Numerical methods every atomic and molecular theorist should know

Abstract

This Technical Review encapsulates the methods and numerical techniques that have been so successfully used over the years to study the electron scattering of atoms and molecules. In the past few decades, these approaches have also proven effective in treating the time-dependent interaction of strong electromagnetic fields with atoms and molecules. There are clear synergies between the two that can be exploited computationally. The ideas discussed in this Technical Review have played an important role in shaping modern atomic and molecular physics, and we expect that future developments will build heavily on these foundations.

Key points

  • We overview the best-of-breed numerical methods being used to compute electron–atom and electron–molecule scattering cross-sections and to propagate the Schrödinger equation in time.

  • We describe the close-coupling, R-matrix and Kohn variational methods and briefly discuss the importance of complex scaling to practical scattering theory.

  • We outline how these techniques may be extended to treat the time-dependent Schrödinger equation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 21 February 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Hartree, D. R. On some approximate numerical applications of Bohr’s theory of spectra. Proc. Camb. Phil. Soc. 21, 625–641 (1923).

  2. 2.

    Hartree, D. R. The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Proc. Camb. Phil. Soc. 24, 89–110 (1928).

  3. 3.

    Slater, J. C. Note on Hartree’s method. Phys. Rev. 35, 210–211 (1930).

  4. 4.

    Fock, V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys. 61, 126–148 (1930).

  5. 5.

    Zangwill, A. Hartree and Thomas: the forefathers of density functional theory. Arch. Hist. Exact. Sci. 67, 331–348 (2013).

  6. 6.

    Hartree, D. R. The Bush differential analyser and its applications. Nature 146, 319–323 (1940).

  7. 7.

    Roothaan, C. C. J. New developments in molecular orbital theory. Rev. Mod. Phys. 23, 69–89 (1951).

  8. 8.

    Hall, G. G. The molecular orbital theory of chemical valency VIII. A method of calculating ionization potentials. Proc. R. Soc. A 205, 541–552 (1951).

  9. 9.

    Parr, R. G. & Mulliken, R. S. LCAO self-consistent field calculation of the π-electron energy levels of cis- and trans-l,3-butadiene. J. Chem. Phys. 18, 1338–1346 (1950).

  10. 10.

    Roothaan, C. C. J. Self-consistent field theory for open shells of electronic systems. Rev. Mod. Phys. 32, 179–185 (1960).

  11. 11.

    Pople, J. A. & Nesbet, R. K. Self-consistent orbitals for radicals. J. Chem. Phys. 22, 571–572 (1954).

  12. 12.

    Piper, W. W. & Prener, J. S. Hartree–Fock wave functions for Mn+4. Phys. Rev. 100, 1250 (1955).

  13. 13.

    Rotenberg, M. Nuclear Hartree–Fock calculations. Phys. Rev. 100, 439–440 (1955).

  14. 14.

    Heitler, W. & London, F. Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Z. Phys. 44, 455–472 (1927).

  15. 15.

    James, H. M. & Coolidge, A. S. The ground state of the hydrogen molecule. J. Chem. Phys. 1, 825–835 (1933).

  16. 16.

    Hylleraas, E. A. Uber den Grundzustand des Heliumatoms. Z. Phys. 48, 469–494 (1928).

  17. 17.

    Hylleraas, E. A. Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Z. Phys. 54, 347–366 (1929).

  18. 18.

    Hylleraas, E. A. Uber den Grundterm der Zweielektronenprobleme von H, He, Li+, Be++ usw. Z. Phys. 65, 209–225 (1930).

  19. 19.

    Hylleraas, E. A. The Schrödinger two-electron atomic problem. Adv. Quantum Chem. 1, 1–33 (1964).

  20. 20.

    Kinoshita, T. Ground state of the helium atom. Phys. Rev. 105, 1490–1502 (1957).

  21. 21.

    Kolos, W. & Roothaan, C. C. J. Accurate electronic wave functions for the H2 molecule. Rev. Mod. Phys. 32, 219–232 (1960).

  22. 22.

    Kolos, W. & Wolniewicz, L. Improved theoretical ground-state energy of the hydrogen molecule. J. Chem. Phys. 49, 404–410 (1968).

  23. 23.

    Sims, J. S. & Hagstrom, S. Combined configuration-interaction Hylleraas-type wave-function study of the ground state of the beryllium atom. Phys. Rev. A 4, 908–916 (1971).

  24. 24.

