Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Numerical methods every atomic and molecular theorist should know

A Publisher Correction to this article was published on 21 February 2020

This article has been updated

Abstract

This Technical Review encapsulates the methods and numerical techniques that have been so successfully used over the years to study the electron scattering of atoms and molecules. In the past few decades, these approaches have also proven effective in treating the time-dependent interaction of strong electromagnetic fields with atoms and molecules. There are clear synergies between the two that can be exploited computationally. The ideas discussed in this Technical Review have played an important role in shaping modern atomic and molecular physics, and we expect that future developments will build heavily on these foundations.

Key points

  • We overview the best-of-breed numerical methods being used to compute electron–atom and electron–molecule scattering cross-sections and to propagate the Schrödinger equation in time.

  • We describe the close-coupling, R-matrix and Kohn variational methods and briefly discuss the importance of complex scaling to practical scattering theory.

  • We outline how these techniques may be extended to treat the time-dependent Schrödinger equation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Change history

References

  1. Hartree, D. R. On some approximate numerical applications of Bohr’s theory of spectra. Proc. Camb. Phil. Soc. 21, 625–641 (1923).

    Google Scholar 

  2. Hartree, D. R. The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Proc. Camb. Phil. Soc. 24, 89–110 (1928).

    Article  ADS  MATH  Google Scholar 

  3. Slater, J. C. Note on Hartree’s method. Phys. Rev. 35, 210–211 (1930).

    Article  ADS  Google Scholar 

  4. Fock, V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys. 61, 126–148 (1930).

    Article  ADS  MATH  Google Scholar 

  5. Zangwill, A. Hartree and Thomas: the forefathers of density functional theory. Arch. Hist. Exact. Sci. 67, 331–348 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  6. Hartree, D. R. The Bush differential analyser and its applications. Nature 146, 319–323 (1940).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Roothaan, C. C. J. New developments in molecular orbital theory. Rev. Mod. Phys. 23, 69–89 (1951).

    Article  ADS  MATH  Google Scholar 

  8. Hall, G. G. The molecular orbital theory of chemical valency VIII. A method of calculating ionization potentials. Proc. R. Soc. A 205, 541–552 (1951).

    ADS  MATH  Google Scholar 

  9. Parr, R. G. & Mulliken, R. S. LCAO self-consistent field calculation of the π-electron energy levels of cis- and trans-l,3-butadiene. J. Chem. Phys. 18, 1338–1346 (1950).

    Article  ADS  Google Scholar 

  10. Roothaan, C. C. J. Self-consistent field theory for open shells of electronic systems. Rev. Mod. Phys. 32, 179–185 (1960).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Pople, J. A. & Nesbet, R. K. Self-consistent orbitals for radicals. J. Chem. Phys. 22, 571–572 (1954).

    Article  ADS  Google Scholar 

  12. Piper, W. W. & Prener, J. S. Hartree–Fock wave functions for Mn+4. Phys. Rev. 100, 1250 (1955).

    Google Scholar 

  13. Rotenberg, M. Nuclear Hartree–Fock calculations. Phys. Rev. 100, 439–440 (1955).

    Article  ADS  Google Scholar 

  14. Heitler, W. & London, F. Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Z. Phys. 44, 455–472 (1927).

    Article  ADS  MATH  Google Scholar 

  15. James, H. M. & Coolidge, A. S. The ground state of the hydrogen molecule. J. Chem. Phys. 1, 825–835 (1933).

    Article  ADS  Google Scholar 

  16. Hylleraas, E. A. Uber den Grundzustand des Heliumatoms. Z. Phys. 48, 469–494 (1928).

    Article  ADS  MATH  Google Scholar 

  17. Hylleraas, E. A. Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Z. Phys. 54, 347–366 (1929).

    Article  ADS  MATH  Google Scholar 

  18. Hylleraas, E. A. Uber den Grundterm der Zweielektronenprobleme von H, He, Li+, Be++ usw. Z. Phys. 65, 209–225 (1930).

    Article  ADS  MATH  Google Scholar 

  19. Hylleraas, E. A. The Schrödinger two-electron atomic problem. Adv. Quantum Chem. 1, 1–33 (1964).

    Article  ADS  Google Scholar 

  20. Kinoshita, T. Ground state of the helium atom. Phys. Rev. 105, 1490–1502 (1957).

    Article  ADS  MATH  Google Scholar 

  21. Kolos, W. & Roothaan, C. C. J. Accurate electronic wave functions for the H2 molecule. Rev. Mod. Phys. 32, 219–232 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  22. Kolos, W. & Wolniewicz, L. Improved theoretical ground-state energy of the hydrogen molecule. J. Chem. Phys. 49, 404–410 (1968).

