Abstract
Since the first proof-of-principle experiments over 25 years ago, atom interferometry has matured to a versatile tool that can be used in fundamental research in particle physics, general relativity and cosmology. At the same time, atom interferometers are currently moving out of the laboratory to be used as ultraprecise quantum sensors in metrology, geophysics, space, civil engineering, oil and minerals exploration, and navigation. This Perspective discusses the associated scientific and technological challenges and highlights recent advances.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Enhancing the sensitivity of atom-interferometric inertial sensors using robust control
Nature Communications Open Access 22 November 2023
-
Photonic integrated beam delivery for a rubidium 3D magneto-optical trap
Nature Communications Open Access 29 May 2023
-
Quantum algorithms: applications, criteria and metrics
Complex & Intelligent Systems Open Access 10 May 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Change history
09 December 2019
Updated Philippe Bouyer’s address from “Institut d’Optique Graduate School (IOGS), University of Bordeaux, Talence Cedex, France” to “CNRS, Institut d’Optique Graduate School (IOGS), University of Bordeaux, Talence Cedex, France”.
03 November 2021
A Correction to this paper has been published: https://doi.org/10.1038/s42254-021-00396-1
References
De Broglie, L. Recherches sur la théorie des quanta [French]. Thesis, Univ. Paris (1924). English translation: J. W. Haslett. Am. J. Phys. 40, 1315–1320 (1972).
Möllenstedt, G. & Düker, H. Observations and measurements of biprism interference with electron waves. Z. Phys. 145, 377–397 (1956).
Jönsson, C. Electron diffraction at multiple slits. Am. J. Phys. 42, 4–11 (1974).
Rauch, H. & Werner, S. A. in Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement 2nd edn (Oxford Univ. Press, 2015).
Rauch, H., Treimer, W. & Bonse, U. Test of a single crystal neutron interferometer. Phys. Lett. A 47, 369–371 (1974).
Keith, D. W., Ekstrom, C. R., Turchette, Q. A. & Pritchard, D. E. An interferometer for atoms. Phys. Rev. Lett. 66, 2693–2696 (1991).
Carnal, O. & Mlynek, J. Young’s double-slit experiment with atoms: a simple atom interferometer. Phys. Rev. Lett. 66, 2689–2692 (1991).
Kasevich, M. & Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991).
Riehle, F., Kisters, T., Witte, A., Helmcke, J. & Bordé, C. J. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett. 67, 177–180 (1991).
Hackermüller, L. et al. Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 91, 090408 (2003).
Linskens, A. F., Holleman, I., Dam, N. & Reuss, J. Two-photon Rabi oscillations. Phys. Rev. A 54, 4854–4862 (1996).
Kasevich, M. & Chu, S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl. Phys. B 54, 321–332 (1992).
Richard, H. P., Yu, C., Zhong, W., Estey, B. & Müller, H. Measurement of the fine-structure constant as a test of the standard model. Science 360, 191–195 (2018).
Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. & Tino, G. M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518–521 (2014).
Gillot, P., Cheng, B., Imanaliev, A., Merlet, S. & Pereira Dos Santos, F. The LNE-SYRTE cold atom gravimeter. IEEE https://ieeexplore.ieee.org/document/7477832 (2016).
Menoret, V. et al. Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter. Sci. Rep. 8, 12300 (2018).
Weiss, D. S., Young, B. C. & Chu, S. Precision measurement of the photon recoil of an atom using atomic interferometry. Phys. Rev. Lett. 70, 2706–2709 (1993).
Bureau International des Poids et Mesures. Resolution 1 of the 26th meeting of the General Conference on Weights and Measures (BIPM, 2018).
Andreas, B. et al. Determination of the Avogadro constant by counting the atoms in a 28Si crystal. Phys. Rev. Lett. 106, 030801 (2011).
Bouchendira, R., Cladé, P., Guellati-Khélifa, S., Nez, F. & Biraben, F. New determination of the fine structure constant and test of the quantum electrodynamics. Phys. Rev. Lett. 106, 080801 (2011).
Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008).
Bouchendira, R., Cladé, P., Guellati-Khélifa, S., Nez, F. & Biraben, F. State of the art in the determination of the fine structure constant: test of quantum electrodynamics and determination of h/mu. Ann. Phys. 525, 484–492 (2013).