    Sims, J. S. & Hagstrom, S. A. High precision variational calculations for the Born–Oppenheimer energies of the ground state of the hydrogen molecule. J. Chem. Phys. 124, 094101 (2006).

  25. 25.

    Kellner, G. W. Die Ionisierungsspannung des Heliums nach der Schrödingerschen Theorie. Z. Phys. 44, 91–109 (1927).

  26. 26.

    Weinbaum, S. The normal state of the hydrogen molecule. J. Chem. Phys. 1, 593–596 (1933).

  27. 27.

    Shavitt, I. The history and evolution of configuration interaction. Mol. Phys. 94, 3–17 (1998).

  28. 28.

    Sherrill, C. D. & Schaefer, H. F. The configuration interaction method: advances in highly correlated approaches. Adv. Quantum Chem. 34, 143–269 (1999).

  29. 29.

    Szalay, P. G., Müller, T., Gidofalvi, G., Lischka, H. & Shepard, R. Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem. Rev. 112, 108–181 (2012).

  30. 30.

    Allis, W. P. & Morse, P. M. Theorie der Streuung langsamer Elektronen an Atomen. Z. Phys. 70, 567–582 (1931).

  31. 31.

    Morse, P. M. Quantum mechanics of collision processes part II. Rev. Mod. Phys. 4, 577–634 (1932).

  32. 32.

    Morse, P. M. & Allis, W. P. The effect of exchange on the scattering of slow electrons from atoms. Phys. Rev. 44, 269–276 (1933).

  33. 33.

    Born, M. & Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 389, 457–484 (1927).

  34. 34.

    Hulthén, L. Variational problem for the continuous spectrum of a Schrödinger equation. K. Fysiogr. Sällsk. Lund. Förhandl. 14, 1–13 (1944).

  35. 35.

    Hulthén, L. On the Sturm–Liouville problem connected with a continuous spectrum. Ark. Mat. Astron. Fys. 35A, 25 (1948).

  36. 36.

    Kohn, W. Variational methods in nuclear collision problems. Phys. Rev. 74, 1763–1772 (1948).

  37. 37.

    Massey, H. S. W. & Moiseiwitsch, B. L. Calculation of the 1s–2s electron excitation cross section of hydrogen by a variational method. Proc. Phys. Soc. A 66, 406–408 (1953).

  38. 38.

    Moiseiwitsch, B. L. A variational method for inelastic collision problems. Phys. Rev. 82, 753–753 (1951).

  39. 39.

    Lippmann, B. A. & Schwinger, J. Variational principles for scattering processes. I. Phys. Rev. 79, 469–480 (1950).

  40. 40.

    Nesbet, R. K. Variational Methods in Electron-Atom Scattering Theory (Plenum, 1980).

  41. 41.

    Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

  42. 42.

    Romero, E., Novoderezhkin, V. I. & van Grondelle, R. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543, 355–365 (2017).

  43. 43.

    LeVeque, R. J. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-state and Time-dependent Problems (Society for Industrial and Applied Mathematics, 2007).

  44. 44.

    Boyd, J. P. Chebyshev and Fourier Spectral Methods 2nd edn (Dover Publications, 2001).

  45. 45.

    Kopal, Z. Numerical Analysis (John Wiley, 1961).

  46. 46.

    Sams, W. N. & Kouri, D. J. Noniterative solutions of integral equations for scattering. I. Single channels. J. Chem. Phys. 51, 4809–4814 (1969).

  47. 47.

    Sams, W. N. & Kouri, D. J. Noniterative solutions of integral equations for scattering. II. Coupled channels. J. Chem. Phys. 51, 4815–4819 (1969).

  48. 48.

    Sams, W. N. & Kouri, D. J. Noniterative solutions of integral equations for scattering. III. Coupled open and closed channels and eigenvalue problems. J. Chem. Phys. 52, 4144–4150 (1970).

  49. 49.

    Schneider, B. I., & Collins, L. A. Linear-algebraic approach to electron–molecule collisions: separable exchange approximations. Phys. Rev. A 24, 1264–1266 (1981).

  50. 50.

    Collins, L. A. & Schneider, B. I. Linear-algebraic approach to electron-molecule collisions: general formulation. Phys. Rev. A 24, 2387 (1981).

  51. 51.

    Rescigno, T. N. Orthogonality constraints in electron scattering by open-shell targets: comments on a paper by Riley and Truhlar. J. Chem. Phys. 66, 5255–5257 (1977).