    Article  ADS  Google Scholar 

  23. Sims, J. S. & Hagstrom, S. Combined configuration-interaction Hylleraas-type wave-function study of the ground state of the beryllium atom. Phys. Rev. A 4, 908–916 (1971).

    Article  ADS  Google Scholar 

  24. Sims, J. S. & Hagstrom, S. A. High precision variational calculations for the Born–Oppenheimer energies of the ground state of the hydrogen molecule. J. Chem. Phys. 124, 094101 (2006).

    Article  ADS  Google Scholar 

  25. Kellner, G. W. Die Ionisierungsspannung des Heliums nach der Schrödingerschen Theorie. Z. Phys. 44, 91–109 (1927).

    Article  ADS  MATH  Google Scholar 

  26. Weinbaum, S. The normal state of the hydrogen molecule. J. Chem. Phys. 1, 593–596 (1933).

    Article  ADS  Google Scholar 

  27. Shavitt, I. The history and evolution of configuration interaction. Mol. Phys. 94, 3–17 (1998).

    Article  ADS  Google Scholar 

  28. Sherrill, C. D. & Schaefer, H. F. The configuration interaction method: advances in highly correlated approaches. Adv. Quantum Chem. 34, 143–269 (1999).

  29. Szalay, P. G., Müller, T., Gidofalvi, G., Lischka, H. & Shepard, R. Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem. Rev. 112, 108–181 (2012).

    Article  Google Scholar 

  30. Allis, W. P. & Morse, P. M. Theorie der Streuung langsamer Elektronen an Atomen. Z. Phys. 70, 567–582 (1931).

    Article  ADS  MATH  Google Scholar 

  31. Morse, P. M. Quantum mechanics of collision processes part II. Rev. Mod. Phys. 4, 577–634 (1932).

    Article  ADS  MATH  Google Scholar 

  32. Morse, P. M. & Allis, W. P. The effect of exchange on the scattering of slow electrons from atoms. Phys. Rev. 44, 269–276 (1933).

    Article  ADS  MATH  Google Scholar 

  33. Born, M. & Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 389, 457–484 (1927).

    Article  MATH  Google Scholar 

  34. Hulthén, L. Variational problem for the continuous spectrum of a Schrödinger equation. K. Fysiogr. Sällsk. Lund. Förhandl. 14, 1–13 (1944).

    MathSciNet  MATH  Google Scholar 

  35. Hulthén, L. On the Sturm–Liouville problem connected with a continuous spectrum. Ark. Mat. Astron. Fys. 35A, 25 (1948).

  36. Kohn, W. Variational methods in nuclear collision problems. Phys. Rev. 74, 1763–1772 (1948).

    Article  ADS  MATH  Google Scholar 

  37. Massey, H. S. W. & Moiseiwitsch, B. L. Calculation of the 1s–2s electron excitation cross section of hydrogen by a variational method. Proc. Phys. Soc. A 66, 406–408 (1953).

    Article  ADS  Google Scholar 

  38. Moiseiwitsch, B. L. A variational method for inelastic collision problems. Phys. Rev. 82, 753–753 (1951).

    Article  ADS  MATH  Google Scholar 

  39. Lippmann, B. A. & Schwinger, J. Variational principles for scattering processes. I. Phys. Rev. 79, 469–480 (1950).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Nesbet, R. K. Variational Methods in Electron-Atom Scattering Theory (Plenum, 1980).

  41. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  42. Romero, E., Novoderezhkin, V. I. & van Grondelle, R. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543, 355–365 (2017).

    Article  ADS  Google Scholar 

  43. LeVeque, R. J. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-state and Time-dependent Problems (Society for Industrial and Applied Mathematics, 2007).

  44. Boyd, J. P. Chebyshev and Fourier Spectral Methods 2nd edn (Dover Publications, 2001).

  45. Kopal, Z. Numerical Analysis (John Wiley, 1961).

  46. Sams, W. N. & Kouri, D. J. Noniterative solutions of integral equations for scattering. I. Single channels. J. Chem. Phys. 51, 4809–4814 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  47. Sams, W. N. & Kouri, D. J. Noniterative solutions of integral equations for scattering. II. Coupled channels. J. Chem. Phys. 51, 4815–4819 (1969).

    Article  ADS  Google Scholar 

  48. Sams, W. N. & Kouri, D. J. Noniterative solutions of integral equations for scattering. III. Coupled open and closed channels and eigenvalue problems. J. Chem. Phys. 52, 4144–4150 (1970).

    Article  ADS  Google Scholar 

  49. Schneider, B. I., & Collins, L. A. Linear-algebraic approach to electron–molecule collisions: separable exchange approximations. Phys. Rev. A 24, 1264–1266 (1981).

    Article  ADS  Google Scholar 

  50. Collins, L. A. & Schneider, B. I. Linear-algebraic approach to electron-molecule collisions: general formulation. Phys. Rev. A 24, 2387 (1981).