Fixler, J. B., Foster, G. T., McGuirk, J. M. & Kasevich, M. A. Atom interferometer measurement of the Newtonian constant of gravity. Science 315, 74–77 (2007).
Gundlach, J. H. & Merkowitz, S. M. Measurement of Newton’s constant using a torsion balance with angular acceleration feedback. Phys. Rev. Lett. 85, 2869–2872 (2000).
Quinn, T. J., Speake, C. C. & Davis, R. S. Novel torsion balance for the measurement of the Newtonian gravitational constant. Metrologia 34, 245–249 (1997).
Li, Q. et al. Measurements of the gravitational constant using two independent methods. Nature 560, 582–588 (2018).
Rosi, G. A proposed atom interferometry determination of G at 10−5 using a cold atomic fountain. Metrologia 55, 50–55 (2017).
Schiff, L. I. On experimental tests of the general theory of relativity. Am. J. Phys. 28, 340–343 (1960).
Will, C. M. The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 4–115 (2014).
Hofmann, F. & Müller, J. Relativistic tests with lunar laser ranging. Class. Quantum Gravity 35, 035015 (2018).
Schlamminger, S., Choi, K. Y., Wagner, T. A., Gundlach, J. H. & Adelberger, E. G. Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101 (2007).
Niebauer, T. M., McHugh, M. P. & Faller, J. E. Galilean test for the fifth force. Phys. Rev. Lett. 59, 609–612 (1987).
Touboul, P. et al. MICROSCOPE mission: first results of a space test of the equivalence principle. Phys. Rev. Lett. 119, 231101 (2017).
Merlet, S. et al. Comparison between two mobile absolute gravimeters: optical versus atomic interferometers. Metrologia 47, L9–L11 (2010).
Zhou, L. et al. Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer. Phys. Rev. Lett. 115, 013004 (2015).
Fray, S., Diez, C. A., Hansch, T. W. & Weitz, M. Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Phys. Rev. Lett. 93, 240404 (2004).
Bonnin, A., Zahzam, N., Bidel, Y. & Bresson, A. Simultaneous dual-species matter-wave accelerometer. Phys. Rev. A 88, 043615 (2013).
Tarallo, M. G. et al. Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects. Phys. Rev. Lett. 113, 023005 (2014).
Schlippert, D. et al. Quantum test of the universality of free fall. Phys. Rev. Lett. 112, 203002 (2014).
Rosi, G. et al. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states. Nat. Commun. 8, 15529 (2017).
Geiger, R. & Trupke, M. Proposal for a quantum test of the weak equivalence principle with entangled atomic species. Phys. Rev. Lett. 120, 043602 (2018).
Zych, M., Costa, F., Pikovski, I. & Brukner, C. Quantum interferometric visibility as a witness of general relativistic proper time. Nat. Commun. 2, 505 (2011).
Roura, A. Gravitational redshift in quantum-clock interferometry. Preprint at arXiv https://arxiv.org/abs/1810.06744 (2018).
Bertone, G., Hooper, D. & Silk, J. Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005).
Elder, B. et al. Chameleon dark energy and atom interferometry. Phys. Rev. D. 94, 044051 (2016).
Hamilton, P. et al. Atom-interferometry constraints on dark energy. Science 349, 849–851 (2015).
Jaffe, M. et al. Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass. Nat. Phys. 13, 938–942 (2017).
Strigari, L. E. Galactic searches for dark matter. Phys. Rep. 531, 1–88 (2013).
Magaña, J. & Matos, T. A brief review of the scalar field dark matter model. J. Phys. Conf. Ser. 378, 012012 (2012).
Arvanitaki, A., Graham, P. W., Hogan, J. M., Rajendran, S. & Tilburg, K. V. Search for light scalar dark matter with atomic gravitational wave detectors. Phys. Rev. D. 97, 075020 (2018).
Hees, A., Guena, J., Abgrall, M., Bize, S. & Wolf, P. Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons. Phys. Rev. Lett. 117, 061301 (2016).
Dimopoulos, S., Graham, P. W., Hogan, J. M., Kasevich, M. A. & Rajendran, S. Atomic gravitational wave interferometric sensor. Phys. Rev. D. 78, 122002 (2008).
Hogan, J. M. & Kasevich, M. A. Atom-interferometric gravitational-wave detection using heterodyne laser links. Phys. Rev. A 94, 033632 (2016).
Hogan, J. M. et al. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO). Gen. Relativ. Gravit. 43, 1953–2009 (2009).
Amaro-Seoane, P. et al. Low-frequency gravitational-wave science with eLISA/NGO. Class. Quantum Gravity 29, 124016 (2012).
Amaro-Seoane, P. et al. The gravitational universe. Preprint at arXiv https://arxiv.org/abs/1305.5720 (2013).
Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).
Chaibi, W. et al. Low frequency gravitational wave detection with ground-based atom interferometer arrays. Phys. Rev. D. 93, 021101(R) (2016).
Canuel, B. et al. Exploring gravity with the MIGA large scale atom interferometer. Sci. Rep. 8, 14064 (2018).
Overstreet, C. et al. Effective inertial frame in an atom interferometric test of the equivalence principle. Phys. Rev. Lett. 120, 183604 (2018).
Hartwig, J. et al. Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer. New J. Phys. 17, 035011 (2015).
Dimopoulos, S., Graham, P. W., Hogan, J. M. & Kasevich, M. A. Testing general relativity with atom interferometry. Phys. Rev. Lett. 98, 111102 (2007).
Dickerson, S. M., Hogan, J. M., Sugarbaker, A., Johnson, D. M. S. & Kasevich, M. A. Multiaxis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett. 111, 083001 (2013).
Zhou, L. et al. Development of an atom gravimeter and status of the 10-meter atom interferometer for precision gravity measurement. Gen. Relativ. Gravit. 43, 1931–1942 (2011).
Aguilera, D. N. et al. STE-QUEST—test of the universality of free fall using cold atom interferometry. Class. Quantum Gravity 11, 115010 (2015).
Williams, J. R., Chiow, S. W., Yu, N. & Müller, H. Quantum test of the equivalence principle and space-time aboard the International Space Station. New J. Phys. 18, 025018 (2016).
Cladé, P., Guellati-Khélifa, S., Nez, F. & Biraben, F. Large momentum beam splitter using Bloch oscillations. Phys. Rev. Lett. 102, 240402 (2009).
Müller, H., Chiow, S. W., Long, Q., Herrmann, S. & Chu, S. Atom interferometry with up to 24-photon-momentum-transfer beam splitters. Phys. Rev. Lett. 100, 180405 (2008).
Kovachy, T. et al. Quantum superposition at the half-metre scale. Nature 528, 530 (2015).
Asenbaum, P. et al. Phase shift in an atom interferometer due to spacetime curvature across its wave function. Phys. Rev. Lett. 118, 183602 (2017).
Schkolnik, V., Leykauf, B., Hauth, M., Freier, C. & Peters, A. The effect of wavefront aberrations in atom interferometry. Appl. Phys. B 120, 311–316 (2015).
Trimeche, A., Langlois, M., Merlet, S. & Pereira Dos Santos, F. Active control of laser wavefronts in atom interferometers. Phys. Rev. Appl. 7, 034016 (2017).
Langlois M., Trimeche A., Merlet S. & Pereira Dos Santos F. Correction of laser wavefronts in an atom interferometer with a deformable mirror (IEEE, 2017).
Li, W., Tuchman, A. K., Chien, H. C. & Kasevich, M. A. Extended coherence time with atom-number squeezed states. Phys. Rev. Lett. 98, 040402 (2007).
Kuzmich, A., Bigelow, N. P. & Mandel, L. Atomic quantum non-demolition measurements and squeezing. Europhys. Lett. 42, 481–486 (1998).
D’Amico, G. et al. Canceling the gravity gradient phase shift in atom interferometry. Phys. Rev. Lett. 119, 253201 (2017).
Barrett, B. et al. Dual matter-wave inertial sensors in weightlessness. Nat. Commun. 7, 13786 (2016).
Antoine, C. & Bordé, C. J. Quantum theory of atomic clocks and gravito-inertial sensors: an update. J. Opt. B Quantum Semiclass. Opt. 5, S199 (2003).
Bongs, K., Launay, R. & Kasevich, M. A. High-order inertial phase shifts for time-domain atom interferometers. Appl. Phys. B 84, 599–602 (2006).
Hogan, J. M., Johnson, D. M. S. & Kasevich, M. A. in Proceedings of the International Summer School of Physics “Enrico Fermi” on Atom Optics and Space Physics (eds Arimondo, E., Ertmer, W., Rasel, E. M. & Schleich, W. P.) (IOS, 2009).
Roura, A., Zeller, W. & Schleich, W. P. Overcoming loss of contrast in atom interferometry due to gravity gradients. New J. Phys. 16, 123012 (2014).
Kleinert, S., Kajari, E., Roura, A. & Schleich, W. P. Representation-free description of light-pulse atom interferometry including non-inertial effects. Phys. Rep. 605, 1–50 (2015).
Audretsch, J. & Marzlin, K. Atom interferometry with arbitrary laser configurations: exact phase shift for potentials including inertia and gravitation. J. Phys. II 4, 2073–2087 (1994).
Bordé, C. J. in Les Houches Lectures, Session LIII, 1990: Fundamental Systems in Quantum Optics (eds Dalibard, J. M., Raimond, J. & Zinn-Justin, J.) (Elsevier, 1992).
Chiow, S. W., Williams, J. R., Yu, N. & Müller, H. Gravity-gradient suppression in spaceborne atomic tests of the equivalence principle. Phys. Rev. A 95, 021603(R) (2017).
Geiger, R. et al. Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2, 474 (2011).
Roura, A. Circumventing Heisenberg’s uncertainty principle in atom interferometry tests of the equivalence principle. Phys. Rev. Lett. 118, 160401 (2017).
Stodolsky, L. Matter and light wave interferometry in gravitational fields. Gen. Relativ. Gravit. 11, 391–405 (1979).
Dimopoulos, S., Graham, P. W., Hogan, J. M. & Kasevich, M. A. General relativistic effects in atom interferometry. Phys. Rev. D 78, 042003 (2008).
Jaekel, M. T., Lamine, B. & Reynaud, S. Phases and relativity in atomic gravimetry. Gen. Relativ. Gravit. 30, 065006 (2013).
Stock, M. Watt balance experiments for the determination of the Planck constant and the redefinition of the kilogram. Metrologia 50, 3936–3953 (2013).
Genevès, G. et al. The BNM Watt balance project. IEEE Trans. Instrum. Meas. 2, 850–853 (2005).
Karcher, R., Imanaliev, A., Merlet, S. & Pereira Dos Santos, F. Improving the accuracy of atom interferometers with ultracold sources. New J. Phys. 20, 113041 (2018).
Niebauer, T. M., Sasagawa, G. S., Faller, J. E., Hilt, R. & Klopping, F. A new generation of absolute gravimeters. Metrologia 32, 159–180 (1995).
Louchet-Chauvet, A. et al. The influence of transverse motion within an atomic gravimeter. New J. Phys. 13, 065025 (2011).
Djamour, Y. et al. GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran. Geophys. J. Int. 183, 1287–1301 (2010).
Olsson, P., Milne, G., Scherneck, H. & Ågren, J. The relation between gravity rate of change and vertical displacement in previously glaciated areas. J. Geodynamics 83, 76–84 (2015).
Andersen, O. B. & Hinderer, J. Global inter-annual gravity changes from GRACE: Early results. Geophys. Res. Lett. 32, L01402 (2005).
Jacob, Th. et al. Absolute gravity monitoring of water storage variation in a karst aquifer on the Larzac Plateau (Southern France). J. Hydrol. 359, 105–117 (2008).
Le Coq, Y., Retter, J. A., Richard, S., Aspect, A. & Bouyer, P. Coherent matter wave inertial sensors for precision measurements in space. Appl. Phys. B 84, 627–632 (2006).
van Zoest, T. et al. Bose-Einstein condensation in microgravity. Science 328, 1540–1543 (2010).
Müntinga, H. et al. Interferometry with Bose-Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013).
Rudolph, J. et al. A high-flux BEC source for mobile atom interferometers. New J. Phys. 17, 065001 (2015).
Becker, D. et al. Space-borne Bose–Einstein condensation for precision interferometry. Nature 562, 391–395 (2018).
Elliott, E. R., Krutzik, M. C., Williams, J. R., Thompson, R. J. & Aveline, D. C. NASA’s Cold Atom Lab (CAL): system development and ground test status. NPJ Microgravity 4, 16 (2018).
Devani, D. et al. Gravity sensing: in-orbit demonstration of a cold atom trap onboard a 6U CubeSat. 4S Symp. (2018).
Tino, G. M. et al. Precision gravity tests with atom interferometry in space. Nucl. Phys. B 234, 243–244 (2013).
Chiow, S., Williams, J. R. & Yu, N. Laser-ranging long-baseline differential atom interferometers for space. Phys. Rev. A 92, 063613 (2015).
Carraz, O., Siemes, C., Massotti, L., Haagmans, R. & Silvestrin, P. A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earth’s gravity field. Microgravity Sci. Technol. 26, 139–145 (2014).
Douch, K., Wu, H., Schubert, C., Müller, J. & Pereira Dos Santos, F. Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery. Adv. Space Res. 61, 1307–1323 (2018).
Boddice, D., Metje, N. & Tuckwell, G. Capability assessment and challenges for quantum technology gravity sensors for near surface terrestrial geophysical surveying. J. Appl. Geophys. 146, 149–159 (2017).
McGuirk, J. M., Foster, G. T., Fixler, J. B., Snadden, M. J. & Kasevich, M. A. Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 65, 033608 (2002).
Snadden, M. J., McGuirk, J. M., Bouyer, P., Haritos, K. G. & Kasevich, M. A. Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer. Phys. Rev. Lett. 81, 971–974 (1998).
van Staveren, M. Risk, Innovation and Change (Legatron Electronic Publishing, 2009).
Metje, N., Chapman, D. N., Rogers, C. D. F. & Bongs, K. Seeing through the ground: the potential of gravity gradient as a complementary technology. Adv. Civ. Eng. 2011, 1–9 (2011).
Lamb, A. Cold Atom Gravity Gradiometer for Field Applications. Thesis, Univ. Birmingham (2019).
Hinton, A. et al. A portable magneto-optical trap with prospects for atom interferometry in civil engineering. Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160238 (2017).
Nettleton, L. L. Gravity and Magnetics in Oil Prospecting (McGraw-Hill, 1976).
Earl, L. Developing Cold Atoms Systems for Novel and Transportable Platforms. Thesis, Univ. Birmingham (2019).
Cheiney, P. et al. Navigation-compatible hybrid quantum accelerometer using a Kalman filter. Phys. Rev. A 10, 034030 (2018).
Rakholia, A. V., McGuinness, H. J. & Biedermann, G. W. Dual-axis high-data-rate atom interferometer via cold ensemble exchange. Phys. Rev. Appl. 2, 054012 (2014).
Bidel, Y. et al. Absolute marine gravimetry with matter-wave interferometry. Nat. Commun. 9, 627 (2018).
Vovrosh, J. et al. Additive manufacturing of magnetic shielding and ultra-high vacuum flange for cold atom sensors. Sci. Rep. 8, 2023 (2018).
Saint, R. et al. 3D-printed components for quantum devices. Sci. Rep. 8, 8368 (2018).
Norrgard, E. B. et al. Note: A 3D-printed alkali metal dispenser. Rev. Sci. Instrum. 89, 056101 (2018).
Lévèque, T., Antoni-Micollier, L., Faure, B. & Berthon, J. A laser setup for rubidium cooling dedicated to space applications. Appl. Phys. B 116, 997–1004 (2014).
Theron, F. et al. Narrow linewidth single laser source system for onboard atom interferometry. Appl. Phys. B 118, 1–5 (2015).
Carraz, O. et al. Compact and robust laser system for onboard atom interferometry. Appl. Phys. B 97, 405–411 (2009).
Zhu, L. et al. Application of optical single-sideband laser in Raman atom interferometry. Opt. Express 26, 6542–6553 (2018).
Lee, K. I., Kim, J. A., Noh, H. R. & Jhe, W. Single-beam atom trap in a pyramidal and conical hollow mirror. Opt. Lett. 21, 1177–1179 (1996).
Pollock, S., Cotter, J. P., Laliotis, A. & Hinds, E. A. Integrated magneto-optical traps on a chip using silicon pyramid structures. Opt. Express 17, 14109–14114 (2009).
Abend, S. et al. Atom-chip fountain gravimeter. Phys. Rev. Lett. 117, 203003 (2016).
Bodart, Q. et al. A cold atom pyramidal gravimeter with a single laser beam. Appl. Phys. Lett. 96, 134101 (2010).
Knappe, S. et al. A chip-scale atomic clock based on 87Rb with improved frequency stability. Opt. Express 13, 1249–1253 (2005).
Knappe, S. et al. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability. Opt. Lett. 30, 2351–2353 (2005).
Rushton, J. A., Aldous, M. & Himsworth, M. D. Contributed review: The feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology. Rev. Sci. Inst. 85, 121501 (2014).
Kitching, J. Chip-scale atomic devices. Appl. Phys. Rev. 5, 031302 (2018).
Riedl, S., Hoth, G. W., Pelle, B., Kitching, J. & Donley, E. A. Compact atom-interferometer gyroscope based on an expanding ball of atoms. J. Phys. Conf. Ser. 723, 012058 (2016).
Gallacher, K. et al. Integrated DFB lasers on Si3N4 photonic platform for chip-scale atomic systems. OSA Tech. Digest https://doi.org/10.1364/CLEO_SI.2019.STu4O.7 (2019).
Acknowledgements
The authors thank our co-workers and collaborators for their long-term efforts and their support. Moreover, we have benefited enormously from many discussions with our colleagues who share our love of this field. K.B., M.H. and J.V. acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) through grants EP/M013294 (UK National Quantum Technology Hub for Sensors and Metrology) and EP/R002525/1 (CASPA), the Defence Science and Technology Laboratory (DSTL) through contract DSTLX-1000095040 and Innovate UK through the Gravity Pioneer grant 104613. P.B. and G.C. acknowledge funding from Agence Nationale de la Recherche and the Délégation Générale de l’Armement under grant “HYBRIDQUANTA” no. ANR-17-ASTR-0025-01, grant “TAIOL” no. ANR-18-QUAN-00L5-02 and grant “EOSBECMR” no. ANR-18-CE91-0003-01, the European Space Agency, IFRAF (Institut Francilien de Recherche sur les Atomes Froids), the action spécifique GRAM (Gravitation, Relativité, Astronomie et Métrologie) and Conseil Régional de Nouvelle-Aquitaine for the Excellence Chair. Hybrid navigation systems are the result of a joint laboratory between iXBlue and LP2N. E.R. and C.S. acknowledge financial support by the CRC 1227 DQmat, the CRC 1128 geo-Q, the Deutsche Forschungsgemeinschaft under the German Excellence Strategy (EXC-2123-B2), the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant nos. DLR 50WM1952, 50WP1700, 50WM1431 and “Niedersächsisches Vorab” through “Förderung von Wissenschaft und Technik in Forschung und Lehre” for the initial funding of research in the new DLR-SI Institute, and through the “Quantum and Nanometrology (QUANOMET)” initiative within the project QT3. The work of W.P.S. and A.R. is supported by the DLR with funds provided by the BMWi due to an enactment of the German Bundestag under grant nos. DLR50WM1331-1137, 50WM1556 (QUANTUS IV) and 50WM1641. Moreover, W.P.S. is grateful to Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study and to Texas A&M AgriLife Research for the support of this work. The research of IQST is financially supported by the Ministry of Science, Research and the Arts of Baden-Württemberg.
Reviewer information
Nature Reviews Physics thanks Guglielmo Tino, Shau-Yu Lan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised: In the original version of this article, the second affiliation of Albert Roura was missing. The second affiliation German Aerospace Center (DLR), Cologne, Germany has now been added.
Rights and permissions
About this article
Cite this article
Bongs, K., Holynski, M., Vovrosh, J. et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat Rev Phys 1, 731–739 (2019). https://doi.org/10.1038/s42254-019-0117-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-019-0117-4
This article is cited by
-
Photonic integrated beam delivery for a rubidium 3D magneto-optical trap
Nature Communications (2023)
-
Enhancing the sensitivity of atom-interferometric inertial sensors using robust control
Nature Communications (2023)
-
Single sideband modulation formats for quantum atom interferometry with Rb atoms
Applied Physics B (2023)
-
A Decade of Advancement of Quantum Sensing and Metrology in India Using Cold Atoms and Ions
Journal of the Indian Institute of Science (2023)
-
Quantum algorithms: applications, criteria and metrics
Complex & Intelligent Systems (2023)