  52. 52.

    Rescigno, T. N. & Orel, A. E. Separable approximation for exchange interactions in electron–molecule scattering. Phys. Rev. A 24, 1267–1271 (1981).

  53. 53.

    Rescigno, T. N., McCurdy, C. W. & McKoy, V. Discrete basis set approach to nonspherical scattering. Chem. Phys. Lett. 27, 401–404 (1974).

  54. 54.

    Linderberg, J. Finite element methods in quantum mechanics. Comp. Phys. Rep. 6, 209–242 (1987).

  55. 55.

    Linderberg, J. Finite elements and partial waves in scattering calculations. Int. J. Quantum Chem. 44, 717–724 (1992).

  56. 56.

    Vincke, M., Malegat, L. & Baye, D. Regularization of singularities in Lagrange-mesh calculations. J. Phys. B 26, 811–826 (1993).

  57. 57.

    Rescigno, T. N. & McCurdy, C. W. Numerical grid methods for quantum-mechanical scattering problems. Phys. Rev. A 62, 032706 (2000).

  58. 58.

    Schneider, B. I. & Collins, L. A. The discrete variable method for the solution of the time-dependent Schrödinger equation. J. Non Cryst. Solids 351, 1551–1558 (2005).

  59. 59.

    Baye, D. & Heenen, P.-H. Generalised meshes for quantum mechanical problems. J. Phys. A 19, 2041–2059 (1986).

  60. 60.

    Bachau, H., Cormier, E., Decleva, P., Hansen, J. E. & Martín, F. Applications of B-splines in atomic and molecular physics. Rep. Prog. Phys. 64, 1815–1943 (2001).

  61. 61.

    Rescigno, T. N., Horner, D. A., Yip, F. L. & McCurdy, C. W. Hybrid approach to molecular continuum processes combining Gaussian basis functions and the discrete variable representation. Phys. Rev. A 72, 052709 (2005).

  62. 62.

    Yip, F. L., McCurdy, C. W. & Rescigno, T. N. Hybrid Gaussian-discrete-variable representation approach to molecular continuum processes: application to photoionization of diatomic Li2+. Phys. Rev. A 78, 023405 (2008).

  63. 63.

    Guan, X., Bartschat, K. & Schneider, B. I. Dynamics of two-photon double ionization of helium in short intense XUV laser pulses. Phys. Rev. A 77, 043421 (2008).

  64. 64.

    Guan, X., Bartschat, K. & Schneider, B. I. Two-photon double ionization of H2 in intense femtosecond laser pulses. Phys. Rev. A 82, 041404 (2010).

  65. 65.

    Schneider, B. I. & Collins, L. A. Direct iteration-variation method for scattering problems. Phys. Rev. A 33, 2970 (1986).

  66. 66.

    Collins, L. A. & Schneider, B. I. in Electron–Molecule Scattering and Photoionization (eds Burke, P. G. & West, J. B.) 147–168 (Springer, 1988).

  67. 67.

    Burke, P. G. & Schey, H. M. Elastic scattering of low-energy electrons by atomic hydrogen. Phys. Rev. 126, 147–162 (1962).

  68. 68.

    Burke, P. G., Schey, H. M. & Smith, K. Collisions of slow electrons and positrons with atomic hydrogen. Phys. Rev. 129, 1258–1274 (1963).

  69. 69.

    Smith, K., Miller, W. F. & Mumford, A. J. P. The elastic and inelastic scattering of electrons and positrons from the s-states of atomic hydrogen. Phys. Rev. 76, 559–564 (1960).

  70. 70.

    Burke, P. G. & Smith, K. The low-energy scattering of electrons and positrons by hydrogen atoms. Rev. Mod. Phys. 34, 458–502 (1962).

  71. 71.

    Bray, I. & Stelbovics, A. T. Convergent close-coupling calculations of electron-hydrogen scattering. Phys. Rev. A 46, 6995–7011 (1992).

  72. 72.

    Bray, I. Close-coupling theory of ionization: successes and failures. Phys. Rev. Lett. 78, 4721–4724 (1997).

  73. 73.

    McCurdy, C. W., Baertschy, M. & Rescigno, T. N. Solving the three-body Coulomb breakup problem using exterior complex scaling. J. Phys. B 37, R137–R187 (2004).

  74. 74.

    Simon, B. Resonances in n-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory. Ann. Math. 97, 247 (1973).

  75. 75.