    Article  ADS  Google Scholar 

  51. Rescigno, T. N. Orthogonality constraints in electron scattering by open-shell targets: comments on a paper by Riley and Truhlar. J. Chem. Phys. 66, 5255–5257 (1977).

    Article  ADS  Google Scholar 

  52. Rescigno, T. N. & Orel, A. E. Separable approximation for exchange interactions in electron–molecule scattering. Phys. Rev. A 24, 1267–1271 (1981).

    Article  ADS  Google Scholar 

  53. Rescigno, T. N., McCurdy, C. W. & McKoy, V. Discrete basis set approach to nonspherical scattering. Chem. Phys. Lett. 27, 401–404 (1974).

    Article  ADS  Google Scholar 

  54. Linderberg, J. Finite element methods in quantum mechanics. Comp. Phys. Rep. 6, 209–242 (1987).

    Article  MathSciNet  Google Scholar 

  55. Linderberg, J. Finite elements and partial waves in scattering calculations. Int. J. Quantum Chem. 44, 717–724 (1992).

    Article  Google Scholar 

  56. Vincke, M., Malegat, L. & Baye, D. Regularization of singularities in Lagrange-mesh calculations. J. Phys. B 26, 811–826 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  57. Rescigno, T. N. & McCurdy, C. W. Numerical grid methods for quantum-mechanical scattering problems. Phys. Rev. A 62, 032706 (2000).

    Article  ADS  Google Scholar 

  58. Schneider, B. I. & Collins, L. A. The discrete variable method for the solution of the time-dependent Schrödinger equation. J. Non Cryst. Solids 351, 1551–1558 (2005).

    Article  ADS  Google Scholar 

  59. Baye, D. & Heenen, P.-H. Generalised meshes for quantum mechanical problems. J. Phys. A 19, 2041–2059 (1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Bachau, H., Cormier, E., Decleva, P., Hansen, J. E. & Martín, F. Applications of B-splines in atomic and molecular physics. Rep. Prog. Phys. 64, 1815–1943 (2001).

    Article  ADS  Google Scholar 

  61. Rescigno, T. N., Horner, D. A., Yip, F. L. & McCurdy, C. W. Hybrid approach to molecular continuum processes combining Gaussian basis functions and the discrete variable representation. Phys. Rev. A 72, 052709 (2005).

    Article  ADS  Google Scholar 

  62. Yip, F. L., McCurdy, C. W. & Rescigno, T. N. Hybrid Gaussian-discrete-variable representation approach to molecular continuum processes: application to photoionization of diatomic Li2+. Phys. Rev. A 78, 023405 (2008).

    Article  ADS  Google Scholar 

  63. Guan, X., Bartschat, K. & Schneider, B. I. Dynamics of two-photon double ionization of helium in short intense XUV laser pulses. Phys. Rev. A 77, 043421 (2008).

    Article  ADS  Google Scholar 

  64. Guan, X., Bartschat, K. & Schneider, B. I. Two-photon double ionization of H2 in intense femtosecond laser pulses. Phys. Rev. A 82, 041404 (2010).

    Article  ADS  Google Scholar 

  65. Schneider, B. I. & Collins, L. A. Direct iteration-variation method for scattering problems. Phys. Rev. A 33, 2970 (1986).

    Article  ADS  Google Scholar 

  66. Collins, L. A. & Schneider, B. I. in Electron–Molecule Scattering and Photoionization (eds Burke, P. G. & West, J. B.) 147–168 (Springer, 1988).

  67. Burke, P. G. & Schey, H. M. Elastic scattering of low-energy electrons by atomic hydrogen. Phys. Rev. 126, 147–162 (1962).

    Article  ADS  Google Scholar 

  68. Burke, P. G., Schey, H. M. & Smith, K. Collisions of slow electrons and positrons with atomic hydrogen. Phys. Rev. 129, 1258–1274 (1963).

    Article  ADS  Google Scholar 

  69. Smith, K., Miller, W. F. & Mumford, A. J. P. The elastic and inelastic scattering of electrons and positrons from the s-states of atomic hydrogen. Phys. Rev. 76, 559–564 (1960).

    Google Scholar 

  70. Burke, P. G. & Smith, K. The low-energy scattering of electrons and positrons by hydrogen atoms. Rev. Mod. Phys. 34, 458–502 (1962).

    Article  ADS  MATH  Google Scholar 

  71. Bray, I. & Stelbovics, A. T. Convergent close-coupling calculations of electron-hydrogen scattering. Phys. Rev. A 46, 6995–7011 (1992).

