Abstract
Artificial spin ices consist of nanomagnets arranged on the sites of various periodic and aperiodic lattices. They have enabled the experimental investigation of a variety of fascinating phenomena such as frustration, emergent magnetic monopoles and phase transitions that have previously been the domain of bulk spin crystals and theory, as we discuss in this Review. Artificial spin ices also show promise as reprogrammable magnonic crystals and, with this in mind, we give an overview of the measurements of fast dynamics in these magnetic metamaterials. We survey the variety of geometries that have been implemented, in terms of both the form of the nanomagnets and the lattices on which they are placed, including quasicrystalline systems and artificial spin systems in 3D. Different magnetic materials can also be incorporated to modify anisotropies and blocking temperatures, for example. With this large variety of systems, the way is open to discover new phenomena, and we complete this Review with possible directions for the future.
Key points
-
Artificial spin ices are metamaterials made up of coupled nanomagnets arranged on different lattices that exhibit a number of interesting phenomena, such as emergent magnetic monopoles, collective dynamics and phase transitions.
-
The motion of emergent magnetic monopoles in an artificial spin system can be controlled with external stimuli such as magnetic and electric fields, strain, temperature gradients and electric currents, which is of potential interest for future devices.
-
The ability to create thermally active artificial spin ices with fluctuating moments at room temperature makes it possible to explore the rich phase diagrams with phases that are determined by the geometry, temperature and disorder.
-
Signatures of the magnetic configurations are given by the specific spin-wave resonances in artificial spin ice, which offer a platform for programmable spin-wave devices, in particular magnonic crystals.
-
The established artificial spin ices consist of elongated nanoscale magnets arranged on the square and the kagome lattices, but these have now diversified. New geometries include different lattices, not only periodic but also aperiodic, different magnet shapes and anisotropies, and 3D structures.
-
Future work involves developments in fabrication and characterization methods, the study of artificial spin systems with new geometries and combinations of materials, and the development of applications including computation, data storage, encryption and reconfigurable microwave circuits.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Change history
12 January 2024
A Correction to this paper has been published: https://doi.org/10.1038/s42254-020-0148-x and https://doi.org/10.1038/10.1038/s42254-023-00684-y.
20 January 2020
A Correction to this paper has been published: https://doi.org/10.1038/s42254-020-0148-x
12 January 2024
A Correction to this paper has been published: https://doi.org/10.1038/s42254-023-00684-y
References
Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).
Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7. Phys. Rev. Lett. 79, 2554–2557 (1997).
Heyderman, L. J. & Stamps, R. L. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. J. Phys. Condens. Matter 25, 363201 (2013).
Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: Artificial spin ice: Designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473–1490 (2013).
Ladak, S., Read, D. E., Perkins, G. K., Cohen, L. F. & Branford, W. R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6, 359–363 (2010).
Mengotti, E. et al. Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nat. Phys. 7, 68–74 (2011).
Gilbert, I. et al. Emergent ice rule and magnetic charge screening from vertex frustration in artificial spin ice. Nat. Phys. 10, 670–675 (2014).
Morrison, M. J., Nelson, T. R. & Nisoli, C. Unhappy vertices in artificial spin ice: new degeneracies from vertex frustration. New J. Phys. 15, 045009 (2013).
Gliga, S. et al. Emergent dynamic chirality in a thermally driven artificial spin ratchet. Nat. Mater. 16, 1106 (2017).
Kapaklis, V. et al. Melting artificial spin ice. New J. Phys. 14, 035009 (2012).
Anghinolfi, L. et al. Thermodynamic phase transitions in a frustrated magnetic metamaterial. Nat. Commun. 6, 8278 (2015).
Sendetskyi, O. et al. Continuous magnetic phase transition in artificial square ice. Phys. Rev. B 99, 214430 (2019).
Krawczyk, M. & Grundler, D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys. Condens. Matter 26, 123202 (2014).
Lao, Y. et al. Classical topological order in the kinetics of artificial spin ice. Nat. Phys. 14, 723–727 (2018).
Gilbert, I. et al. Emergent reduced dimensionality by vertex frustration in artificial spin ice. Nat. Phys. 12, 162–165 (2016).
Farhan, A. et al. Thermodynamics of emergent magnetic charge screening in artificial spin ice. Nat. Commun. 7, 12635 (2016).
Farmer, B. et al. Direct imaging of coexisting ordered and frustrated sublattices in artificial ferromagnetic quasicrystals. Phys. Rev. B 93, 134428 (2016).
Shi, D. et al. Frustration and thermalization in an artificial magnetic quasicrystal. Nat. Phys. 14, 309–314 (2018).