    Simon, B. The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett. A 71, 211–214 (1979).

  76. 76.

    McCurdy, C. W., Stroud, C. K. & Wisinski, M. K. Solving the time-dependent Schrödinger equation using complex-coordinate contours. Phys. Rev. A 43, 5980–5990 (1991).

  77. 77.

    Scrinzi, A. Infinite-range exterior complex scaling as a perfect absorber in time-dependent problems. Phys. Rev. A 81, 053845 (2010).

  78. 78.

    Weinmüller, M., Weinmüller, M., Rohland, J. & Scrinzi, A. Perfect absorption in Schrödinger-like problems using non-equidistant complex grids. J. Comp. Phys. 333, 199–211 (2017).

  79. 79.

    Xiaoye, S. Li An overview of {SuperLU}: algorithms, implementation, and user interface. ACM Trans. Math. Softw. 31, 302 (2005).

  80. 80.

    Wigner, E. P. Resonance reactions. Phys. Rev. 70, 606–618 (1946).

  81. 81.

    Wigner, E. P. & Eisenbud, L. Higher angular momenta and long range interaction in resonance reactions. Phys. Rev. 72, 29–41 (1947).

  82. 82.

    Lane, A. M. & Thomas, R. G. R-matrix theory of nuclear reactions. Rev. Mod. Phys. 30, 257–353 (1958).

  83. 83.

    Burke, P. G., Hibbert, A. & Robb, W. D. Electron scattering by complex atoms. J. Phys. B 4, 153–161 (1971).

  84. 84.

    Burke, P. G. & Robb, W. D. Elastic scattering of electrons by hydrogen and helium atoms. J. Phys. B 5, 44–54 (1972).

  85. 85.

    Schneider, B. R-matrix theory for electron–atom and electron–molecule collisions using analytic basis set expansions. Chem. Phys. Lett. 31, 237–241 (1975).

  86. 86.

    Schneider, B. I. R-matrix theory for electron–molecule collisions using analytic basis set expansions. II. Electron–H2 scattering in the static-exchange model. Phys. Rev. A 11, 1957 (1975).

  87. 87.

    Schneider, B. I. & Hay, P. J. Elastic scattering of electrons from F2: an R-matrix calculation. Phys. Rev. A 13, 2049 (1976).

  88. 88.

    Schneider, B. I. & Hay, P. J. Elastic scattering of electrons from F2. J. Phys. B 9, L165 (1976).

  89. 89.

    Schneider, B. I., Le Dourneuf, M. & Lan, V. K. Resonant vibrational excitation of diatomic molecules by electron impact. An ab initio R-matrix calculation for e–N2. XI Proc. Int. Conf. Photon. Electron. At. Collisions 292 (1979).

  90. 90.

    Schneider, B. I., Le Dourneuf, M. & Lan, V. K. Resonant vibrational excitation of N2 by low-energy electrons: an ab initio R-matrix calculation. Phys. Rev. Lett. 43, 1926 (1979).

  91. 91.

    Schneider, B. I. in Electron–Molecule and Photon–Molecule Collisions (eds Rescigno, T., McKoy, V. & Schneider, B.) 77–86 (Springer, 1979).

  92. 92.

    LeDourneuf, M., Schneider, B. I. & Burke, P. G. Theory of vibrational excitation and dissociative attachment: an R-matrix approach. J. Phys. B 12, L365–L369 (1979).

  93. 93.

    Tennyson, J. & Morgan, L. A. Electron collisions with polyatomic molecules using the R-matrix method. Phil. Trans. R. Soc. A 357, 1161–1173 (1999).

  94. 94.

    Burke, P. G. R-Matrix Theory of Atomic Collisions Application to Atomic, Molecular and Optical Processes (Springer-Verlag Berlin, 2011).

  95. 95.

    Tennyson, J. Electron–molecule collision calculations using the R-matrix method. Phys. Rep. 491, 29–76 (2010).

  96. 96.

    Descouvemont, P. & Baye, D. The R-matrix theory. Rep. Prog. Phys. 73, 036301 (2010).

  97. 97.

    Szmytkowski, R. Variational R-matrix methods for many-electron systems: unified relativistic theory. Phys. Rev. A 63, 14 (2001).

  98. 98.

    Grant, I. P. The Dirac operator on a finite domain and the R-matrix method. J. Phys. B 41, 055002 (2008).

  99. 99.