    Article  ADS  Google Scholar 

  72. Bray, I. Close-coupling theory of ionization: successes and failures. Phys. Rev. Lett. 78, 4721–4724 (1997).

    Article  ADS  Google Scholar 

  73. McCurdy, C. W., Baertschy, M. & Rescigno, T. N. Solving the three-body Coulomb breakup problem using exterior complex scaling. J. Phys. B 37, R137–R187 (2004).

    Article  ADS  Google Scholar 

  74. Simon, B. Resonances in n-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory. Ann. Math. 97, 247 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  75. Simon, B. The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett. A 71, 211–214 (1979).

    Article  ADS  Google Scholar 

  76. McCurdy, C. W., Stroud, C. K. & Wisinski, M. K. Solving the time-dependent Schrödinger equation using complex-coordinate contours. Phys. Rev. A 43, 5980–5990 (1991).

    Article  ADS  Google Scholar 

  77. Scrinzi, A. Infinite-range exterior complex scaling as a perfect absorber in time-dependent problems. Phys. Rev. A 81, 053845 (2010).

    Article  ADS  Google Scholar 

  78. Weinmüller, M., Weinmüller, M., Rohland, J. & Scrinzi, A. Perfect absorption in Schrödinger-like problems using non-equidistant complex grids. J. Comp. Phys. 333, 199–211 (2017).

    Article  ADS  MATH  Google Scholar 

  79. Xiaoye, S. Li An overview of {SuperLU}: algorithms, implementation, and user interface. ACM Trans. Math. Softw. 31, 302 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  80. Wigner, E. P. Resonance reactions. Phys. Rev. 70, 606–618 (1946).

    Article  ADS  Google Scholar 

  81. Wigner, E. P. & Eisenbud, L. Higher angular momenta and long range interaction in resonance reactions. Phys. Rev. 72, 29–41 (1947).

    Article  ADS  Google Scholar 

  82. Lane, A. M. & Thomas, R. G. R-matrix theory of nuclear reactions. Rev. Mod. Phys. 30, 257–353 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  83. Burke, P. G., Hibbert, A. & Robb, W. D. Electron scattering by complex atoms. J. Phys. B 4, 153–161 (1971).

    Article  ADS  Google Scholar 

  84. Burke, P. G. & Robb, W. D. Elastic scattering of electrons by hydrogen and helium atoms. J. Phys. B 5, 44–54 (1972).

    Article  ADS  Google Scholar 

  85. Schneider, B. R-matrix theory for electron–atom and electron–molecule collisions using analytic basis set expansions. Chem. Phys. Lett. 31, 237–241 (1975).

    Article  ADS  Google Scholar 

  86. Schneider, B. I. R-matrix theory for electron–molecule collisions using analytic basis set expansions. II. Electron–H2 scattering in the static-exchange model. Phys. Rev. A 11, 1957 (1975).

  87. Schneider, B. I. & Hay, P. J. Elastic scattering of electrons from F2: an R-matrix calculation. Phys. Rev. A 13, 2049 (1976).

    Article  ADS  Google Scholar 

  88. Schneider, B. I. & Hay, P. J. Elastic scattering of electrons from F2. J. Phys. B 9, L165 (1976).

    Article  ADS  Google Scholar 

  89. Schneider, B. I., Le Dourneuf, M. & Lan, V. K. Resonant vibrational excitation of diatomic molecules by electron impact. An ab initio R-matrix calculation for e–N2. XI Proc. Int. Conf. Photon. Electron. At. Collisions 292 (1979).

  90. Schneider, B. I., Le Dourneuf, M. & Lan, V. K. Resonant vibrational excitation of N2 by low-energy electrons: an ab initio R-matrix calculation. Phys. Rev. Lett. 43, 1926 (1979).

  91. Schneider, B. I. in Electron–Molecule and Photon–Molecule Collisions (eds Rescigno, T., McKoy, V. & Schneider, B.) 77–86 (Springer, 1979).

  92. LeDourneuf, M., Schneider, B. I. & Burke, P. G. Theory of vibrational excitation and dissociative attachment: an R-matrix approach. J. Phys. B 12, L365–L369 (1979).

    Article  ADS  Google Scholar 

  93. Tennyson, J. & Morgan, L. A. Electron collisions with polyatomic molecules using the R-matrix method. Phil. Trans. R. Soc. A 357, 1161–1173 (1999).

    Article  ADS  Google Scholar 

  94. Burke, P. G. R-Matrix Theory of Atomic Collisions Application to Atomic, Molecular and Optical Processes (Springer-Verlag Berlin, 2011).

  95. Tennyson, J. Electron–molecule collision calculations using the R-matrix method. Phys. Rep. 491, 29–76 (2010).

    Article  ADS  Google Scholar 

  96. Descouvemont, P. & Baye, D. The R-matrix theory. Rep. Prog. Phys. 73, 036301 (2010).

    Article  ADS  Google Scholar 

  97. Szmytkowski, R. Variational R-matrix methods for many-electron systems: unified relativistic theory. Phys. Rev. A 63, 14 (2001).