Leo, N. et al. Collective magnetism in an artificial 2D XY spin system. Nat. Commun. 9, 2850 (2018).
Schildknecht, D., Heyderman, L. J. & Derlet, P. M. Phase diagram of dipolar-coupled XY moments on disordered square lattices. Phys. Rev. B 98, 064420 (2018).
Östman, E. et al. Interaction modifiers in artificial spin ices. Nat. Phys. 14, 375–379 (2018).
Streubel, R. et al. Spatial and temporal correlations of XY macro spins. Nano Lett. 18, 7428–7434 (2018).
Velten, S. et al. Vortex circulation patterns in planar microdisk arrays. Appl. Phys. Lett. 110, 262406 (2017).
Louis, D. et al. A tunable magnetic metamaterial based on the dipolar four-state Potts model. Nat. Mater. 17, 1076–1080 (2018).
Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).
Fennell, T. et al. Magnetic Coulomb phase in the spin ice Ho2Ti2O7. Science 326, 415–417 (2009).
Kadowaki, H. et al. Observation of magnetic monopoles in spin ice. J. Phys. Soc. Jpn. 78, 103706 (2009).
Morris, D. J. P. et al. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7. Science 326, 411–414 (2009).
Bramwell, S. T. et al. Measurement of the charge and current of magnetic monopoles in spin ice. Nature 461, 956–959 (2009).
Mól, L. A. et al. Magnetic monopole and string excitations in two-dimensional spin ice. J. Appl. Phys. 106, 063913 (2009).
León, A. Heavy and light monopoles in magnetic reversion in artificial spin ice. Curr. Appl. Phys. 13, 2014–2018 (2013).
Gilbert, I. et al. Direct visualization of memory effects in artificial spin ice. Phys. Rev. B 92, 104417 (2015).
Farhan, A. et al. Direct observation of thermal relaxation in artificial spin ice. Phys. Rev. Lett. 111, 057204 (2013).
Farhan, A., Derlet, P. M., Anghinolfi, L., Kleibert, A. & Heyderman, L. J. Magnetic charge and moment dynamics in artificial kagome spin ice. Phys. Rev. B 96, 064409 (2017).
Silva, R. C. et al. Nambu monopoles interacting with lattice defects in a two-dimensional artificial square spin ice. Phys. Rev. B 87, 014414 (2013).
Thonig, D. & Henk, J. Pinning of thermal excitations at defects in artificial dipolar arrays: A theoretical investigation. J. Magn. Magn. Mater. 386, 117–124 (2015).
Drisko, J., Marsh, T. & Cumings, J. Topological frustration of artificial spin ice. Nat. Commun. 8, 14009 (2017).
Vedmedenko, E. Y. Dynamics of bound monopoles in artificial spin ice: How to store energy in Dirac strings. Phys. Rev. Lett. 116, 077202 (2016).
Budrikis, Z. et al. Domain dynamics and fluctuations in artificial square ice at finite temperatures. New J. Phys. 14, 035014 (2012).
Mól, L. A. S., Moura-Melo, W. A. & Pereira, A. R. Conditions for free magnetic monopoles in nanoscale square arrays of dipolar spin ice. Phys. Rev. B 82, 054434 (2010).
Chern, G.-W., Reichhardt, C. & Nisoli, C. Realizing three-dimensional artificial spin ice by stacking planar nano-arrays. Appl. Phys. Lett. 104, 013101 (2014).
Möller, G. & Moessner, R. Artificial square ice and related dipolar nanoarrays. Phys. Rev. Lett. 96, 237202 (2006).
Perrin, Y., Canals, B. & Rougemaille, N. Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice. Nature 540, 410–413 (2016).
Farhan, A. et al. Emergent magnetic monopole dynamics in macroscopically degenerate artificial spin ice. Sci. Adv. 5, eaav6380 (2019).
Henley, C. L. The “Coulomb phase” in frustrated systems. Annu. Rev. Condens. Matter Phys. 1, 179–210 (2010).
Ribeiro, I. R. B. et al. Realization of rectangular artificial spin ice and direct observation of high energy topology. Sci. Rep. 7, 13982 (2017).
Loreto, R. P. et al. Experimental and theoretical evidences for the ice regime in planar artificial spin ices. J. Phys. Condens. Matter 31, 025301 (2019).
Perrin, Y., Canals, B. & Rougemaille, N. Quasidegenerate ice manifold in a purely two-dimensional square array of nanomagnets. Phys. Rev. B 99, 224434 (2019).