    Grineviciute, J. & Halderson, D. Relativistic R matrix and continuum shell model. Phys. Rev. C 85, 1–6 (2012).

  100. 100.

    Baye, D. Calculable R-matrix method for the Dirac equation. Phys. Rev. A 92, 042112 (2015).

  101. 101.

    Bloch, C. Une formulation unifiée de la théorie des réactions nucléaires. Nucl. Phys. 4, 503–528 (1957).

  102. 102.

    Buttle, P. J. A. Solution of coupled equations by R-matrix techniques. Phys. Rev. 160, 719–729 (1967).

  103. 103.

    Zatsarinny, O. BSR: B-spline atomic R-matrix codes. Comp. Phys. Commun. 174, 273–356 (2006).

  104. 104.

    Mašín, Z. & Gorfinkiel, J. D. Towards an accurate representation of the continuum in calculations of electron, positron and laser field interactions with molecules. J. Phys. Conf. Ser. 490, 012090 (2014).

  105. 105.

    Kapur, P. L. & Peierls, R. The dispersion formula for nuclear reactions. Proc. R. Soc. A 166, 277–295 (1938).

  106. 106.

    Siegert, A. J. F. On the derivation of the dispersion formula for nuclear reactions. Phys. Rev. 56, 750–752 (1939).

  107. 107.

    Light, J. C. & Walker, R. B. An R matrix approach to the solution of coupled equations for atom-molecule reactive scattering. J. Chem. Phys. 65, 4272–4282 (1976).

  108. 108.

    Schneider, B. I. & Taylor, H. S. The solution of driven equations by R-matrix propagation methods. J. Chem. Phys. 77, 379–382 (1982).

  109. 109.

    Baluja, K. L., Burke, P. G. & Morgan, L. A. R-matrix propagation program for solving coupled second-order differential equations. Comp. Phys. Commun. 27, 299–307 (1982).

  110. 110.

    Axelsson, O. Iterative Solution Methods (Cambridge Univ. Press, 1994).

  111. 111.

    Berrington, K. A., & Ballance, C. P. Partitioned R-matrix theory. J. Phys. B 35, 2275 (2002).

  112. 112.

    Tennyson, J. Partitioned R-matrix theory for molecules. J. Phys. B 37, 1061–1071 (2004).

  113. 113.

    Lane, A. M. The application of Wigner’s R-matrix theory to atomic physics. J. Phys. B 19, 253–257 (1986).

  114. 114.

    Lucchese, R. R., Rescigno, T. N. & McCurdy, C. W. The connection between resonances and bound states in the presence of a coulomb potential. J. Phys. Chem. A 123, 85–95 (2018).

  115. 115.

    Tashiro, M. Theoretical treatment of molecular photoionization based on the R-matrix method. J. Phys. Conf. Ser. 388, 022077 (2012).

  116. 116.

    Ilchen, M. et al. Photoelectron angular distribution studies of the outer valence states of N2. J. Phys. B 45, 225102 (2012).

  117. 117.

    Brambila, D. S. et al. The role of multichannel effects in the photoionization of the NO2 molecule: an ab initio R-matrix study. J. Phys. B 48, 245101 (2015).

  118. 118.

    VanGyseghem, G., Gorczyca, T. W. & Ballance, C. P. Near-threshold photoionization of molecular nitrogen. J. Phys. Conf. Ser. 635, 112102 (2015).

  119. 119.

    Brigg, W. J. et al. Calculated photoionization cross sections using Quantemol-N. Jpn J. Appl. Phys. 54, 06GA02 (2015).

  120. 120.

    Gorczyca, T. W., Hasoglu, M. F. & Manson, S. T. Photoionization of endohedral atoms using R-matrix methods: application to Xe@C60. Phys. Rev. A 86, 033204 (2012).

  121. 121.

    Rouzée, A. et al. Imaging the electronic structure of valence orbitals in the XUV ionization of aligned molecules. J. Phys. B 47, 124017 (2014).

  122. 122.

    Plésiat, E., Decleva, P. & Martín, F. Vibrational branching ratios in the photoelectron spectra of N2 and CO: interference and diffraction effects. Phys. Chem. Chem. Phys. 14, 10853 (2012).

  123. 123.

    Zatsarinny, O. & Bartschat, K. The B-spline R-matrix method for atomic processes: application to atomic structure, electron collisions and photoionization. J. Phys. B 46, 112001 (2013).

  124. 124.

    Betehe, H. A. & Salpeter, E. E. Quantum Mechanics of One- and Two-Electron Atoms (Plenum, 1977).