    Article  Google Scholar 

  98. Grant, I. P. The Dirac operator on a finite domain and the R-matrix method. J. Phys. B 41, 055002 (2008).

    Article  ADS  Google Scholar 

  99. Grineviciute, J. & Halderson, D. Relativistic R matrix and continuum shell model. Phys. Rev. C 85, 1–6 (2012).

    Article  Google Scholar 

  100. Baye, D. Calculable R-matrix method for the Dirac equation. Phys. Rev. A 92, 042112 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  101. Bloch, C. Une formulation unifiée de la théorie des réactions nucléaires. Nucl. Phys. 4, 503–528 (1957).

    Article  MATH  Google Scholar 

  102. Buttle, P. J. A. Solution of coupled equations by R-matrix techniques. Phys. Rev. 160, 719–729 (1967).

    Article  ADS  Google Scholar 

  103. Zatsarinny, O. BSR: B-spline atomic R-matrix codes. Comp. Phys. Commun. 174, 273–356 (2006).

    Article  ADS  MATH  Google Scholar 

  104. Mašín, Z. & Gorfinkiel, J. D. Towards an accurate representation of the continuum in calculations of electron, positron and laser field interactions with molecules. J. Phys. Conf. Ser. 490, 012090 (2014).

  105. Kapur, P. L. & Peierls, R. The dispersion formula for nuclear reactions. Proc. R. Soc. A 166, 277–295 (1938).

    ADS  Google Scholar 

  106. Siegert, A. J. F. On the derivation of the dispersion formula for nuclear reactions. Phys. Rev. 56, 750–752 (1939).

    Article  ADS  Google Scholar 

  107. Light, J. C. & Walker, R. B. An R matrix approach to the solution of coupled equations for atom-molecule reactive scattering. J. Chem. Phys. 65, 4272–4282 (1976).

    Article  ADS  Google Scholar 

  108. Schneider, B. I. & Taylor, H. S. The solution of driven equations by R-matrix propagation methods. J. Chem. Phys. 77, 379–382 (1982).

    Article  ADS  Google Scholar 

  109. Baluja, K. L., Burke, P. G. & Morgan, L. A. R-matrix propagation program for solving coupled second-order differential equations. Comp. Phys. Commun. 27, 299–307 (1982).

  110. Axelsson, O. Iterative Solution Methods (Cambridge Univ. Press, 1994).

  111. Berrington, K. A., & Ballance, C. P. Partitioned R-matrix theory. J. Phys. B 35, 2275 (2002).

    Article  ADS  Google Scholar 

  112. Tennyson, J. Partitioned R-matrix theory for molecules. J. Phys. B 37, 1061–1071 (2004).

    Article  ADS  Google Scholar 

  113. Lane, A. M. The application of Wigner’s R-matrix theory to atomic physics. J. Phys. B 19, 253–257 (1986).

    Article  ADS  Google Scholar 

  114. Lucchese, R. R., Rescigno, T. N. & McCurdy, C. W. The connection between resonances and bound states in the presence of a coulomb potential. J. Phys. Chem. A 123, 85–95 (2018).

    Google Scholar 

  115. Tashiro, M. Theoretical treatment of molecular photoionization based on the R-matrix method. J. Phys. Conf. Ser. 388, 022077 (2012).

    Article  Google Scholar 

  116. Ilchen, M. et al. Photoelectron angular distribution studies of the outer valence states of N2. J. Phys. B 45, 225102 (2012).

    Article  ADS  Google Scholar 

  117. Brambila, D. S. et al. The role of multichannel effects in the photoionization of the NO2 molecule: an ab initio R-matrix study. J. Phys. B 48, 245101 (2015).

    Article  ADS  Google Scholar 

  118. VanGyseghem, G., Gorczyca, T. W. & Ballance, C. P. Near-threshold photoionization of molecular nitrogen. J. Phys. Conf. Ser. 635, 112102 (2015).

    Article  Google Scholar 

  119. Brigg, W. J. et al. Calculated photoionization cross sections using Quantemol-N. Jpn J. Appl. Phys. 54, 06GA02 (2015).

    Article  Google Scholar 

  120. Gorczyca, T. W., Hasoglu, M. F. & Manson, S. T. Photoionization of endohedral atoms using R-matrix methods: application to Xe@C60. Phys. Rev. A 86, 033204 (2012).

    Article  ADS  Google Scholar 

  121. Rouzée, A. et al. Imaging the electronic structure of valence orbitals in the XUV ionization of aligned molecules. J. Phys. B 47, 124017 (2014).

    Article  ADS  Google Scholar 

  122. Plésiat, E., Decleva, P. & Martín, F. Vibrational branching ratios in the photoelectron spectra of N2 and CO: interference and diffraction effects. Phys. Chem. Chem. Phys. 14, 10853 (2012).