Schanilec, V., Perrin, Y., Denmat, S. L., Canals, B. & Rougemaille, N. Artificial vertex systems by design. Preprint at arXiv https://arxiv.org/abs/1902.00452 (2019).
Takatsu, H. et al. Two-dimensional monopole dynamics in the dipolar spin ice Dy2Ti2O7. J. Phys. Soc. Jpn. 82, 073707 (2013).
Otsuka, H., Takatsu, H., Goto, K. & Kadowaki, H. Scaling ansatz for the ac magnetic response in two-dimensional spin ice. Phys. Rev. B 90, 144428 (2014).
Gliga, S., Kákay, A., Hertel, R. & Heinonen, O. G. Spectral analysis of topological defects in an artificial spin-ice lattice. Phys. Rev. Lett. 110, 117205 (2013).
Bhat, V. S., Heimbach, F., Stasinopoulos, I. & Grundler, D. Magnetization dynamics of topological defects and the spin solid in a kagome artificial spin ice. Phys. Rev. B 93, 140401 (2016).
Bhat, V. S., Heimbach, F., Stasinopoulos, I. & Grundler, D. Angular-dependent magnetization dynamics of kagome artificial spin ice incorporating topological defects. Phys. Rev. B 96, 014426 (2017).
Chern, G.-W. & Mellado, P. Magnetic monopole polarons in artificial spin ices. EPL 114, 37004 (2016).
Loreto, R. P. et al. Emergence and mobility of monopoles in a unidirectional arrangement of magnetic nanoislands. Nanotechnology 26, 295303 (2015).
León, A. Thermal phase transition in artificial spin ice systems induces the formation and migration of monopole-like magnetic excitations. Physica B Condens. Matter 500, 59–65 (2016).
Chavez, A. C., Barra, A. & Carman, G. P. Voltage control of magnetic monopoles in artificial spin ice. J. Phys. D Appl. Phys. 51, 234001 (2018).
Mellado, P., Petrova, O., Shen, Y. & Tchernyshyov, O. Dynamics of magnetic charges in artificial spin ice. Phys. Rev. Lett. 105, 187206 (2010).
Zeissler, K. et al. The non-random walk of chiral magnetic charge carriers in artificial spin ice. Sci. Rep. 3, 1252 (2013).
Pushp, A. et al. Domain wall trajectory determined by its fractional topological edge defects. Nat. Phys. 9, 505–511 (2013).
Omari, K. A. & Hayward, T. J. Chirality-based vortex domain-wall logic gates. Phys. Rev. Applied 2, 044001 (2014).
Garg, C. et al. Highly asymmetric chiral domain-wall velocities in Y-shaped junctions. Nano Lett. 18, 1826–1830 (2018).
Burn, D. M., Chadha, M., Walton, S. K. & Branford, W. R. Dynamic interaction between domain walls and nanowire vertices. Phys. Rev. B 90, 144414 (2014).
Walton, S. K. et al. Limitations in artificial spin ice path selectivity: the challenges beyond topological control. New J. Phys. 17, 013054 (2015).
Burn, D. M., Chadha, M. & Branford, W. R. Dynamic dependence to domain wall propagation through artificial spin ice. Phys. Rev. B 95, 104417 (2017).
Burn, D. M., Chadha, M. & Branford, W. R. Angular-dependent magnetization reversal processes in artificial spin ice. Phys. Rev. B 92, 214425 (2015).
Kwon, J. et al. Low field domain wall dynamics in artificial spin-ice basis structure. J. Appl. Phys. 118, 163907 (2015).
Sethi, P. et al. Direct observation of deterministic domain wall trajectory in magnetic network structures. Sci. Rep. 6, 19027 (2016).
Gartside, J. C. et al. Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing. Nat. Nanotechnol. 13, 53–58 (2018).
Rougemaille, N. et al. Chiral nature of magnetic monopoles in artificial spin ice. New J. Phys. 15, 035026 (2013).
Nisoli, C. et al. Effective temperature in an interacting vertex system: theory and experiment on artificial spin ice. Phys. Rev. Lett. 105, 047205 (2010).
Morgan, J. P. et al. Real and effective thermal equilibrium in artificial square spin ices. Phys. Rev. B 87, 024405 (2013).
Lammert, P. E. et al. Direct entropy determination and application to artificial spin ice. Nat. Phys. 6, 786–789 (2010).
Porro, J. M., Bedoya-Pinto, A., Berger, A. & Vavassori, P. Exploring thermally induced states in square artificial spin-ice arrays. New J. Phys. 15, 055012 (2013).