  125. 125.

    Bartschat, K. et al. Effect of cascade transitions on the polarization of light emitted after electron-impact excitation of Zn by spin-polarized electrons. Phys. Rev. A 100, 012702 (2019).

  126. 126.

    Chen, Z. et al. Pulse-duration dependence of the double-to-single ionization ratio of Ne by intense 780-nm and 800-nm laser fields: comparison of simulations with experiments. Phys. Rev. A 99, 043408 (2019).

  127. 127.

    Zatsarinny, O., Parker, H. & Bartschat, K. Electron-impact excitation and ionization of atomic calcium at intermediate energies. Phys. Rev. A 99, 012706 (2019).

  128. 128.

    Cathal, O. B. & Nikolopoulos, L. A. A. R-matrixincorporating-time method for H2+ in short and intense laser fields. Phys. Rev. A 92, 063428 (2015).

  129. 129.

    Clarke, D. D. A., Armstrong, G. S. J., Brown, A. C. & van der Hart, H. W. R-matrix-with-time-dependence theory for ultrafast atomic processes in arbitrary light fields. Phys. Rev. A 98, 053442 (2018).

  130. 130.

    Brown, A. et al RMT: R-matrix with time-dependence. Solving the semi-relativistic, time-dependent Schrodinger equation for general, multi-electron atoms and molecules in intense, ultrashort, arbitrarily polarized laser pulses. Preprint at arXiv https://arxiv.org/abs/1905.06156 (2019).

  131. 131.

    Hassouneh, O., Law, S., Shearer, S. F. C., Brown, A. C. & van der Hart, H. W. Electron rescattering in strong-field photodetachment of F-. Phys. Rev. A 91, 031404 (2015).

  132. 132.

    Armstrong, G. S. J., Clarke, D. D. A., Brown, A. C. & Van Der Hart, H. W. Electron rotational asymmetry in strong-field photodetachment from F by circularly polarized laser pulses. Phys. Rev. A 99, 1–9 (2019).

  133. 133.

    Aggarwal, K. M., Keenan, F. P. & Lawson, K. D. Electron impact excitation of NIV: calculations with the DARC code and a comparison with ICFT results. Mon. Not. R. Astron. Soc. 461, 3997–4012 (2016).

  134. 134.

    Smyth, R. T., Ramsbottom, C. A., Keenan, F. P., Ferland, G. J. & Ballance, C. P. Towards converged electron-impact excitation calculations of low-lying transitions in Fe ii. Mon. Not. R. Astron. Soc. 483, 654–663 (2018).

  135. 135.

    Ballance, C. P., Loch, S. D., Pindzola, M. S. & Griffin, D. C. Electron-impact excitation and ionization of W3+ for the determination of tungsten influx in a fusion plasma. J. Phys. B 46, 055202 (2013).

  136. 136.

    Rescigno, T. N., Lengsfield, B. H. III & McCurdy, C. W. in Modern Electronic Structure Theory (ed. Yarkony, D.) 501–588 (World Scientific, 1995).

  137. 137.

    Schneider, B. I. & Rescigno, T. N. Complex Kohn variational method: application to low-energy electron–molecule collisions. Phys. Rev. A 37, 3749–3754 (1988).

  138. 138.

    Rescigno, T. N. & Schneider, B. I. Electron-impact excitation of the b 3Σu + state of H2 using the complex Kohn method: R dependence of the cross section. J. Phys. B 21, L691 (1988).

  139. 139.

    Schneider, B. I., Rescigno, T. N., McCurdy, C. W. & Lengsfield, B. H. III New developments in the ab initio treatment of low energy electron collisions with molecules. AIP Conf. Proc. 88, 83–97 (1990).

  140. 140.

    Rescigno, T. N., McCurdy, C. W., Orel, A. E. & Lengsfield, B. H. in Computational Methods for Electron–Molecule Collisions (eds Huo, W. M. & Gianturco, F. A.) 1–44 (Springer, 1995).

  141. 141.

    Rescigno, T. N. & Schneider, B. I. Disappearance of continuum exchange integrals from algebraic variational calculations of electron scattering. Phys. Rev. A 37, 1044–1046 (1988).

  142. 142.

    Rescigno, T. N., McCurdy, C. W. & Schneider, B. I. Accurate ab initio treatment of low-energy electron collisions with polyatomic molecules: resonant electron–formaldehyde scattering. Phys. Rev. Lett. 63, 248 (1989).