    Article  Google Scholar 

  123. Zatsarinny, O. & Bartschat, K. The B-spline R-matrix method for atomic processes: application to atomic structure, electron collisions and photoionization. J. Phys. B 46, 112001 (2013).

    Article  ADS  Google Scholar 

  124. Betehe, H. A. & Salpeter, E. E. Quantum Mechanics of One- and Two-Electron Atoms (Plenum, 1977).

  125. Bartschat, K. et al. Effect of cascade transitions on the polarization of light emitted after electron-impact excitation of Zn by spin-polarized electrons. Phys. Rev. A 100, 012702 (2019).

    Article  ADS  Google Scholar 

  126. Chen, Z. et al. Pulse-duration dependence of the double-to-single ionization ratio of Ne by intense 780-nm and 800-nm laser fields: comparison of simulations with experiments. Phys. Rev. A 99, 043408 (2019).

    Article  ADS  Google Scholar 

  127. Zatsarinny, O., Parker, H. & Bartschat, K. Electron-impact excitation and ionization of atomic calcium at intermediate energies. Phys. Rev. A 99, 012706 (2019).

    Article  ADS  Google Scholar 

  128. Cathal, O. B. & Nikolopoulos, L. A. A. R-matrixincorporating-time method for H2+ in short and intense laser fields. Phys. Rev. A 92, 063428 (2015).

    Article  ADS  Google Scholar 

  129. Clarke, D. D. A., Armstrong, G. S. J., Brown, A. C. & van der Hart, H. W. R-matrix-with-time-dependence theory for ultrafast atomic processes in arbitrary light fields. Phys. Rev. A 98, 053442 (2018).

    Article  ADS  Google Scholar 

  130. Brown, A. et al RMT: R-matrix with time-dependence. Solving the semi-relativistic, time-dependent Schrodinger equation for general, multi-electron atoms and molecules in intense, ultrashort, arbitrarily polarized laser pulses. Preprint at arXiv https://arxiv.org/abs/1905.06156 (2019).

  131. Hassouneh, O., Law, S., Shearer, S. F. C., Brown, A. C. & van der Hart, H. W. Electron rescattering in strong-field photodetachment of F-. Phys. Rev. A 91, 031404 (2015).

    Article  ADS  Google Scholar 

  132. Armstrong, G. S. J., Clarke, D. D. A., Brown, A. C. & Van Der Hart, H. W. Electron rotational asymmetry in strong-field photodetachment from F by circularly polarized laser pulses. Phys. Rev. A 99, 1–9 (2019).

    Article  Google Scholar 

  133. Aggarwal, K. M., Keenan, F. P. & Lawson, K. D. Electron impact excitation of NIV: calculations with the DARC code and a comparison with ICFT results. Mon. Not. R. Astron. Soc. 461, 3997–4012 (2016).

    Article  ADS  Google Scholar 

  134. Smyth, R. T., Ramsbottom, C. A., Keenan, F. P., Ferland, G. J. & Ballance, C. P. Towards converged electron-impact excitation calculations of low-lying transitions in Fe ii. Mon. Not. R. Astron. Soc. 483, 654–663 (2018).

    Article  ADS  Google Scholar 

  135. Ballance, C. P., Loch, S. D., Pindzola, M. S. & Griffin, D. C. Electron-impact excitation and ionization of W3+ for the determination of tungsten influx in a fusion plasma. J. Phys. B 46, 055202 (2013).

    Article  ADS  Google Scholar 

  136. Rescigno, T. N., Lengsfield, B. H. III & McCurdy, C. W. in Modern Electronic Structure Theory (ed. Yarkony, D.) 501–588 (World Scientific, 1995).

  137. Schneider, B. I. & Rescigno, T. N. Complex Kohn variational method: application to low-energy electron–molecule collisions. Phys. Rev. A 37, 3749–3754 (1988).

    Article  ADS  Google Scholar 

  138. Rescigno, T. N. & Schneider, B. I. Electron-impact excitation of the b 3Σu+ state of H2 using the complex Kohn method: R dependence of the cross section. J. Phys. B 21, L691 (1988).

    Article  ADS  Google Scholar 

  139. Schneider, B. I., Rescigno, T. N., McCurdy, C. W. & Lengsfield, B. H. III New developments in the ab initio treatment of low energy electron collisions with molecules. AIP Conf. Proc. 88, 83–97 (1990).

    Article  ADS  Google Scholar 

  140. Rescigno, T. N., McCurdy, C. W., Orel, A. E. & Lengsfield, B. H. in Computational Methods for Electron–Molecule Collisions (eds Huo, W. M. & Gianturco, F. A.) 1–44 (Springer, 1995).