Zhang, S. et al. Crystallites of magnetic charges in artificial spin ice. Nature 500, 553–557 (2013).
Drisko, J., Daunheimer, S. & Cumings, J. FePd3 as a material for studying thermally active artificial spin ice systems. Phys. Rev. B 91, 224406 (2015).
Ke, X. et al. Energy minimization and ac demagnetization in a nanomagnet array. Phys. Rev. Lett. 101, 037205 (2008).
Budrikis, Z. et al. Disorder strength and field-driven ground state domain formation in artificial spin ice: experiment, simulation, and theory. Phys. Rev. Lett. 109, 037203 (2012).
Coey, J. M. D. Magnetism and Magnetic Materials (Cambridge Univ. Press, 2010).
Osborn, J. A. Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945).
Morley, S. A. et al. Vogel-Fulcher-Tammann freezing of a thermally fluctuating artificial spin ice probed by x-ray photon correlation spectroscopy. Phys. Rev. B 95, 104422 (2017).
Andersson, M. S. et al. Thermally induced magnetic relaxation in square artificial spin ice. Sci. Rep. 6, 37097 (2016).
Farhan, A. et al. Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems. Nat. Phys. 9, 375–382 (2013).
Kapaklis, V. et al. Thermal fluctuations in artificial spin ice. Nat. Nanotechnol. 9, 514–519 (2014).
Morley, S. A. et al. Effect of FePd alloy composition on the dynamics of artificial spin ice. Sci. Rep. 8, 4750 (2018).
Montaigne, F. et al. Size distribution of magnetic charge domains in thermally activated but out-of-equilibrium artificial spin ice. Sci. Rep. 4, 5702 (2014).
Rougemaille, N. & Canals, B. Cooperative magnetic phenomena in artificial spin systems: spin liquids, Coulomb phase and fragmentation of magnetism – a colloquium. Eur. Phys. J. B 92, 62 (2019).
Morgan, J. P., Stein, A., Langridge, S. & Marrows, C. H. Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nat. Phys. 7, 75–79 (2011).
Silva, R. C., Nascimento, F. S., Mól, L. A. S., Moura-Melo, W. A. & Pereira, A. R. Thermodynamics of elementary excitations in artificial magnetic square ice. New J. Phys. 14, 015008 (2012).
Levis, D., Cugliandolo, L. F., Foini, L. & Tarzia, M. Thermal phase transitions in artificial spin ice. Phys. Rev. Lett. 110, 207206 (2013).
Parakkat, V. M., Xie, K. & Krishnan, K. M. Tunable ground state in heterostructured artificial spin ice with exchange bias. Phys. Rev. B 99, 054429 (2019).
Chern, G.-W., Mellado, P. & Tchernyshyov, O. Two-stage ordering of spins in dipolar spin ice on the kagome lattice. Phys. Rev. Lett. 106, 207202 (2011).
Möller, G. & Moessner, R. Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays. Phys. Rev. B. 80, 140409 (2009).
Chern, G.-W. & Tchernyshyov, O. Magnetic charge and ordering in kagome spin ice. Phil. Trans. R. Soc. A 370, 5718–5737 (2012).
Canals, B. et al. Fragmentation of magnetism in artificial kagome dipolar spin ice. Nat. Commun. 7, 11446 (2016).
Brooks-Bartlett, M. E., Banks, S. T., Jaubert, L. D. C., Harman-Clarke, A. & Holdsworth, P. C. W. Magnetic-moment fragmentation and monopole crystallization. Phys. Rev. X 4, 011007 (2014).
Sendetskyi, O. et al. Magnetic diffuse scattering in artificial kagome spin ice. Phys. Rev. B 93, 224413 (2016).
Farhan, A. et al. Thermally induced magnetic relaxation in building blocks of artificial kagome spin ice. Phys. Rev. B 89, 214405 (2014).
Branford, W. R., Ladak, S., Read, D. E., Zeissler, K. & Cohen, L. F. Emerging chirality in artificial spin ice. Science 335, 1597–1600 (2012).
Summers, B., Chen, Y., Dahal, A. & Singh, D. K. New description of evolution of magnetic phases in artificial honeycomb lattice. Sci. Rep. 7, 16080 (2017).
Glavic, A. et al. Spin solid versus magnetic charge ordered state in artificial honeycomb lattice of connected elements. Adv. Sci. 5, 1700856 (2018).
Summers, B. et al. Temperature-dependent magnetism in artificial honeycomb lattice of connected elements. Phys. Rev. B 97, 014401 (2018).