  143. 143.

    Schneider, B. I., Rescigno, T. N., Lengsfield III, B. H. & McCurdy, C. W. Accurate ab initio treatment of low-energy electron collisions with ethylene. Phys. Rev. Lett. 66, 2728 (1991).

  144. 144.

    Kato, T. Upper and lower bounds of scattering phases. Prog. Theor. Phys. 6, 394–407 (1951).

  145. 145.

    Kato, T. Variational methods in collision problems. Phys. Rev. 80, 475 (1950).

  146. 146.

    Jose, J., Lucchese, R. R. & Rescigno, T. N. Interchannel coupling effects in the valence photoionization of SF6. J. Chem. Phys. 140, 204305 (2014).

  147. 147.

    Rescigno, T. N. & Orel, A. E. Theoretical study of excitation of the low-lying electronic states of water by electron impact. Phys. Rev. A 88, 012703 (2013).

  148. 148.

    Douguet, N. et al. Signatures of bond formation and bond scission dynamics in dissociative electron attachment to methane. Phys. Chem. Chem. Phys. 17, 25621–25628 (2015).

  149. 149.

    Rescigno, T. N., Trevisan, C. S. & McCurdy, C. W. Tracking hole localization in K-shell and core-valence-excited acetylene photoionization via body-frame photoelectron angular distributions. Phys. Rev. A 91, 023429 (2015).

  150. 150.

    Menssen, A. et al. Molecular frame photoelectron angular distributions for core ionization of ethane, carbon tetrafluoride and 1,1-difluoroethylene. J. Phys. B 49, 055203 (2016).

  151. 151.

    Douguet, N., Schneider, B. I. & Argenti, L. Application of the complex Kohn variational method to attosecond spectroscopy. Phys. Rev. A 98, 23403 (2018).

  152. 152.

    Zhang, J. Y., Yan, Z. C. & Schwingenschlögl, U. Elastic scattering of positronium: application of the confined variational method. Europhys. Lett. 99, 43001 (2012).

  153. 153.

    Van Reeth, P., Woods, D., Ward, S. J. & Humberston, J. W. Comparison of positronium, positron and electron collisions with hydrogen at low velocities J. Phys. B 49, 114001 (2016); corrigendum 169501 (2016).

  154. 154.

    Lucchese, R. R. Anomalous singularities in the complex Kohn variational principle ofquantum scattering theory. Phys. Rev. A 40, 6879–6885 (1989).

  155. 155.

    Burke, P. G. & Robb, W. D. The R-matrix theory of atomic processes. Adv. At. Mol. Phys. 11, 143–214 (1976).

  156. 156.

    Schneider, B. I. R-matrix approach to electron-molecule scattering. IX Proc. Int. Conf. Photon. Electron. At. Collisions 559 (1975).

  157. 157.

    Ndong, M., Tal-Ezer, H., Kosloff, R. & Koch, C. P. A Chebychev propagator with iterative time ordering for explicitly time-dependent Hamiltonians. J. Chem. Phys. 132, 064105 (2010).

  158. 158.

    Crank, J. & Nicolson, P. Practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math. Proc. Camb. Phil. Soc. 43, 50–67 (1947).

  159. 159.

    Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl Bur. Stand. 45, 255 (1950).

  160. 160.

    Pindzola, M. S. et al. Time-dependent close-coupling calculations of atomic and molecular collision processes. J. Phys. Conf. Ser. 88, 012012 (2007).

  161. 161.

    Miyagi, H. & Madsen, L. B. Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics. Phys. Rev. A 87, 062511 (2013).

  162. 162.

    Kvaal, S. Ab initio quantum dynamics using coupled-cluster. J. Chem. Phys. 136, 194109 (2012).

  163. 163.

    Greenman, L. et al. Implementation of the time-dependent configuration-interaction singles method for atomic strong-field processes. Phys. Rev. A 82, 023406 (2010).

  164. 164.

    Sato, A. T. & Ishikawa, K. L. Time-dependent complete active-space self-consistent field method for multielectron dynamics in intense laser fields. Phys. Rev. A 88, 023402 (2013).

  165. 165.

    Moore, L. R. et al. The RMT method for many-electron atomic systems in intense short-pulse laser light. J. Mod. Opt. 58, 1132–1140 (2011).

  166. 166.