  141. Rescigno, T. N. & Schneider, B. I. Disappearance of continuum exchange integrals from algebraic variational calculations of electron scattering. Phys. Rev. A 37, 1044–1046 (1988).

    Article  ADS  Google Scholar 

  142. Rescigno, T. N., McCurdy, C. W. & Schneider, B. I. Accurate ab initio treatment of low-energy electron collisions with polyatomic molecules: resonant electron–formaldehyde scattering. Phys. Rev. Lett. 63, 248 (1989).

    Article  ADS  Google Scholar 

  143. Schneider, B. I., Rescigno, T. N., Lengsfield III, B. H. & McCurdy, C. W. Accurate ab initio treatment of low-energy electron collisions with ethylene. Phys. Rev. Lett. 66, 2728 (1991).

    Article  ADS  Google Scholar 

  144. Kato, T. Upper and lower bounds of scattering phases. Prog. Theor. Phys. 6, 394–407 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  145. Kato, T. Variational methods in collision problems. Phys. Rev. 80, 475 (1950).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  146. Jose, J., Lucchese, R. R. & Rescigno, T. N. Interchannel coupling effects in the valence photoionization of SF6. J. Chem. Phys. 140, 204305 (2014).

    Article  ADS  Google Scholar 

  147. Rescigno, T. N. & Orel, A. E. Theoretical study of excitation of the low-lying electronic states of water by electron impact. Phys. Rev. A 88, 012703 (2013).

    Article  ADS  Google Scholar 

  148. Douguet, N. et al. Signatures of bond formation and bond scission dynamics in dissociative electron attachment to methane. Phys. Chem. Chem. Phys. 17, 25621–25628 (2015).

    Article  Google Scholar 

  149. Rescigno, T. N., Trevisan, C. S. & McCurdy, C. W. Tracking hole localization in K-shell and core-valence-excited acetylene photoionization via body-frame photoelectron angular distributions. Phys. Rev. A 91, 023429 (2015).

    Article  ADS  Google Scholar 

  150. Menssen, A. et al. Molecular frame photoelectron angular distributions for core ionization of ethane, carbon tetrafluoride and 1,1-difluoroethylene. J. Phys. B 49, 055203 (2016).

    Article  ADS  Google Scholar 

  151. Douguet, N., Schneider, B. I. & Argenti, L. Application of the complex Kohn variational method to attosecond spectroscopy. Phys. Rev. A 98, 23403 (2018).

    Article  ADS  Google Scholar 

  152. Zhang, J. Y., Yan, Z. C. & Schwingenschlögl, U. Elastic scattering of positronium: application of the confined variational method. Europhys. Lett. 99, 43001 (2012).

    Article  ADS  Google Scholar 

  153. Van Reeth, P., Woods, D., Ward, S. J. & Humberston, J. W. Comparison of positronium, positron and electron collisions with hydrogen at low velocities J. Phys. B 49, 114001 (2016); corrigendum 169501 (2016).

  154. Lucchese, R. R. Anomalous singularities in the complex Kohn variational principle ofquantum scattering theory. Phys. Rev. A 40, 6879–6885 (1989).

    Article  ADS  Google Scholar 

  155. Burke, P. G. & Robb, W. D. The R-matrix theory of atomic processes. Adv. At. Mol. Phys. 11, 143–214 (1976).

    Article  ADS  Google Scholar 

  156. Schneider, B. I. R-matrix approach to electron-molecule scattering. IX Proc. Int. Conf. Photon. Electron. At. Collisions 559 (1975).

  157. Ndong, M., Tal-Ezer, H., Kosloff, R. & Koch, C. P. A Chebychev propagator with iterative time ordering for explicitly time-dependent Hamiltonians. J. Chem. Phys. 132, 064105 (2010).

    Article  ADS  Google Scholar 

  158. Crank, J. & Nicolson, P. Practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math. Proc. Camb. Phil. Soc. 43, 50–67 (1947).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  159. Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl Bur. Stand. 45, 255 (1950).

    Article  MathSciNet  Google Scholar 

  160. Pindzola, M. S. et al. Time-dependent close-coupling calculations of atomic and molecular collision processes. J. Phys. Conf. Ser. 88, 012012 (2007).

    Article  Google Scholar 

  161. Miyagi, H. & Madsen, L. B. Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics. Phys. Rev. A 87, 062511 (2013).

    Article  ADS  Google Scholar 

  162. Kvaal, S. Ab initio quantum dynamics using coupled-cluster. J. Chem. Phys. 136, 194109 (2012).

    Article  ADS  Google Scholar 

  163. Greenman, L. et al. Implementation of the time-dependent configuration-interaction singles method for atomic strong-field processes. Phys. Rev. A 82, 023406 (2010).