Chioar, I. A. et al. Kinetic pathways to the magnetic charge crystal in artificial dipolar spin ice. Phys. Rev. B 90, 220407 (2014).
Liashko, S. Y., Jónsson, H. & Uzdin, V. M. The effect of temperature and external field on transitions in elements of kagome spin ice. New J. Phys. 19, 113008 (2017).
Petersen, C. F. et al. Tuning magnetic ordering in a dipolar square-kite tessellation. Appl. Phys. Lett. 112, 092403 (2018).
Chioar, I. A. et al. Nonuniversality of artificial frustrated spin systems. Phys. Rev. B 90, 064411 (2014).
Hamp, J., Moessner, R. & Castelnovo, C. Supercooling and fragile glassiness in a dipolar kagome Ising magnet. Phys. Rev. B 98, 144439 (2018).
Sklenar, J. et al. Field-induced phase coexistence in an artificial spin ice. Nat. Phys. 15, 191–195 (2018).
Carlotti, G. et al. From micro- to nanomagnetic dots: evolution of the eigenmode spectrum on reducing the lateral size. J. Phys. D Appl. Phys. 47, 265001 (2014).
Li, Y. et al. Thickness dependence of spin wave excitations in an artificial square spin ice-like geometry. J. Appl. Phys. 121, 103903 (2017).
Sklenar, J., Bhat, V. S., DeLong, L. E. & Ketterson, J. B. Broadband ferromagnetic resonance studies on an artificial square spin-ice island array. J. Appl. Phys. 113, 17B530 (2013).
Ma, F., Wu, Y. & Zong, B. Micromagnetic investigation of microwave permeability of magnetic artificial spin ice. Mater. Sci. Appl. 5, 991–995 (2014).
Montoncello, F. et al. Mutual influence between macrospin reversal order and spin-wave dynamics in isolated artificial spin-ice vertices. Phys. Rev. B 97, 014421 (2018).
Mironov, V. L., Skorohodov, E. V. & Blackman, J. A. Magnetic states and ferromagnetic resonance in geometrically frustrated arrays of multilayer ferromagnetic nanoparticles ordered on triangular lattices. J. Appl. Phys. 115, 184301 (2014).
Gliga, S., Kákay, A., Heyderman, L. J., Hertel, R. & Heinonen, O. G. Broken vertex symmetry and finite zero-point entropy in the artificial square ice ground state. Phys. Rev. B 92, 060413 (2015).
Behncke, C. et al. Tunable geometrical frustration in magnonic vortex crystals. Sci. Rep. 8, 186 (2018).
Jungfleisch, M. B. et al. High-frequency dynamics modulated by collective magnetization reversal in artificial spin ice. Phys. Rev. Applied 8, 064026 (2017).
Bhat, V. S. & Grundler, D. Angle-dependent magnetization dynamics with mirror-symmetric excitations in artificial quasicrystalline nanomagnet lattices. Phys. Rev. B 98, 174408 (2018).
Kruglyak, V. V. et al. Formation of the band spectrum of spin waves in 1D magnonic crystals with different types of interfacial boundary conditions. J. Phys. D Appl. Phys. 50, 094003 (2017).
Szulc, K. et al. Remagnetization in arrays of ferromagnetic nanostripes with periodic and quasiperiodic order. Phys. Rev. B 99, 064412 (2019).
Lisiecki, F. et al. Reprogrammability and scalability of magnonic Fibonacci quasicrystals. Phys. Rev. Applied 11, 054003 (2019).
Iacocca, E., Gliga, S., Stamps, R. L. & Heinonen, O. Reconfigurable wave band structure of an artificial square ice. Phys. Rev. B 93, 134420 (2016).
Iacocca, E. & Heinonen, O. Topologically nontrivial magnon bands in artificial square spin ices with Dzyaloshinskii-Moriya interaction. Phys. Rev. Applied 8, 034015 (2017).
Zhou, X., Chua, G. L., Singh, N. & Adeyeye Adekunle, O. Large area artificial spin ice and anti-spin ice Ni80Fe20 structures: static and dynamic behavior. Adv. Funct. Mater. 26, 1437–1444 (2016).
Schneider, T. et al. Programmability of Co-antidot lattices of optimized geometry. Sci. Rep. 7, 41157 (2017).
Mamica, S., Krawczyk, M. & Grundler, D. Nonuniform spin-wave softening in two-dimensional magnonic crystals as a tool for opening omnidirectional magnonic band gaps. Phys. Rev. Applied 11, 054011 (2019).
Mamica, S., Zhou, X., Adeyeye, A., Krawczyk, M. & Gubbiotti, G. Spin-wave dynamics in artificial anti-spin-ice systems: Experimental and theoretical investigations. Phys. Rev. B 98, 054405 (2018).
Grundler, D. Nanomagnonics. J. Phys. D Appl. Phys. 49, 391002 (2016).
Li, J. et al. Comparing artificial frustrated magnets by tuning the symmetry of nanoscale permalloy arrays. Phys. Rev. B 81, 092406 (2010).
Farhan, A. et al. Nanoscale control of competing interactions and geometrical frustration in a dipolar trident lattice. Nat. Commun. 8, 995 (2017).
Macêdo, R., Macauley, G. M., Nascimento, F. S. & Stamps, R. L. Apparent ferromagnetism in the pinwheel artificial spin ice. Phys. Rev. B 98, 014437 (2018).
Li, Y. et al. Superferromagnetism and domain-wall topologies in artificial “pinwheel” spin ice. ACS Nano 13, 2213–2222 (2019).
Yu, L. et al. Monte Carlo simulation on a new artificial spin ice lattice consisting of hexagons and three-moment vertices. AIP Adv. 7, 085211 (2017).
Lehmann, J., Donnelly, C., Derlet, P. M., Heyderman, L. J. & Fiebig, M. Poling of an artificial magneto-toroidal crystal. Nat. Nanotechnol. 14, 141–144 (2018).
Wang, Y.-L. et al. Rewritable artificial magnetic charge ice. Science 352, 962–966 (2016).
Chern, G.-W., Morrison, M. J. & Nisoli, C. Degeneracy and criticality from emergent frustration in artificial spin ice. Phys. Rev. Lett. 111, 177201 (2013).
Stopfel, H. et al. Magnetic order and energy-scale hierarchy in artificial spin-ice structures. Phys. Rev. B 98, 014435 (2018).
Nisoli, C. in Frustrated Materials and Ferroic Glasses (eds Lookman, T. & Ren, X.) 57-99 (Springer International Publishing, 2018).
Stamps, R. L. Artificial spin ice: The unhappy wanderer. Nat. Phys. 10, 623–624 (2014).
Mydosh, J. A. Spin Glasses: An Experimental Introduction. (Taylor & Francis, 1993).
Saccone, M. et al. Towards artificial Ising spin glasses: thermal ordering in randomized arrays of Ising-type nanomagnets. Phys. Rev. B 99, 224403 (2019).
Islam, Z. et al. Reinvestigation of long-range magnetic ordering in icosahedral Tb-Mg-Zn. Phys. Rev. B 57, R11047–R11050 (1998).
Chernikov, M. A., Bernasconi, A., Beeli, C., Schilling, A. & Ott, H. R. Low-temperature magnetism in icosahedral Al70Mn9Pd21. Phys. Rev. B 48, 3058–3065 (1993).
Penrose, R. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10, 266-271 (1974).
Vedmedenko, E. Y., Oepen, H. P. & Kirschner, J. Decagonal quasiferromagnetic microstructure on the Penrose tiling. Phys. Rev. Lett. 90, 137203 (2003).
Vedmedenko, E. Y., Grimm, U. & Wiesendanger, R. Interplay between magnetic and spatial order in quasicrystals. Philosoph. Mag. 86, 733–739 (2006).
Bhat, V. S. et al. Controlled magnetic reversal in permalloy films patterned into artificial quasicrystals. Phys. Rev. Lett. 111, 077201 (2013).
Brajuskovic, V., Barrows, F., Phatak, C. & Petford-Long, A. K. Real-space observation of magnetic excitations and avalanche behavior in artificial quasicrystal lattices. Sci. Rep. 6, 34384 (2016).
Brajuskovic, V., Addi, A., Phatak, C. & Petford-Long, A. K. Observation of transient states during magnetization reversal in a quasicrystal artificial spin ice. Phys. Rev. B 98, 094424 (2018).
Barrows, F., Brajuskovic, V., Petford-Long, A. K. & Phatak, C. Emergent magnetic ordering and topological frustration in quasicrystal artificial spin ices. Phys. Rev. B 99, 094424 (2019).
Perron, J. et al. Extended reciprocal space observation of artificial spin ice with x-ray resonant magnetic scattering. Phys. Rev. B 88, 214424 (2013).
Lee, J. C. T. et al. Textured heterogeneity in square artificial spin ice. Phys. Rev. B 99, 024406 (2019).
Mistonov, A. A. et al. Magnetic structure of the inverse opal-like structures: small angle neutron diffraction and micromagnetic simulations. J. Magn. Magn. Mater. 477, 99–108 (2019).
Chen, X. M. et al. Spontaneous magnetic superdomain wall fluctuations in an artificial antiferromagnet. Preprint at arXiv https://arxiv.org/abs/1809.05656 (2018).
Santos-Filho, J. B., Plascak, J. A., Sobrinho, M. C. & Araujo Batista, T. S. Phase diagram of the XY Vector Blume–Emery–Griffiths model on a Kagome lattice by Monte Carlo simulation. Physica A Stat. Mech. Appl. 503, 844–848 (2018).
Streubel, R. et al. Magnetism in curved geometries. J. Phys. D Appl. Phys. 49, 363001 (2016).
Fernández-Pacheco, A. et al. Three-dimensional nanomagnetism. Nat. Commun. 8, 15756 (2017).
Lavrijsen, R. et al. Magnetic ratchet for three-dimensional spintronic memory and logic. Nature 493, 647–650 (2013).
Kadic, M., Bückmann, T., Stenger, N., Thiel, M. & Wegener, M. On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett. 100, 191901 (2012).
Williams, G. et al. Two-photon lithography for 3D magnetic nanostructure fabrication. Nano Res. 11, 845–854 (2018).
May, A., Hunt, M., Berg, A. V. D., Hejazi, A. & Ladak, S. Realisation of a frustrated 3D magnetic nanowire lattice. Commun. Phys. 2, 13 (2019).
Donnelly, C. et al. Element-specific X-ray phase tomography of 3D structures at the nanoscale. Phys. Rev. Lett. 114, 115501 (2015).
Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).
Keller, L. et al. Direct-write of free-form building blocks for artificial magnetic 3D lattices. Sci. Rep. 8, 6160 (2018).
Fowlkes, J. D. et al. High-fidelity 3D-nanoprinting via focused electron beams: computer-aided design (3BID). ACS Appl. Nano Mater. 1, 1028–1041 (2018).
Mistonov, A. A. et al. Three-dimensional artificial spin ice in nanostructured Co on an inverse opal-like lattice. Phys. Rev. B 87, 220408 (2013).
Shishkin, I. S. et al. Nonlinear geometric scaling of coercivity in a three-dimensional nanoscale analog of spin ice. Phys. Rev. B 94, 064424 (2016).
Chopdekar, R. V. et al. Nanostructured complex oxides as a route towards thermal behavior in artificial spin ice systems. Phys. Rev. Mater. 1, 024401 (2017).
Cowburn, R. P. Property variation with shape in magnetic nanoelements. J. Phys. D Appl. Phys. 33, R1 (2000).
Wang, Y.-L. et al. Switchable geometric frustration in an artificial-spin-ice–superconductor heterosystem. Nat. Nanotechnol. 13, 560–565 (2018).
Rollano, V. et al. Topologically protected superconducting ratchet effect generated by spin-ice nanomagnets. Nanotechnology 30, 244003 (2019).
Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).
Luo, Z. et al. Chirally coupled nanomagnets. Science 363, 1435–1439 (2019).
Le, B. L. et al. Understanding magnetotransport signatures in networks of connected permalloy nanowires. Phys. Rev. B 95, 060405 (2017).
Gypens, P., Leliaert, J. & Van Waeyenberge, B. Balanced magnetic logic gates in a kagome spin ice. Phys. Rev. Applied 9, 034004 (2018).
Caravelli, F. & Nisoli, C. Computation via interacting magnetic memory bites: integration of boolean gates. Preprint at arXiv https://arxiv.org/abs/1810.09190 (2018).
Arava, H. et al. Engineering relaxation pathways in building blocks of artificial spin ice for computation. Phys. Rev. Applied 11, 054086 (2019).
Arava, H. et al. Computational logic with square rings of nanomagnets. Nanotechnology 29, 265205 (2018).
Pan, L., Laurita, N. J., Ross, K. A., Gaulin, B. D. & Armitage, N. P. A measure of monopole inertia in the quantum spin ice Yb2Ti2O7. Nat. Phys. 12, 361–366 (2016).
Pancaldi, M., Leo, N. & Vavassori, P. Selective and fast plasmon-assisted photo-heating of nanomagnets. Nanoscale 11, 7656–7666 (2019).
Hong, J., Lambson, B., Dhuey, S. & Bokor, J. Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits. Sci. Adv. 2, e1501492 (2016).
Khajetoorians, A. A. et al. Atom-by-atom engineering and magnetometry of tailored nanomagnets. Nat. Phys. 8, 497–503 (2012).
Libál, A., Reichhardt, C. & Reichhardt, C. J. O. Realizing colloidal artificial ice on arrays of optical traps. Phys. Rev. Lett. 97, 228302 (2006).
Libál, A. et al. Ice rule fragility via topological charge transfer in artificial colloidal ice. Nat. Commun. 9, 4146 (2018).
Han, Y. et al. Geometric frustration in buckled colloidal monolayers. Nature 456, 898–903 (2008).
Le Cunuder, A., Frérot, I., Ortiz-Ambriz, A. & Tierno, P. Competing orders in colloidal kagome ice: Importance of the in-trap motion of the particles. Phys. Rev. B 99, 140405 (2019).
Nisoli, C. Unexpected phenomenology in particle-based ice absent in magnetic spin ice. Phys. Rev. Lett. 120, 167205 (2018).
Libál, A., Reichhardt, C. J. O. & Reichhardt, C. Creating artificial ice states using vortices in nanostructured superconductors. Phys. Rev. Lett. 102, 237004 (2009).
Xue, C. et al. Tunable artificial vortex ice in nanostructured superconductors with a frustrated kagome lattice of paired antidots. Phys. Rev. B 97, 134506 (2018).
Kang, S. H. et al. Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures. Phys. Rev. Lett. 112, 098701 (2014).
Conde-Rubio, A. et al. Geometric frustration in a hexagonal lattice of plasmonic nanoelements. Opt. Express 26, 20211–20224 (2018).
Gunnarsson, K. et al. Programmable motion and separation of single magnetic particles on patterned magnetic surfaces. Adv. Mater. 17, 1730–1734 (2005).
Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).
Ma, F., Reichhardt, C., Gan, W., Reichhardt, C. J. O. & Lew, W. S. Emergent geometric frustration of artificial magnetic skyrmion crystals. Phys. Rev. B 94, 144405 (2016).
Braun, H.-B. Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1–116 (2012).
Ryzhkin, I. A. Magnetic relaxation in rare-earth oxide pyrochlores. J. Exp. Theor. Phys. 101, 481–486 (2005).
Park, J. et al. Magnetic response of brickwork artificial spin ice. Phys. Rev. B 96, 024436 (2017).
Pohle, R., Benton, O. & Jaubert, L. D. C. Reentrance of disorder in the anisotropic shuriken Ising model. Phys. Rev. B 94, 014429 (2016).
Arnalds, U. B. et al. A new look on the two-dimensional Ising model: thermal artificial spins. New J. Phys. 18, 023008 (2016).
Liu, Y. et al. Confined chemical fluid deposition of ferromagnetic metalattices. Nano Lett. 18, 546–552 (2018).
Chioar, I. A., Rougemaille, N. & Canals, B. Ground-state candidate for the classical dipolar kagome Ising antiferromagnet. Phys. Rev. B 93, 214410 (2016).
Zhang, S. et al. Perpendicular magnetization and generic realization of the Ising model in artificial spin ice. Phys. Rev. Lett. 109, 087201 (2012).
Lendinez, S. & Jungfleisch, M. B. Magnetization dynamics in artificial spin ice. J. Phys. Condens. Matter 32, 013001 (2020).
Ortiz-Ambriz, A. Nisoli, C., Reichhardt, C., Reichhardt, C. J. O. & Tierno, P. Ice rule and emergent frustration in particle ice and beyond. Preprint at arXiv https://arxiv.org/abs/1909.13534 (2019).
Acknowledgements
The authors are very grateful for the important insights from P. M. Derlet, H.-B. Braun, D. Grundler, V. Scagnoli, K. Hofhuis and Q. N. Meier, which were of great value in the preparation of this manuscript. L.J.H. and S.H.S. acknowledge financial support provided by the Swiss National Science Foundation, grant no. 200020_172774.
Reviewer information
Nature Reviews Physics thanks C. Nisoli, B. Hjörvarsson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Author information
Authors and Affiliations
Contributions
All authors have read, discussed and contributed to the writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Skjærvø, S.H., Marrows, C.H., Stamps, R.L. et al. Advances in artificial spin ice. Nat Rev Phys 2, 13–28 (2020). https://doi.org/10.1038/s42254-019-0118-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-019-0118-3
This article is cited by
-
Unconventional magnetism mediated by spin-phonon-photon coupling
Nature Communications (2024)
-
Stochastic hexagonal injectors in artificial spin ice
Communications Materials (2024)
-
Quantum fluctuations drive nonmonotonic correlations in a qubit lattice
Nature Communications (2024)
-
Neuromorphic computing with spintronics
npj Spintronics (2024)
-
Hybrid magnon-phonon crystals
npj Spintronics (2024)