    Zatsarinny, O. & Froese Fischer, C. Atomic structure calculations using MCHF and BSR. Comp. Phys. Commun. 180, 2041–2065 (2009).

  167. 167.

    Feshbach, H. Unified theory of nuclear reactions. Ann. Phys. 5, 357–390 (1958).

  168. 168.

    Feshbach, H. Unified theory of nuclear reactions II. Ann. Phys. 19, 287–313 (1962).

  169. 169.

    Paige, C. C. The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices. PhD thesis, Univ. London (1971).

  170. 170.

    Cullum, J. K. & Willoughby, R. A. Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. 1 & 2 (Birkhauser, 1985).

  171. 171.

    Saad, Y. Iterative Methods for Sparse Linear Systems (SIAM, 2003).

  172. 172.

    Park, T. J. & Light, J. C. Unitary quantum time evolution by iterative Lanczos reduction. J. Chem. Phys. 85, 5870–5876 (1986).

  173. 173.

    Tal-Ezer, H. & Kosloff, R. An accurate and efficient scheme for propagating the time dependent Schrödinger equation. J. Chem. Phys. 81, 3967–3971 (1984).

  174. 174.

    Leforestier, C. et al. A comparison of different propagation schemes for the time dependent Schrödinger equation. J. Comp. Phys. 94, 59–80 (1991).

Download references

Acknowledgements

This work was supported by the National Institute of Standards and Technology. H.G. acknowledges support from the National Research Council Fellowship Program.

Author information

The authors contributed equally to all aspects of the article.

Correspondence to Barry I. Schneider.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Jonathan Tennyson, Andrew Brown and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Self-consistent field

It is often synonymous with the Hartree–Fock method and mean-field method. It is based on Douglas Hartree’s assumption that each particle in an N-body system could be treated in the average field of the other N − 1 particles of the system.

Variational principle

A principle used in the calculus of variations concerned with finding functions that minimize, maximize or make stationary quantities defined by differential of integral equations.

Configuration interaction

A quantum chemical variational method for solving the Schrödinger equation of many-body systems. It relies on constructing linear combinations of Slater determinants of fixed spin orbitals. The unknown linear coefficients are computed using the Rayleigh–Ritz variational principle. In theory, the method is exact, but in practice, the computational limitations arising from a large number of configurations force the truncation of the expansions.

R-matrix

The R-matrix relates the channel wavefunction Fc to its derivative \({F}_{c}^{{\prime} }\) at the R-matrix boundary r = a0 by the equation: \({\bf{F}}={\mathscr{R}}\,{{\bf{F}}}^{{\prime} }\), where the labels on the elements of the matrix refer to channels, c.

Re-arrangement collisions

These are collisions in which the initial and final states are eigenstates of different unperturbed Hamiltonians.

Preconditioner

In this context, it refers to a matrix transformation of a set of linear equations that are more suitable for finding a solution by iterative techniques.

Born–Oppenheimer approximation

An approximation in molecular systems that treats electronic and nuclear motion adiabatically. This assumption is based on the difference in timescales of electronic and nuclear motions. Consequently, the electronic wavefunction can be computed by freezing the positions of the nuclei. Repeating this calculation as a parametric function of nuclear positions produces a potential in which the nuclei move.

Quantum defect

In this context, it refers to an expression for the energy of a Rydberg state in an atom that replaces the hydrogenic integer quantum number n, by a non-integer value. The deviation from the integer is called the quantum defect. The correction accounts for the fact that the inner electrons partially screen the bare nuclear charge.

S-, T- and K-matrices

These are a family of scattering matrices that relate the initial states in a scattering process to the possible final states. All three matrices are related to each other mathematically. The S-matrix expresses the states in terms of exponential free waves, whereas the K-matrix expresses the states in terms of sine and cosine functions. The T-matrix uses a mixture of exponential and trigonometric functions.

Padé approximate

A numerical method that approximates a function by a rational function of two polynomials.

Coupled cluster

This is a numerical quantum chemical method used for describing many-body systems. Coupled cluster takes an assumed reference basic configuration (such as the Hartree–Fock wavefunction) and constructs multi-electron wavefunctions using an exponential operator ansatz to add electron correlation. The cluster expansion must be truncated in practice due to the complexity of the resulting nonlinear equations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schneider, B.I., Gharibnejad, H. Numerical methods every atomic and molecular theorist should know. Nat Rev Phys 2, 89–102 (2020). https://doi.org/10.1038/s42254-019-0126-3

Download citation

Further reading