    Article  ADS  Google Scholar 

  164. Sato, A. T. & Ishikawa, K. L. Time-dependent complete active-space self-consistent field method for multielectron dynamics in intense laser fields. Phys. Rev. A 88, 023402 (2013).

    Article  ADS  Google Scholar 

  165. Moore, L. R. et al. The RMT method for many-electron atomic systems in intense short-pulse laser light. J. Mod. Opt. 58, 1132–1140 (2011).

    Article  ADS  Google Scholar 

  166. Zatsarinny, O. & Froese Fischer, C. Atomic structure calculations using MCHF and BSR. Comp. Phys. Commun. 180, 2041–2065 (2009).

    Article  ADS  Google Scholar 

  167. Feshbach, H. Unified theory of nuclear reactions. Ann. Phys. 5, 357–390 (1958).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  168. Feshbach, H. Unified theory of nuclear reactions II. Ann. Phys. 19, 287–313 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  169. Paige, C. C. The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices. PhD thesis, Univ. London (1971).

  170. Cullum, J. K. & Willoughby, R. A. Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. 1 & 2 (Birkhauser, 1985).

  171. Saad, Y. Iterative Methods for Sparse Linear Systems (SIAM, 2003).

  172. Park, T. J. & Light, J. C. Unitary quantum time evolution by iterative Lanczos reduction. J. Chem. Phys. 85, 5870–5876 (1986).

    Article  ADS  Google Scholar 

  173. Tal-Ezer, H. & Kosloff, R. An accurate and efficient scheme for propagating the time dependent Schrödinger equation. J. Chem. Phys. 81, 3967–3971 (1984).

    Article  ADS  Google Scholar 

  174. Leforestier, C. et al. A comparison of different propagation schemes for the time dependent Schrödinger equation. J. Comp. Phys. 94, 59–80 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Standards and Technology. H.G. acknowledges support from the National Research Council Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Barry I. Schneider.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Jonathan Tennyson, Andrew Brown and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Self-consistent field

It is often synonymous with the Hartree–Fock method and mean-field method. It is based on Douglas Hartree’s assumption that each particle in an N-body system could be treated in the average field of the other N − 1 particles of the system.

Variational principle

A principle used in the calculus of variations concerned with finding functions that minimize, maximize or make stationary quantities defined by differential of integral equations.

Configuration interaction

A quantum chemical variational method for solving the Schrödinger equation of many-body systems. It relies on constructing linear combinations of Slater determinants of fixed spin orbitals. The unknown linear coefficients are computed using the Rayleigh–Ritz variational principle. In theory, the method is exact, but in practice, the computational limitations arising from a large number of configurations force the truncation of the expansions.

R-matrix

The R-matrix relates the channel wavefunction Fc to its derivative \({F}_{c}^{{\prime} }\) at the R-matrix boundary r = a0 by the equation: \({\bf{F}}={\mathscr{R}}\,{{\bf{F}}}^{{\prime} }\), where the labels on the elements of the matrix refer to channels, c.

Re-arrangement collisions

These are collisions in which the initial and final states are eigenstates of different unperturbed Hamiltonians.

Preconditioner

In this context, it refers to a matrix transformation of a set of linear equations that are more suitable for finding a solution by iterative techniques.

Born–Oppenheimer approximation

An approximation in molecular systems that treats electronic and nuclear motion adiabatically. This assumption is based on the difference in timescales of electronic and nuclear motions. Consequently, the electronic wavefunction can be computed by freezing the positions of the nuclei. Repeating this calculation as a parametric function of nuclear positions produces a potential in which the nuclei move.

Quantum defect

In this context, it refers to an expression for the energy of a Rydberg state in an atom that replaces the hydrogenic integer quantum number n, by a non-integer value. The deviation from the integer is called the quantum defect. The correction accounts for the fact that the inner electrons partially screen the bare nuclear charge.

S-, T- and K-matrices

These are a family of scattering matrices that relate the initial states in a scattering process to the possible final states. All three matrices are related to each other mathematically. The S-matrix expresses the states in terms of exponential free waves, whereas the K-matrix expresses the states in terms of sine and cosine functions. The T-matrix uses a mixture of exponential and trigonometric functions.

Padé approximate

A numerical method that approximates a function by a rational function of two polynomials.

Coupled cluster

This is a numerical quantum chemical method used for describing many-body systems. Coupled cluster takes an assumed reference basic configuration (such as the Hartree–Fock wavefunction) and constructs multi-electron wavefunctions using an exponential operator ansatz to add electron correlation. The cluster expansion must be truncated in practice due to the complexity of the resulting nonlinear equations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, B.I., Gharibnejad, H. Numerical methods every atomic and molecular theorist should know. Nat Rev Phys 2, 89–102 (2020). https://doi.org/10.1038/s42254-019-0126-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0126-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing