometer at the ILL. Physica B 241–243, 113–116 (1997).

    ADS  Google Scholar 

  156. Rosov, N., Rathgeber, S. & Monkenbusch, M. in Scattering from Polymers: Characterization by X-Rays, Neutrons, and Light Ch. 7 (Oxford Univ. Press, 2000).

  157. Longeville, S. La spectroscopie neutronique à écho de spin à champ nul ou par résonance. J. Phys. IV 10, 59–75 (2000).

    Google Scholar 

  158. Nagao, M. et al. Relocation and upgrade of neutron spin echo spectrometer, iNSE. Physica B 385–386, 1118–1121 (2006).

    ADS  Google Scholar 

  159. Wuttke, J. et al. SPHERES, Jülich’s high-flux neutron backscattering spectrometer at FRM II. Rev. Sci. Instrum. 83, 075109 (2012).

    ADS  Google Scholar 

  160. Klose, F., Constantine, P., Kennedy, S. J. & Robinson, R. A. The Neutron Beam Expansion Program at the Bragg Institute. J. Phys. Conf. Ser. 528, 012026 (2014).

    Google Scholar 

  161. Meyer, A., Dimeo, R. M., Gehring, P. M. & Neumann, D. A. The high-flux backscattering spectrometer at the NIST Center for Neutron Research. Rev. Sci. Instrum. 74, 2759–2777 (2003).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank E. Senses and M. Nagao for critical reading of the manuscript, QENS instrument scientists worldwide and the research community, who keep bringing new research and challenges to the facilities. A.F. acknowledges support from the Center for High Resolution Neutron Scattering, a partnership between the National Institute of Standards and Technology and the US National Science Foundation under agreement no. DMR-1508249. This research used resources at the Spallation Neutron Source, a US Department of Energy Office of Science User Facility operated by the Oak Ridge National Laboratory. The authors thank J. Hemman, Oak Ridge National Laboratory Graphics Design Group, for support with some of the figures.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jason S. Gardner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks A. Jackson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Coherent scattering

Wavevector transfer (Q)-dependent scattering that contains information about scattering structures.

Incoherent scattering

Relatively weakly wavevector transfer (Q)-dependent scattering that contains information about the movement of an individual atom in time.

Fission

A nuclear reaction in which a massive nucleus splits into smaller nuclei with the simultaneous release of energy, neutrons and other products.

Spallation

A process by which a heavy nucleus ejects smaller particles, including neutrons, after, for example, being hit with high-energy particles.

Moderator

A material used to reduce the energy of free neutrons by a large number of inelastic collisions.

Thermal neutrons

Unbound or free neutrons with an average energy of ~25 meV at room temperature.

Cold neutrons

Unbound or free neutrons with an average energy lower than ~5 meV.

Mezei NSE

A type of neutron spin-echo (NSE) spectrometer in which the velocity of each neutron is encoded in its Larmor precession in a magnetic field.

Time of flight

A technique by which the time taken for a neutron to travel a known distance is used to determine its velocity (and thus energy).

Modulation of intensity by zero effort

(MIEZE). A modified resonance neutron spin-echo technique that enables measurements to be taken under conditions that depolarize the neutron beam.

Anti-Helmholtz coils

A pair of coils in which the electrical current flows in opposite directions in the two coils, producing a high-magnetic-field gradient from the centre out.

Flipper

A device used to manipulate the neutron spin direction non-adiabatically.

Resonance NSE spectrometers

A type of neutron spin-echo (NSE) spectrometer that employs radio-frequency spin flippers to manipulate the spin of each neutron and encode its velocity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardner, J.S., Ehlers, G., Faraone, A. et al. High-resolution neutron spectroscopy using backscattering and neutron spin-echo spectrometers in soft and hard condensed matter. Nat Rev Phys 2, 103–116 (2020). https://doi.org/10.1038/s42254-019-0128-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0128-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing